
#A56 INTEGERS 10 (2010), 793-800

AN OBSERVATION ON THE EXTENSION OF ABEL’S LEMMA

Alexander E. Patkowski
Department of Mathematics, University of Regina, Regina, Saskatchewan, Canada

S4S 0A2
alexpatk@hotmail.com

Received: 2/27/10, Revised: 7/26/10, Accepted: 8/25/10, Published: 12/1/10

Abstract
We prove a general formula for a certain class of sums of tails. A new proof of some
known identities is given, and a general identity that appears to be the first of its
kind is established.

1. Introduction and Main Results

In the work of Andrews, Jiménez-Urroz and Ono [2], it was shown that sums over the
differences of q-products and truncated q-products have very interesting applications
to both partitions and generating functions for values of L-functions (see [5, 8] as
well). Series of this type are more casually termed sums of tails [5]. One elegant
example, given in Ramanujan’s “lost” notebook [4], is:

∞∑

n=0

((−q)∞ − (−q)n) = (−q)∞D(q) +
1
2

∞∑

n=0

qn(n+1)/2

(−q)n
, (1)

where

D(q) = −1
2

+
∞∑

n=1

qn

1− qn
,

and where the q-Pochhammer symbol [7] (ξ)n = (ξ; q)n :=
∏n−1

j=0 (1− ξqj) has been
used. In [1], Andrews gave the first proof of (1) and a related identity found in
Ramanujan’s “lost” notebook [4]. Zagier [9] also studied series of this type after
Ramanujan, and his work gave some of the motivation for the results contained in
[2].

Proposition 2.1 of [1] is the key formula to obtaining these special sums of
tails identities, and its proof requires use of Abel’s lemma, which states that if
limn→∞ an = L, then limt→1−(1 − t)

∑∞
n=0 antn = L. For a proof of Proposition

2.1, which we now state, see [4], Chapter 7, “Special Identities.”
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(Proposition 2.1. [2]) Suppose that f(z) =
∑∞

n=0 α(n)zn is analytic for |z| < 1.
If α is a complex number for which

(i)
∞∑

n=0

(α− α(n)) < +∞

and

(ii) lim
n→∞

n(α− α(n)) = 0,

then

lim
z→1−

d

dz
(1− z)f(z) =

∞∑

n=0

(α− α(n)).

Andrews and Freitas [3] have found how to generalize Proposition 2.1 of [2] to
the p-th derivative. Two examples from [3], which are of interest to our study, are:

∞∑

n=0

(
1

(q)∞
− 1

(q)n

)2

=
1

(q)2∞

∞∑

n=1

(−1)n−1 qn(n+1)/2

(q)n

1− (q)n

1− qn
, (2)

∞∑

n=0

(
(t)∞
(q)∞

− (t)n

(q)n

)2

=
(t)2∞
(q)2∞

∞∑

n=1

(q/t)ntn

(q)n

(
(q)n

(t)n
− 1

)
1

1− qn
. (3)

Here (2) is [3, pg.148, eq.(iii)] and a corollary of (3), and (3) is [3, pg.148, eq.(ii)].
As it turns out, these two identities are also a consequence of our main theorem,
and can be viewed as a corollary of Proposition 2.1.

Theorem 1 Assuming the hypothesis of Proposition 2.1, we have for each integer
r ≥ 1,

∞∑

n=0

(α− α(n))r = −
r∑

k=1

(
r

k

)
(α)r−k(−1)k

∞∑

n=0

(αk − αk(n)). (4)

Throughout this note we will be primarily concerned with applications to q-series,
and so we will not run into any problems with our choices of α(n).
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2. Proof of Main Theorem

The proof of Theorem 1 essentially relies on Proposition 2.1, which is why one can
view Theorem 1 as a corollary of Proposition 2.1. First, we need the binomial
theorem [7, p. 25]:

(x + y)r =
r∑

k=0

(
r

k

)
xr−kyk. (5)

Set α = 0, α(n) = ηn(r) := (λ− λn)r , and assume ηn(r) satisfies (i) and (ii), where
λn also satisfies the hypothesis of Proposition 2.1 and limn→∞ λn = λ. Following
the proofs in [1], set ε to be the differential operator ε = limt→1−

d
dt . Then, using

the fact that α = limn→∞ ηn(r) = 0, by Proposition 2.1, it follows that

−
∞∑

n=0

(λ− λn)r = ε(1− t)
∞∑

n=0

ηn(r)tn = ε(1− t)
∞∑

n=0

(λ− λn)r tn

= ε(1− t)
∞∑

n=0

r∑

k=0

(
r

k

)
(λ)r−k(−λn)ktn

=
r∑

k=0

(
r

k

)
(λ)r−k(−1)kε(1− t)

∞∑

n=0

(λn)ktn

=
r∑

k=1

(
r

k

)
(λ)r−k(−1)k

∞∑

n=0

(λk − λk
n).

In the fifth line we have used Proposition 2.1 and the fact that if k = 0, then λ0
n = 1

and ε(1− t)
∑

n≥0 tn = 0.

3. Proof of (3)

Here we provide proofs of (2) and (3) using Theorem 1. Clearly (2) is just the case
t = 0 of (3), so we will just prove, in detail, the identity (3).

Proposition 2 Identity (3) is valid.

Proof. If we take r = 2 in Theorem 1 we get

∞∑

n=0

(α− α(n))2 = 2α
∞∑

n=0

(α− α(n))−
∞∑

n=0

(
α2 − α(n)2

)
. (6)
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Now taking α := (t)∞/(q)∞ and α(n) := (t)n/(q)n, we find α satisfies (i) and (ii)
of Proposition 2.1, and further

∞∑

n=0

(
(t)∞
(q)∞

− (t)n

(q)n

)2

= 2
(t)∞
(q)∞

∞∑

n=0

(
(t)∞
(q)∞

− (t)n

(q)n

)

−
∞∑

n=0

((
(t)∞
(q)∞

)2

−
(

(t)n

(q)n

)2
)

. (7)

In [3, Corollary 4.3 (vi)] we find

∞∑

n=0

((
(t)∞
(q)∞

)2

−
(

(t)n

(q)n

)2
)

= −
(

(t)∞
(q)∞

)2 ∞∑

n=1

(q/t)ntn

(q)n(1− qn)

(
(q)n

(t)n
+ 1

)
. (8)

By Corollary 4.2 of [2] with a = q we have

∞∑

n=0

(
(t)∞
(q)∞

− (t)n

(q)n

)
= − (t)∞

(q)∞

∞∑

n=1

(q/t)ntn

(q)n(1− qn)
. (9)

Since α = (t)∞/(q)∞, we find by (6) that (3) readily follows after inserting (9) and
(8). !

4. The Case r > 2

The slightly more difficult task with Theorem 1 is finding identities for r > 2. We
consider an identity for general r > 2, for a particular choice of α(n). First we need
a new result from a paper by Fang [6]. Throughout this section we will use standard
notation for the q-binomial coefficients

[
m0

m1

]
:=

(1− q)(1− q2) · · · (1− qm0)
(1− q)(1− q2) · · · (1− qm1)(1− q)(1− q2) · · · (1− qm0−m1)

.

Theorem 3 (Fang [6, Corollary 6.1]) For 0 ≤ mt+1 ≤ mt ≤ · · · ≤ m1 ≤ m0 = m,
where t, m, and the mt are non-negative integers, and |x| < 1, we have

(q; q)t+2
∞

∞∑

n=0

(c; q)nxn

(q; q)t+3
n

=
(cx; q)∞
(x; q)∞

∞∑

m=0

(x; q)m(−1)mqm(m+1)/2

(q, cx; q)m
(10)

×
∑

m1,m2,···,mt+1

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mt

mt+1

]
q

∑ t
i=0 mi+1(mi+1−mi).
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Now set α := 1/(q)t+3
∞ , α(n) := 1/(q)t+3

n , and put

f(z) =
∞∑

n=0

zn

(q; q)t+3
n

.

Using Proposition 2.1, Equation (10) with c = 0 and x = z, we find that

∞∑

n=0

(
1

(q)t+3
∞

− 1
(q)t+3

n

)
= ε(1− z)f(z) = ε(1− z)

∞∑

n=0

zn

(q; q)t+3
n

= ε(1− z)
1

(q; q)t+2
∞ (z; q)∞

∞∑

m=0

(z; q)m(−1)mqm(m+1)/2

(q; q)m

×
∑

0≤mt+1≤mt≤···≤m1≤m0=m

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mt

mt+1

]
q

∑ t
i=0 mi+1(mi+1−mi)

=
1

(q)t+3
∞

∞∑

n=1

qn

1− qn
+

1
(q)t+3
∞

ε
∞∑

m=0

(−1)mqm(m+1)/2(z; q)m

(q; q)m

×
∑

0≤mt+1≤mt≤···≤m1≤m0=m

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mt

mt+1

]
q

∑ t
i=0 mi+1(mi+1−mi).

Finally, observing that ε(z; q)m/(q; q)m = −1/(1 − qm), we find the last equation
produces the following lemma.

Lemma 4 For each non-negative integer t, we have

∞∑

n=0

(
1

(q)t+3
∞

− 1
(q)t+3

n

)
=

1
(q)t+3
∞

( ∞∑

n=1

qn

1− qn
−

∞∑

m=1

(−1)mqm(m+1)/2

(1− qm)
(11)

×
∑

0≤mt+1≤mt≤···≤m1≤m0=m

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mt

mt+1

]
q

∑ t
i=0 mi+1(mi+1−mi)

)
.

We can now obtain the following new result.
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Theorem 5 For any integer r > 2, we have

∞∑

n=0

(
1

(q)∞
− 1

(q)n

)r

= r(q)−r
∞

∞∑

n=1

qn

1− qn
− 1

2
r(r − 1)(q)−r

∞

×
( ∞∑

n=1

qn

1− qn
+
∞∑

n=1

(−1)n−1qn(n+1)/2

1− qn

)

−(q)−r
∞

r−3∑

k=0

(
r

k + 3

)
(−1)k+3

( ∞∑

n=1

qn

1− qn
−

∞∑

m=1

(−1)mqm(m+1)/2

(1− qm)

×
∑

0≤mk+1≤mk≤···
≤m1≤m0=m

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mk

mk+1

]
q

∑k
i=0 mi+1(mi+1−mi)

)
. (12)

Proof. First observe that, from Theorem 1, we can write for r > 2,

∞∑

n=0

(α− α(n))r = rαr−1
∞∑

n=0

(α− α(n))− 1
2
r(r − 1)αr−2

∞∑

n=0

(
α2 − α(n)2

)

−
r∑

k=3

(
r

k

)
(α)r−k(−1)k

∞∑

n=0

(αk − αk(n)). (13)

Choosing α(n) := 1/(q)n and α := 1/(q)∞ in (13) we obtain

∞∑

n=0

(
1

(q)∞
− 1

(q)n

)r

= r(q)−(r−1)
∞

∞∑

n=0

(
1

(q)∞
− 1

(q)n

)

−1
2
r(r − 1)(q)−(r−2)

∞

∞∑

n=0

(
1

(q)2∞
− 1

(q)2n

)

−
r−3∑

k=0

(
r

k + 3

)
(

1
(q)∞

)r−(k+3)(−1)k+3
∞∑

n=0

(
(q)−(k+3)
∞ − (q)−(k+3)

n

)
. (14)



INTEGERS: 10 (2010) 799

Since (11) holds for each non-negative integer t, we insert it into the third line
of (14) to get

∞∑

n=0

(
1

(q)∞
− 1

(q)n

)r

= r(q)−r
∞

∞∑

n=1

qn

1− qn
− 1

2
r(r − 1)(q)−r

∞

×
( ∞∑

n=1

qn

1− qn
+
∞∑

n=1

(−1)n−1qn(n+1)/2

1− qn

)

−
r−3∑

k=0

(
r

k + 3

)
(

1
(q)∞

)r−(k+3)(−1)k+3 1
(q)k+3
∞

×
( ∞∑

n=1

qn

1− qn
−

∞∑

m=1

(−1)mqm(m+1)/2

(1− qm)

×
∑

0≤mk+1≤mk≤···
≤m1≤m0=m

[
m0

m1

][
m1

m2

][
m2

m3

]
· · ·

[
mk

mk+1

]
q

∑k
i=0 mi+1(mi+1−mi)

)
, (15)

upon invoking [2, pg.19, eq.(6.7)], and [2, pg.19, eq.(5.4)]. Lastly, canceling out the
product (q)−k−3

∞ , gives the theorem. !

5. Concluding Remarks

The results contained herein suggest that there should be some further interesting
consequences of Proposition 2.1. One way we could obtain a generalization of
Theorem 1 is choosing a different ηn(r) in our proof. Namely, we could choose

ηn(r) =
r∏

i=1

(αi − αi(n)),

where at least some of the αi(n) are different for each i with 1 ≤ i ≤ r. (Choosing
all the αi(n) to be equal to each other for each i gives Theorem 1.) The trick here is
to ensure that limn→∞ ηn(r) = 0. The difficult task in applications of Theorem 1 to
q-series is finding the simpler, more common expressions for integers r > 2, for the
right hand side of (4). We can, however, obtain more results like Theorem 5 using
Fangs’ more general identity [6, pg.1404, Theorem 6.1]. It would be interesting to
see some applications of Proposition 2.1 outside of q-series.
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