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Abstract
A graph G has a representation modulo r if there exists an injective map f : V (G) →
{0, 1, . . . , r − 1} such that vertices u and v are adjacent if and only if f(u) − f(v) is

relatively prime to r. The representation number rep(G) is the smallest positive integer r

for which G has a representation modulo r. In this paper we study representation numbers

of the stars K1,n. We will show that the problem of determining rep(K1,n) is equivalent to

determining the smallest even k for which φ(k) ≥ n: we will solve this problem for “small”

n and determine the possible forms of rep(K1,n) for sufficiently large n.

1. Introduction

Let G be a finite graph with vertices v1, . . . , vk. G is said to be representable modulo
r if there exists an injective map f : V (G) → {0, 1, . . . , r−1} such that vertices u and
v are adjacent if and only if gcd(f(u)−f(v), r) = 1: we refer to f as a representative
labeling of G. Equivalently, G is representable modulo r if there exists an injective
map f : V (G) → Zr such that vi is adjacent to vj if and only if f(i)− f(j) is a unit
of (the ring) Zr. The representation number of G, denoted rep(G), is the smallest
positive integer r modulo which G is representable.

The study of representation numbers was initiated by Erdős and Evans in [4].
The main result of [4] was that any finite graph can be represented modulo some
positive integer: this was used to give a simpler proof of a result of Lindner et. al.
that any finite graph can be realized as an orthogonal Latin square graph [12]. The
proof in [4] established an upper bound on the representation number of an arbitrary
graph that was later improved by Narayan in [14]. Representation numbers have
since been studied for various classes of graphs (see [5], [6], [7], and [15]).

A list of graph representation problems is given in [8]: these include the prob-
lem of determining the representation numbers for complete bipartite and complete

1The work of the second author was supported in part by a Professional Development Grant
from the Wright State University Research Council.
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multipartite graphs. We restrict ourselves in this paper to the problem of determin-
ing representation number for a class of complete bipartite graphs, the stars K1,n.
The representation number of K1,n is bounded below by 2n as, by [6, Example
(1.1)], the representation number of the edgeless graph on n vertices is 2n. There
are three upper bounds in the literature. In [6, Example (1.3)], it is shown that
rep(K1,n) ≤ min{2!log2 n"+1, 3!log2 n"+1, 2p}, where p is any prime greater than n.
This was improved in [7, Corollary 5.7] to rep(K1,n) ≤ min{2!log2 n"+1, 2p}. One
more upper bound is given in [15, Theorem 1]. Let m be a positive integer and let
p be the smallest prime divisor of m: if n ≤ pk−1φ(m), then rep(K1,n) ≤ pkm. In
addition to these bounds, in [7] it was shown that rep(K1,n) can never be a power
of 3. We will significantly improve on these results.

In Section 2 we give some basic results, and we derive some general results on
the representation numbers of complete bipartite graphs that will prove useful to
us. In Section 3 we characterize the representation number of the star K1,n using
Euler’s phi function, and conjecture that this representation number is always of the
form 2a or 2ap, where p is a prime: we prove this conjecture true for “small” n in
Sections 4 and 5. In Section 6 we prove a weaker version of this conjecture for large
n; in particular, we show that for sufficiently large n, the representation number is
of the form 2a, 2ap, or 2apq, where p and q are (not necessarily distinct) primes. In
a sequel to this paper we will study representation numbers of complete multipartite
graphs, with a particular focus on the case of complete bipartite graphs.

2. Preliminaries

We begin with a result concerning the distribution of primes. Although it follows
from stronger results (see for example Theorem 19), it follows immediately from
the Prime Number Theorem and suffices for many applications.

Theorem 1. Given any β > 1, there exists a natural number N(β) such that for
n > N(β), there is a prime number in the interval (n,βn).

A weaker bound due to Nagura [13] is often useful in that it gives explicit values
for the quantity N mentioned above.

Proposition 2. If n ≥ 25, then there exists a prime between n and
6
5
n.

Lemma 3. If G is any graph and # : V (G) → Zk is any representative labeling,
then the following are also representative labelings:

• For any a ∈ Zk, τa ◦ #, where τa : Zk → Zk is the translation map x '→ x + a.

• ψ ◦ #, where ψ : Zk → Zk is any group automorphism.
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Km,n denotes the complete bipartite graph with partite sets A, B of respective
size m and n. We always assume m ≤ n and set N = m + n; we use φ(n) for the
Euler totient function. We begin with some basic upper and lower bounds.

Proposition 4. Let p be the smallest prime greater than N . Then 2n ≤ rep(Km,n) ≤
min{4n − 4, 2p}. In particular, given any ε > 0, rep(Km,n) ≤ 2(1 + ε)N if N is
sufficiently large.

Proof. The lower bound is a simple consequence of the facts that Kn is an induced
subgraph of Km,n and rep

(
Kn

)
= 2n [6, Example 1.1].

For the upper bound, consider a labeling of Km,n which assigns vertices in A
labels corresponding to odd integers from [1, 2|A|−1] and vertices in B even integers
from
[0, 2|B| − 2]. This shows that Km,n is representable modulo the smallest power
of 2 greater than 2n − 2. Since there will always be a power of 2 in the interval
(2n− 2, 4n− 4], we have rep(Km,n) ≤ 4n− 4.

Now suppose p is the smallest prime greater than N and consider a labeling #
of Km,n which assigns vertices in B even integers from [0, 2|B| − 2] and vertices
in A odd integers from [|B| − |A|, |B| + |A|]. If x ∈ A and y ∈ B, then we have
|#(x)− #(y)| ≤ |A|+ |B| = N < p, so this labeling represents Km,n modulo 2p. The
last statement follows from Theorem 1, applied with β = 1 + ε. !

Elementary considerations give the following necessary condition:

Lemma 5. φ(rep(Km,n)) ≥ n.

Proof. Fix a labeling of Km,n by Zr where r = rep(Km,n). By Lemma 3, we may
assume without loss of generality that some vertex v ∈ A is labeled 0. Since all
vertices of B are adjacent to v, the labels on the vertices of B must all be relatively
prime to r. Hence, φ(r) ≥ |B| = n. !

We write α(G) for the independence number of a graph G and ω(G) for its clique
number. The next result is useful in estimating the size of the smallest prime factor
of rep(G) when one has an upper bound for the latter.

Lemma 6. Let G be any graph, and p the smallest prime divisor of rep(G). Then

ω(G) ≤ p ≤ rep(G)
α(G)

.

Proof. Let r = rep(G), p the smallest prime dividing r, t = α(G) and S =
{s1, . . . , st} an independent set in G. Let f : V (G) → {0, . . . , r − 1} be a rep-
resentative labeling of G modulo r and ai = f(si), i = 1, . . . , t. Then r =
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∑t−1
i=1(ai+1 − ai) + (r − at + a1). Since S is an independent set, each of the paren-

thesized expressions in the previous formula is divisible by some prime divisor of r;
hence r ≥ tp. The lower bound is established in [6, Theorem 1.2]. !

3. Characterizing Representation Numbers of Stars

In this section we will characterize the representation numbers of stars using Euler’s
φ-function. We will conjecture the form of rep(K1,n): evidence for this conjecture
will be given in Sections 4 and 5, where it will be shown to be true for “small”
values of n; a proof of a weaker form of this conjecture for large values of n will be
given in Section 6.

Theorem 7. We have rep(K1,n) = min{k : 2|k and φ(k) ≥ n}.

Proof. Suppose that k is even and φ(k) ≥ n. Then one may produce a Zk-labeling
of K1,n as follows: label the root 0 and assign labels to the other vertices from Z∗

k,
the group of units of Zk. Notice that the difference between any two labels on leaves
is even. Hence rep(K1,n) ≤ min{k : 2|k and φ(k) ≥ n}.

Conversely, assume that rep(K1,n) = k. We may assume by Lemma 3 that the
root is labeled 0. Then the remaining n vertices must be labeled with units in Z∗

k,
so n ≤ φ(k). To complete the proof, we need to show that k is even. The smallest
values of n, 1, 2, 3, and 4 are easily checked. The remaining values of n must be
dealt with in two cases, n ≥ 25 and 4 < n < 25. If n ≥ 25, then, by Propositions 4

and Proposition 2, k ≤ 12
5

n. If 4 < n < 25 there is always an even integer t < 3n
for which φ(t) ≥ n. In either case, k < 3n, so by Lemma 6, k must be even. !

As an easy corollary we are able to characterize those stars K1,n whose repre-
sentation numbers are 2n and 2n + 2.

Corollary 8.

1. If n ≥ 3, then rep(K1,n) = 2n if and only if n is a power of 2.

2. If n ≥ 3, then rep(K1,n) = 2n + 2 = 2p if and only if n is not a power of 2,
and p = n + 1 is a prime.

For small values of n, rep(K1,n) is a power of 2 or a power of 2 times an odd
prime: Table 1 displays the data for n ≤ 66. This leads us to a conjecture. Let Mn

denote the smallest positive integer M of the form 2k+1 or 2k+1p, k a nonnegative
integer and p an odd prime, for which φ(M) ≥ n.
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n rep(K1,n) n rep(K1,n) n rep(K1,n)
1 2 19, 20 44 = 22 × 11 43, 44 92 = 22 × 23
2 4 = 22 21, 22 46 = 2× 23 45, 46 94 = 2× 47

3, 4 8 = 23 23, 24 52 = 22 × 13 47, 48 104 = 23 × 13
5, 6 14 = 2× 7 25, . . . , 28 58 = 2× 29 49, . . . , 52 106 = 2× 53
7, 8 16 = 24 29, 30 62 = 2× 31 53, . . . , 56 116 = 22 × 29
9, 10 22 = 2× 11 31, 32 64 = 26 57, 58 118 = 2× 59
11, 12 26 = 2× 13 33, . . . , 36 74 = 2× 37 59, 60 122 = 2× 61

13, . . . , 16 32 = 25 37, . . . , 40 82 = 2× 41 61, . . . , 64 128 = 27

17, 18 38 = 2× 19 41, 42 86 = 2× 43 65, 66 134 = 2× 67

Table 1: Representation numbers for small stars.

Conjecture 9. For all n, rep(K1,n) = Mn.

Corollary 8 establishes the truth of Conjecture 9 when n is a power of 2 or n+1 is
an odd prime. We will provide evidence for Conjecture 9 for small n; the cases Mn

a power of 2, and Mn a power of 2 times an odd prime, will be handled separately
in Sections 4 and 5, respectively. In Section 6 we will show that, for n sufficiently
large, either rep(K1,n) = Mn or rep(K1,n) is of the form 2k+1pq, where p and q are
(not necessarily distinct) odd primes.

4. The Case n Small and Mn = 2k+1

For q an odd prime there exist unique positive integers a and s for which

2s−1 < q = 2s − a < 2s.

We define a mapping β from the set of odd primes to the set of positive rational
numbers by β(q) = (a + 1)/2s, and we say that a prime p′ is β-constrained if

√
q < p′ <

1
β(q)

for some odd prime q.
As examples, 3 is β-constrained as

√
7 < 3 < 4 = 1/β(7); 7 is β-constrained as√

31 < 7 < 16 = 1/β(31); and 11 is β-constrained as
√

31 < 11 < 16 = 1/β(31).
Note that 5 is not β-constrained.

Conjecture 10. Any odd prime other than 5 is β-constrained.
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One approach to trying to prove Conjecture 10 is to search for a sequence of odd
primes qi for which the intervals (√qi, 1/β(qi)) and (√qi+1, 1/β(qi+1)) overlap, and
a reasonable candidate is the sequence qi = max{p : p < 2i, p prime}. If we set
Ii = (√qi, 1/β(qi)), then any odd prime in Ii is, by definition, β-constrained. Now
I5 = (

√
31, 16) ≈ (5.6, 16) and we were able to verify using MAGMA that Ii and Ii+1

overlap for i = 5, . . . , 412; MAGMA could not determine the prime q414. Thus any odd
prime in the interval (

√
31, 1/β(q413)) ≈ (5.6, 9.6× 10122) is β-constrained.

Lemma 11. Let p1 < p2 be odd primes. If p1 = 5 or p1 is β-constrained, then
there exists an odd prime q < p1p2 for which p1 < 1/β(q).

Proof. p1 being β-constrained implies that there exists an odd prime q < p2
1 < p1p2

for which p1 < 1/β(q).
If p1 = 5, then p2 ≥ 7. Choosing q = 31, q < p1p2, and β(q) = 1/16, from which

the result follows. !

Theorem 12. If Mn = 2k+1 and rep(K1,n) += Mn, then the smallest odd prime
divisor of rep(K1,n) is neither 5 nor β-constrained.

Proof. Assume this to be false. That is, for some positive integer n, Mn = 2k+1,
m = rep(K1,n) += Mn, the odd prime divisors of m are p1 < · · · < pr, and p1 is either
5 or β-constrained. Let q < 2k be an arbitrary odd prime, 2s−1 < q = 2s − a < 2s,
and set α = 2k−s+1q. Then α < Mn, and by the hypothesis of the Theorem,

φ(α) = 2k

(
1−

(
a + 1
2s

))
< n ≤ φ(m)

=
m

2

(
1− 1

p1

)
. . .

(
1− 1

pr

)

< 2k

(
1− 1

p1

)
. . .

(
1− 1

pr

)
.

This reduces to

1− β(q) <

(
1− 1

p1

)
. . .

(
1− 1

pr

)
.

If r = 1, then this inequality is equivalent to 1/p1 < β(q), in which case
m = 2t+1pl

1 for some t ≥ 0 and some l ≥ 2. If t > 0 or l > 2, then there
exists a prime p′, p1 < p′ < 2tpl−1

1 . By Lemma 11, we may choose q < p1p′

to satisfy β(q) < 1/p1: a contradiction. Thus m = 2p2
1. If p1 = 5, then m = 50

and φ(50) = 20 = φ(44): a contradiction as 44 < 50. Thus p1 += 5 and p1 is
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β-constrained. If p1 += 5, then, as p1 is β-constrained, we may choose q < p2
1, to

satisfy β(q) < 1/p1: a contradiction.
If r = 2, then

1− β(q) < 1− 1
p1
− 1

p2
+

1
p1p2

.

But, by Lemma 11, as p1 is either 5 or β-constrained, we may choose q < p1p2 so
that

β(q) <
1
p1

<
1
p1

+
1
p2
− 1

p1p2
;

a contradiction.
If r > 2, set

Li = 1−
(

1− 1
p1

)
. . .

(
1− 1

pi

)
, for i = 1, . . . , r.

Now Li < 1 for all i and β(q) > Lr. Further, by Lemma 11, we may choose q to
also satisfy β(q) < L2, from which we can inductively show that β(q) < Li for all
i ≥ 2 as

Li+1 = Li −
1

pi+1
Li +

1
pi+1

= Li +
1

pi+1
(1− Li) > Li,

from which it follows that β(q) < Lr; a contradiction. !

Corollary 13. If n < 1.8× 10246 and Mn is a power of 2, then rep(K1,n) = Mn.

Proof. If Mn is a power of 2 and m = rep(K1,n) += Mn, then, by Theorem 12, the
smallest odd prime divisor p of m cannot be 5 or β-constrained. Thus p > 9.6×10122

and n ≥ 2p2 > 1.8× 10246. !

5. The Case n Small and Mn = 2k+1p

Considering the possible odd prime divisors of Mn, we see that M5 = M6 = 14;
these are the only cases in which Mn is divisible by 7, and Mn is never divisible by
3, 5, or a Fermat prime.

Lemma 14. If n += 5, 6, then Mn is not divisible by 3, 5, 7, or a Fermat prime.

Proof. As φ(4) = 2 = φ(6), φ(8) = 4 = φ(10) = φ(12), and φ(14) = 6; M2 = 4,
M3 = M4 = 8, and M5 = M6 = 14. Thus, we are free to assume that n ≥ 7 and
that Mn > 14.
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Mn cannot be divisible by 3 as then

2k+2 × 3 > 2k+1 × 5 and φ(2k+2 × 3) = 2k+2 = φ(2k+1 × 5).

Mn cannot be divisible by 5 as then

2k+2 × 5 > 2k+4 and φ(2k+2 × 5) = 2k+3 = φ(2k+4).

Mn cannot be divisible by 7 as then

2k+2 × 7 > 2k+1 × 13 and φ(2k+2 × 7) = 2k+2 × 3 = φ(2k+1 × 13).

If Mn = 2ip and p = 2j +1 is a prime, and hence a Fermat prime, then 2i+j < Mn

and φ(2i+j) = 2i+j−1 = φ(Mn), a contradiction. Hence Mn cannot be divisible by
a Fermat prime. !

Lemma 15. Let p ≥ 11 be a prime. If, for some i ≥ 1, there exists a prime q
satisfying 2i(p− 1) < q < 2ip, then Mn += 2jp for all j > i.

Proof. Suppose that the conditions of the lemma are satisfied and that j > i.
Set m = 2j−iq. Then m < 2jp and φ(m) = 2j−i−1(q − 1) ≥ φ(2jp), and so
Mn += 2jp. !

Interestingly, for any given odd prime p there exists some i for which the condi-
tions of Lemma 15 hold, and so Mn = 2ip for only finitely many i.

Lemma 16. For any odd prime p there exists an integer i ≥ 1 for which the interval
(2i(p− 1), 2ip) contains a prime.

Proof. Set x = 2i(p− 1) and ε = p/(p− 1) > 1. If x is sufficiently large, then the
interval (x, εx) = (2i(p− 1), 2ip) will contain a prime by Theorem 1. !

We define δp to be the smallest integer k ≥ 1 for which there exists a prime q
satisfying 2k(p− 1) + 1 < q < 2kp. By Lemma 16, δp is well-defined. As examples
δ11 = 2, δ13 = 3, δ19 = 1, δ23 = 2, and δ29 = 2.

For p and q distinct odd primes there exist a unique nonnegative rational number
c and a unique integer s for which

2s−1 <
q

p
= 2s − c

p
< 2s,

We define a mapping γp from the set of odd primes other than p to the set of positive
rational numbers by γp(q) = (c + 1)/(2sp), if q += p. In the following theorem we
give two tests that can be used to establish that rep(K1,n) = Mn.
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Theorem 17. Let Mn = 2k+1p, p an odd prime, k ≥ 0.

1. If 2t < p = 2t + b < 2t+1, and 2kb2 < p, then rep(K1,n) = Mn.

2. If q < 2kp is an odd prime other than p, and

1
γp(q)

≥
√

2kp,

then rep(K1,n) = Mn.

Proof.

1. Assume this to be false, and that m = rep(K1,n) += Mn. Let p1 < · · · < pr

be the distinct odd prime divisors of m. Then 2p2
1 ≤ m < Mn = 2k+1p, from

which it follows that p1 <
√

2kp. Set ε = 2k+t+1 < 2k+1p. Then

φ(ε) = 2k+t < n ≤ φ(m)

=
m

2

(
1− 1

p1

)
. . .

(
1− 1

pr

)

< 2kp

(
1− 1

p1

)
. . .

(
1− 1

pr

)

≤ 2kp

(
1− 1

p1

)
.

Thus
p− b = 2t < p

(
1− 1

p1

)
,

and so p1 > p/b. Hence p/b <
√

2kp, which implies that p < 2kb2, a contra-
diction from which the result follows.

2. Assume this to be false, and that m = rep(K1,n) += Mn. Let p1 < · · · < pr be
the distinct odd prime divisors of m. For uniquely determined integers s and
c, 2s−1 < (q/p) = 2s − (c/p) < 2s. Set α = 2k−s+1q. Then

α < 2k+1

(
p

q

)
q = 2k+1p = Mn.

By the hypotheses of the theorem,

φ(α) = 2kp

(
1−

(
c + 1
2sp

))
< n ≤ φ(m)

=
m

2

(
1− 1

p1

)
. . .

(
1− 1

pr

)

< 2kp

(
1− 1

p1

)
. . .

(
1− 1

pr

)
.
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p δp k q γp(q) p δp k q γp(q) p δp k q γp(q)
11 2 1 19 2/11 43 3 0 41 3/43 61 2 1 113 5/61
13 3 0 11 3/13 1 83 2/43 67 4 3 523 7/268

1 23 2/13 2 167 3/86 71 2 1 139 2/71
2 47 3/26 47 3 0 43 5/47 73 3 0 71 3/73

23 2 0 11 3/23 1 89 3/47 1 139 4/73
1 43 2/23 2 181 2/47 2 283 5/146

29 2 0 13 5/29 53 2 0 47 7/53 79 1 0 73 7/79
1 53 3/29 1 103 2/53 83 2 0 79 5/83

31 1 0 29 3/31 59 2 0 53 7/59 1 163 2/83
41 2 0 37 5/41 1 113 3/59 89 2 0 83 7/89

1 79 2/41 61 2 0 59 3/61 1 173 3/89

Table 2: The test of Theorem 17.17 for 11 ≤ p ≤ 89.

This reduces to

1− γp(q) <

(
1− 1

p1

)
. . .

(
1− 1

pr

)
≤

(
1− 1

p1

)
.

From this it follows that p1 > 1/γp(q). But then

1/γp(q) < p1 <
√

2kp,

a contradiction from which the result follows. !

We ran a MAGMA program to establish evidence for Conjecture 9. For each prime
p, 11 ≤ p ≤ 3181, that was not a Fermat prime, we computed δp. Next, for each
k < δp, we applied the test of Theorem 17.17, and only if this test failed did we
apply the test of Theorem 17.17, and in this case we searched for the largest odd
prime q += p for which the test was satisfied. In all cases, we found either the test
of Theorem 17.17 worked, or the test of Theorem 17.17 worked. For p ≤ 229, the
test of Theorem 17.17 works for p = 11 and k = 0, p = 19 and k = 0, p = 37 and
k = 0, p = 67 and k = 0, 1, 2, p = 71 and k = 0, p = 131 and k = 0, 1, p = 137 and
k = 0, and p = 139 and k = 0. In Table 2 we list all the instances we found, for
11 ≤ p ≤ 89, for which the test of Theorem 17.17 worked.

Corollary 18. If Mn = 2k+1p for some k ≥ 0 and prime p, 11 ≤ p ≤ 5693, then
rep(K1,n) = Mn.
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6. Stars With Many Vertices

In this last section we study the prime factorization of the representation number
for stars with many vertices, using tools from number theory.

Consider the following statement about the distribution of primes:

P (θ): For sufficiently large values of x, there exists a prime between x and x + xθ.

The statement P (1) is Bertrand’s postulate. This was first proved by Chebyshev;
simpler proofs were given later by Ramanujan and by Erdös [3]. The first proof of
the validity of P (θ) for θ < 1 was given by Hoheisel [10], for θ = 32999/33000. This
result was improved upon by Heilbronn [9] for θ = 249/250 and Tchudakoff [16] for
θ = (3/4) + ε; a major breakthrough was made by Ingham [11], who established
the validity of P (5/8). The best result to date is for θ = .525; this is due to Baker,
Harman, and Pintz:

Theorem 19. ([1])There exists N0 such that for all x > N0, there is a prime
between x and x + x.525.

For the remainder of the article, we will use N0 to denote the smallest such
integer which makes Theorem 19 true. In practice, we will not use the full strength
of the theorem; for most of our applications, the case θ = 2/3 is sufficient.

The following statements is of interest, in that its resolution would lead to inter-
esting results about representation numbers.

Hypothesis 20. For sufficiently large x, there is a prime between x and x + x1/2.

In the absence of compelling evidence to suggest its truth, we hesitate to frame
this statement as a conjecture. However, slightly weaker statements appear in the
literature: letting pn denote the nth prime, Cramér [2] proved, under the assumption
of the Riemann hypothesis, that pn+1 − pn = O(√pn log pn).

Before stating our main result, we need a tool for establishing the existence of a
prime number in certain intervals:

Lemma 21. Let φ(k) > N0 be an integer.

• If k is even and has at least three (not necessarily distinct) odd prime factors,

then there exists a prime number in (φ(k),
k

2
).

• Suppose Hypothesis 20 holds. If k is even and has at least two (not necessarily

distinct) odd prime factors, then there exists a prime number in (φ(k),
k

2
).
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Proof. Suppose first that k is even and has at least three odd prime factors, and let
p be the smallest such prime factor. Writing k = 2pm, we have φ(k) ≤ (p−1)m. By

Theorem 19, the result will hold except possibly if φ(k) + φ(k)2/3 >
k

2
. However,

this implies (p−1)m+(p−1)2/3m2/3 > pm, which in turn implies (p−1)2/3 > m1/3.
This, however, yields (p− 1)2 > m; so since k has at least three odd prime factors,
the smallest of which is p, k > 2p(p− 1)2 > 2pm = k, which is a contradiction.

If Hypothesis 20 holds and k has at least two odd prime factors, there is a prime
between φ(k) and φ(k) + (φ(k))1/2, so the result holds except possibly if φ(k) +

(φ(k))1/2 >
k

2
. In the above notation, this implies (p− 1)m+(p− 1)1/2m1/2 > pm,

which in turn implies (p−1)1/2 > m1/2, or p−1 > m. Then k > 2p(p−1) > 2pm = k,
a contradiction. !

We now come to our result on the form of the representation number of stars
with many vertices.

Theorem 22. For n sufficiently large, rep(K1,n) is of one of the following forms:
2a, 2ap, 2apq, where a ≥ 1 and p, q are (not necessarily distinct) primes. If
Hypothesis 20 is assumed, then the last possibility cannot occur and so rep(K1,n) =
Mn.

Proof. Let r = rep(K1,n). Since r is even, Lemma 21 guarantees (for sufficiently
large n) the existence of a prime # ∈ (φ(r),

r

2
) if r is not of any of the forms listed

above. Then 2# < r but φ(2#) = #− 1 ≥ φ(r) ≥ n, which contradicts Theorem 7. !
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