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Abstract
We introduce a two person game played with a pair of nonnegative integers; a move
consists of subtracting from the larger integer, a positive integer no greater than
the smaller integer. The player who reduces one of the integers to zero wins. The
game is curious in several respects: in particular, its Sprague-Grundy values have
an interesting connection with prime numbers.

1. Introduction

We introduce a two person, impartial, combinatorial game, that we call min (short
for minus). The game is played with an unordered pair of nonnegative integers.
From position (a, b) with a ≤ b, a legal move consists of subtracting from b, a
positive integer no greater than a. The first player who reduces one of the integers
to zero wins. The game is a variation of nim, and it is related to Euclid, in which
the players move by subtracting a positive integer multiple of the smaller integer
from the larger integer; see references [1] to [6]. Actually, there are two versions
of Euclid, according to whether one stops when the entries are equal, or one of
them is reduced to 0. The latter case is the original game of Cole and Davie [2],
while the former case was introduced by Grossman [4]. In both cases, there is an
explicit formula for the Sprague-Grundy values. For Grossman’s Euclid, Nivasch
[5] gave the formula "|ab −

b
a |$. For Cole and Davie’s Euclid, the formula involves

the continued fraction expansion of b/a; see [1]. For the game min the situation
seems rather more complicated, and it is very unlikely that there is a simple formula
for its Sprague-Grundy values, as will become apparent below.

Let G(a, b) denote the Sprague-Grundy value of the position (a, b) in min. For
convenience, throughout this paper we will refer to the Sprague-Grundy value sim-
ply as the nim-value. Recall that the nim-value of the terminal positions G(0, a)
is zero, and that G(a, b) is the smallest nonnegative integer not contained in the
set of nim-values of the positions that can be reached from (a, b). The game min
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is curious in three respects:

1. For a fixed and b ≥ a− 1, the nim-values of positions G(a, b) are periodic in b
with period a + 1.

2. The positions with nim-value 1 can be computed recursively without knowl-
edge of the positions of the other nim-values.

3. There is an interesting connection with prime numbers. Our main result is
the following:

Theorem 1. For all a ≥ 1, we have G(a, a) = 1 if and only if a + 1 is prime.

Calculations reveal a number of interesting patterns, which unfortunately die out
for sufficiently large integers. For example, if G(a − 1, a) = 0 and a < 6240, then
a + 1 is prime. But G(a− 1, a) = 0 for a = 6240, and here a + 1 = 792, which is not
prime. Similarly, there are only 4 values of a with G(a−2, a) = 0 and a < 17226; in
these cases, the values of a+1 are the first 4 Fermat primes: 3, 5, 17, 257. However,
G(17224, 17226) = 0, and 17227 isn’t a Fermat prime.

2. Preliminaries

Remark 2. Note that for a > 0, we have G(a, a) &= 0, since G(0, a) = 0 and there
is a move from (a, a) to (a, 0). Moreover, by induction, G(1, a) = 0 if and only if a
is even.

We begin by showing that for fixed a > 0, the number G(a, b) is periodic in b
with period a + 1, provided b is sufficiently large. For integers x, y with y > 0, we
denote the remainder Ry(x) = x− y · "x/y$, where "·$ denotes the integer part.

Lemma 3. Suppose that a ≥ 1.

(a) If b ≥ 2a, then G(a, b) = G(a, a− 1 + Ra+1(b− a + 1)).

(b) If b ≥ a− 1, then

{G(a, b),G(a, b + 1), . . . ,G(a, b + a)} = {0, 1, . . . , a}.

Proof. We prove (b) first. Note that if 0 ≤ j < k ≤ a, then there is a move from
(a, b + k) to (a, b + j) and so the elements

G(a, b),G(a, b + 1), . . . ,G(a, b + a)
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are all distinct. Furthermore, if a ≤ b and 0 ≤ i ≤ a, or a = b + 1 and 0 < i, there
are exactly a moves from the position (a, b + i), while if a = b + 1 and i = 0, there
are a − 1 moves from (a, b + i). Therefore G(a, b + i) ≤ a for all 0 ≤ i ≤ a. This
gives the required result.

From (b) we have {G(a, b + 1),G(a, b + 2), . . . ,G(a, b + a + 1)} = {0, 1, . . . , a} =
{G(a, b),G(a, b + 1), . . . ,G(a, b + a)}. Hence G(a, b + a + 1) = G(a, b), which
gives (a).

In general, it is not true that G(a, b + a + 1) = G(a, b) for b < a − 1. However,
there are partial results. Let fj(a) be the smallest nonnegative integer i such that
G(a, a + i) = j. Note that by the previous lemma, 0 ≤ fj(a) ≤ a.

Lemma 4. Suppose that a > 0. Then

(a) G(a, f0(a)− 1) = 0.

(b) If f1(a) > 0, then G(a, f1(a)− 1) = 1.

Proof. (a) First note that by Remark 2, we have f0(a) > 0. There are exactly a
moves from G(a, a + f0(a)), which lead respectively to

(a, f0(a)), (a, f0(a) + 1), . . . , (a, a + f0(a)− 1),

so none of these positions has nim-value 0. Suppose that G(a, f0(a)− 1) &= 0. Then
none of the positions

(a, f0(a)− 1), (a, f0(a)), . . . , (a, a + f0(a)− 2)

would have nim-value 0, and so we would have G(a, a + f0(a) − 1) = 0, where
f0(a)− 1 is nonnegative, contrary to the definition of f0(a).

(b) Similarly, there are exactly a moves from G(a, a+f1(a)), leading respectively
to (a, f1(a)), (a, f1(a) + 1), . . . , (a, a + f1(a) − 1), so none of these positions has
nim-value 1. Suppose that G(a, f1(a)− 1) &= 1. Then none of the positions

(a, f1(a)− 1), (a, f1(a)), . . . , (a, a + f1(a)− 2)

would have nim-value 1, and so we would have G(a, a + f1(a) − 1) ≤ 1. We
have already observed that (a, a + f1(a) − 1) does not have nim-value 1. So
G(a, a + f1(a) − 1) = 0. As f1(a) > 0, we have a + f1(a) − 1 ≥ a. In fact, as
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G(a, a + f1(a) − 1) = 0 and G(a, a) &= 0 by Remark 1, we have a + f1(a) − 1 > a;
that is, f1(a) ≥ 2. As the nim-values

{G(a, a),G(a, a + 1), . . . ,G(a, 2a)}

are distinct, by Lemma 3(b), f0(a) = f1(a) − 1. Thus, by part (a) of the cur-
rent lemma, G(a, f1(a) − 2) = 0. Consider the positions (a, f1(a) − 2), (a, f1(a) −
1), . . . , (a, a + f1(a) − 3). None of these positions has nim-value 1, and one of
them, (a, f1(a)− 2), has nim-value 0. Hence (a, a + f1(a)− 2) has nim-value 1, in
contradiction with the definition of f1(a).

Remark 5. Note that for all a, one has G(a, a + 1) &= 1. Indeed, if G(a, a + 1) = 1,
then we would have f1(a) = 1 and so by Lemma 4(b), G(a, 0) = 1, which is false.
Thus, if f1(a) > 0, then f1(a) ≥ 2.

Lemma 6. For j = 0, 1, if fj(a) > 0, then fj(fj(a)− 1) = Rfj(a)(a + 1).

Proof. We have fj(a)−1 < a. By Lemma 4, G(a, fj(a)−1) = j. Hence, by Lemma
3(a), a − (fj(a) − 1) ≡ fj(fj(a) − 1) (mod fj(a)). Thus a + 1 ≡ fj(fj(a) − 1)
(mod fj(a)).

Lemma 7. Let a ≥ 1. If G(a, a) &= 1, then gcd(f1(a), a + 1) > 1.

Proof. The proof is by induction on a. The condition holds for a = 1, since G(1, 1) =
1. Fix a > 1 and suppose the condition holds for all b < a. Assume that G(a, a) &= 1.
Then f1(a) ≥ 2 by Remark 2. Let b = f1(a)−1. By Lemma 6, f1(b) = Rf1(a)(a+1).
Note that if f1(b) = 0, then a + 1 is a multiple of f1(a), which gives the required
result. So we suppose that f1(b) &= 0. By the inductive hypothesis, gcd(f1(b), b +
1) > 1. Let us denote λ = gcd(f1(b), b + 1). So λ divides f1(b) and b + 1 = f1(a).
Therefore, λ also divides a + 1, since f1(b) = Rf1(a)(a + 1). Hence λ also divides
gcd(f1(a), a + 1), which gives us the required result.

3. Proof of the Theorem

We first establish the following result.

Lemma 8. Suppose that 1 ≤ a ≤ b.

(a) If G(a, b) = 0, then gcd(a + 1, b + 1) = 1.

(b) If G(a, b) = 1, then gcd(a + 1, b + 1) is a prime number.

(c) If a + 1 is prime, then G(a, b) = 1 iff a + 1 is a factor of b + 1.
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Proof. The proof is by induction on a. Note that all three parts of the lemma are
true for a = 1, by Remark 2.

(a) Suppose G(a, b) = 0. So a < b, by Remark 2. We have b = k ·(a+1)+Ra+1(b)
for some integer k ≥ 1. So by Lemma 3, G(a, a + 1 + Ra+1(b)) = G(a, b) = 0. So by
Lemma 4, G(a,Ra+1(b)) = 0. Note that Ra+1(b) ≤ a. In fact, since G(a,Ra+1(b)) =
0 and G(a, a) &= 0 by Remark 2, we have Ra+1(b) < a. Hence, by the inductive
hypothesis, gcd(a + 1, Ra+1(b) + 1) = 1. Therefore, gcd(a + 1, b + 1) = 1.

(b) Now suppose that G(a, b) = 1. First consider the case where a = b. Then
none of the positions (a, i), for 0 ≤ i < a have nim-value 1. Let p be a prime less
than a and consider the position (a, p− 1). By part (c) of the inductive hypothesis,
since p is prime and G(a, p− 1) &= 1, we have that p is not a factor of a + 1. Thus
a + 1 is not a multiple of any prime less than a. Therefore, a + 1 is prime; that is,
gcd(a + 1, a + 1) is prime. Now we treat the case where a < b. By Lemma 4, we
have G(a,Ra+1(b)) = 1. Hence, by the inductive hypothesis, gcd(a+1, Ra+1(b)+1)
is prime. Since gcd(a + 1, b + 1) = gcd(a + 1, Ra+1(b) + 1), this gives the required
result.

(c) Assume that a+1 is prime. If G(a, b) = 1, then by part (b), gcd(a+1, b+1) =
a + 1, so a + 1 is a factor of b + 1. Conversely, if a + 1 is a factor of b + 1, then
G(a, b) = G(a, a) by Lemma 3. So it remains to show that G(a, a) = 1. By Lemma
7, if G(a, a) &= 1, then gcd(f1(a), a + 1) > 1, which, as a + 1 is prime, would imply
that a+1 is a factor of f1(a). But this is impossible as f1(a) ≤ a, by definition.

Finally, we deduce the theorem. First, if G(a, a) = 1, then a+1 = gcd(a+1, a+1)
is a prime number, by part (b) of the previous lemma. Conversely, if a+1 is prime,
then by part (c) of the previous lemma, G(a, a) = 1.

4. Computational Considerations

Notice that knowledge of the function f1 enables one to decide whether a given
position has nim-value 1. Indeed, given position (a, b), one can use Lemma 3(a) to
reduce to the case where a ≤ b ≤ 2a. Since there is only one position in this range
with nim-value 1, by Lemma 3(b), it remains to check whether f1(a) = b− a.

The function f1 can be computed recursively, as we will now explain. If a + 1
is prime, then f1(a) = 0, by the theorem. Otherwise, f1(a) > 0 and G(a, f1(a) −
1) = 1, by Lemma 4(b). There may be several positions of nim-value 1 of the
form (a, c) with 0 ≤ c < a. The key point is that f1(a) − 1 is the largest of these
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c values; indeed, as (a, a + f1(a)) has nim-value 1, none of the positions

(a, f1(a)), (a, f1(a) + 1), . . . , (a, a + f1(a)− 1)

has nim-value 1. So, assuming f1(x) is known for x < a, we compute f1(a) as
follows. Consider the successive positions (a, a− i), for i = 1, 2, 3, .... Proceed until
a position (a, a− i) is found with nim-value 1; as explained above, this is done by
checking whether f1(a− i) = Ra−i+1(i). Then, f1(a) = a− i + 1. In this manner,
the positions with nim-value 1 can be computed without knowledge of the positions
of the other nim-values. By using Lemma 4(a), the positions with nim-value 0 can
be determined separately, in the same manner.
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