MIN, A COMBINATORIAL GAME HAVING A CONNECTION WITH PRIME NUMBERS

Grant Cairns
Department of Mathematics, La Trobe University, Melbourne, Australia
G.Cairns@latrobe.edu.au
Nhan Bao Ho
nbho@students.latrobe.edu.au, honhanbao@yahoo.com

Received: 4/22/10, Accepted: 8/21/10, Published: 12/1/10

Abstract

We introduce a two person game played with a pair of nonnegative integers; a move consists of subtracting from the larger integer, a positive integer no greater than the smaller integer. The player who reduces one of the integers to zero wins. The game is curious in several respects: in particular, its Sprague-Grundy values have an interesting connection with prime numbers.

1. Introduction

We introduce a two person, impartial, combinatorial game, that we call min (short for minus). The game is played with an unordered pair of nonnegative integers. From position (a, b) with $a \leq b$, a legal move consists of subtracting from b, a positive integer no greater than a. The first player who reduces one of the integers to zero wins. The game is a variation of nim, and it is related to Euclid, in which the players move by subtracting a positive integer multiple of the smaller integer from the larger integer; see references [1] to [6]. Actually, there are two versions of Euclid, according to whether one stops when the entries are equal, or one of them is reduced to 0 . The latter case is the original game of Cole and Davie [2], while the former case was introduced by Grossman [4]. In both cases, there is an explicit formula for the Sprague-Grundy values. For Grossman's Euclid, Nivasch [5] gave the formula $\left\lfloor\left.\frac{a}{b}-\frac{b}{a} \right\rvert\,\right\rfloor$. For Cole and Davie's Euclid, the formula involves the continued fraction expansion of b / a; see [1]. For the game MIN the situation seems rather more complicated, and it is very unlikely that there is a simple formula for its Sprague-Grundy values, as will become apparent below.

Let $\mathcal{G}(a, b)$ denote the Sprague-Grundy value of the position (a, b) in min. For convenience, throughout this paper we will refer to the Sprague-Grundy value simply as the nim-value. Recall that the nim-value of the terminal positions $\mathcal{G}(0, a)$ is zero, and that $\mathcal{G}(a, b)$ is the smallest nonnegative integer not contained in the set of nim-values of the positions that can be reached from (a, b). The game min
is curious in three respects:

1. For a fixed and $b \geq a-1$, the nim-values of positions $\mathcal{G}(a, b)$ are periodic in b with period $a+1$.
2. The positions with nim-value 1 can be computed recursively without knowledge of the positions of the other nim-values.
3. There is an interesting connection with prime numbers. Our main result is the following:

Theorem 1. For all $a \geq 1$, we have $\mathcal{G}(a, a)=1$ if and only if $a+1$ is prime.

Calculations reveal a number of interesting patterns, which unfortunately die out for sufficiently large integers. For example, if $\mathcal{G}(a-1, a)=0$ and $a<6240$, then $a+1$ is prime. But $\mathcal{G}(a-1, a)=0$ for $a=6240$, and here $a+1=79^{2}$, which is not prime. Similarly, there are only 4 values of a with $\mathcal{G}(a-2, a)=0$ and $a<17226$; in these cases, the values of $a+1$ are the first 4 Fermat primes: $3,5,17,257$. However, $\mathcal{G}(17224,17226)=0$, and 17227 isn't a Fermat prime.

2. Preliminaries

Remark 2. Note that for $a>0$, we have $\mathcal{G}(a, a) \neq 0$, since $\mathcal{G}(0, a)=0$ and there is a move from (a, a) to $(a, 0)$. Moreover, by induction, $\mathcal{G}(1, a)=0$ if and only if a is even.

We begin by showing that for fixed $a>0$, the number $\mathcal{G}(a, b)$ is periodic in b with period $a+1$, provided b is sufficiently large. For integers x, y with $y>0$, we denote the remainder $R_{y}(x)=x-y \cdot\lfloor x / y\rfloor$, where $\lfloor\cdot\rfloor$ denotes the integer part.

Lemma 3. Suppose that $a \geq 1$.
(a) If $b \geq 2 a$, then $\mathcal{G}(a, b)=\mathcal{G}\left(a, a-1+R_{a+1}(b-a+1)\right)$.
(b) If $b \geq a-1$, then

$$
\{\mathcal{G}(a, b), \mathcal{G}(a, b+1), \ldots, \mathcal{G}(a, b+a)\}=\{0,1, \ldots, a\} .
$$

Proof. We prove (b) first. Note that if $0 \leq j<k \leq a$, then there is a move from $(a, b+k)$ to $(a, b+j)$ and so the elements

$$
\mathcal{G}(a, b), \mathcal{G}(a, b+1), \ldots, \mathcal{G}(a, b+a)
$$

are all distinct. Furthermore, if $a \leq b$ and $0 \leq i \leq a$, or $a=b+1$ and $0<i$, there are exactly a moves from the position $(a, b+i)$, while if $a=b+1$ and $i=0$, there are $a-1$ moves from $(a, b+i)$. Therefore $G(a, b+i) \leq a$ for all $0 \leq i \leq a$. This gives the required result.

From (b) we have $\{\mathcal{G}(a, b+1), \mathcal{G}(a, b+2), \ldots, \mathcal{G}(a, b+a+1)\}=\{0,1, \ldots, a\}=$ $\{\mathcal{G}(a, b), \mathcal{G}(a, b+1), \ldots, \mathcal{G}(a, b+a)\}$. Hence $\mathcal{G}(a, b+a+1)=\mathcal{G}(a, b)$, which gives (a).

In general, it is not true that $\mathcal{G}(a, b+a+1)=\mathcal{G}(a, b)$ for $b<a-1$. However, there are partial results. Let $f_{j}(a)$ be the smallest nonnegative integer i such that $\mathcal{G}(a, a+i)=j$. Note that by the previous lemma, $0 \leq f_{j}(a) \leq a$.

Lemma 4. Suppose that $a>0$. Then
(a) $\mathcal{G}\left(a, f_{0}(a)-1\right)=0$.
(b) If $f_{1}(a)>0$, then $\mathcal{G}\left(a, f_{1}(a)-1\right)=1$.

Proof. (a) First note that by Remark 2, we have $f_{0}(a)>0$. There are exactly a moves from $\mathcal{G}\left(a, a+f_{0}(a)\right)$, which lead respectively to

$$
\left(a, f_{0}(a)\right),\left(a, f_{0}(a)+1\right), \ldots,\left(a, a+f_{0}(a)-1\right)
$$

so none of these positions has nim-value 0 . Suppose that $\mathcal{G}\left(a, f_{0}(a)-1\right) \neq 0$. Then none of the positions

$$
\left(a, f_{0}(a)-1\right),\left(a, f_{0}(a)\right), \ldots,\left(a, a+f_{0}(a)-2\right)
$$

would have nim-value 0 , and so we would have $\mathcal{G}\left(a, a+f_{0}(a)-1\right)=0$, where $f_{0}(a)-1$ is nonnegative, contrary to the definition of $f_{0}(a)$.
(b) Similarly, there are exactly a moves from $\mathcal{G}\left(a, a+f_{1}(a)\right)$, leading respectively to $\left(a, f_{1}(a)\right),\left(a, f_{1}(a)+1\right), \ldots,\left(a, a+f_{1}(a)-1\right)$, so none of these positions has nim-value 1. Suppose that $\mathcal{G}\left(a, f_{1}(a)-1\right) \neq 1$. Then none of the positions

$$
\left(a, f_{1}(a)-1\right),\left(a, f_{1}(a)\right), \ldots,\left(a, a+f_{1}(a)-2\right)
$$

would have nim-value 1 , and so we would have $\mathcal{G}\left(a, a+f_{1}(a)-1\right) \leq 1$. We have already observed that $\left(a, a+f_{1}(a)-1\right)$ does not have nim-value 1 . So $\mathcal{G}\left(a, a+f_{1}(a)-1\right)=0$. As $f_{1}(a)>0$, we have $a+f_{1}(a)-1 \geq a$. In fact, as
$\mathcal{G}\left(a, a+f_{1}(a)-1\right)=0$ and $\mathcal{G}(a, a) \neq 0$ by Remark 1 , we have $a+f_{1}(a)-1>a ;$ that is, $f_{1}(a) \geq 2$. As the nim-values

$$
\{\mathcal{G}(a, a), \mathcal{G}(a, a+1), \ldots, \mathcal{G}(a, 2 a)\}
$$

are distinct, by Lemma $3(\mathrm{~b}), f_{0}(a)=f_{1}(a)-1$. Thus, by part (a) of the current lemma, $\mathcal{G}\left(a, f_{1}(a)-2\right)=0$. Consider the positions $\left(a, f_{1}(a)-2\right),\left(a, f_{1}(a)-\right.$ $1), \ldots,\left(a, a+f_{1}(a)-3\right)$. None of these positions has nim-value 1 , and one of them, $\left(a, f_{1}(a)-2\right)$, has nim-value 0 . Hence $\left(a, a+f_{1}(a)-2\right)$ has nim-value 1 , in contradiction with the definition of $f_{1}(a)$.

Remark 5. Note that for all a, one has $\mathcal{G}(a, a+1) \neq 1$. Indeed, if $\mathcal{G}(a, a+1)=1$, then we would have $f_{1}(a)=1$ and so by Lemma $4(\mathrm{~b}), \mathcal{G}(a, 0)=1$, which is false. Thus, if $f_{1}(a)>0$, then $f_{1}(a) \geq 2$.

Lemma 6. For $j=0,1$, if $f_{j}(a)>0$, then $f_{j}\left(f_{j}(a)-1\right)=R_{f_{j}(a)}(a+1)$.
Proof. We have $f_{j}(a)-1<a$. By Lemma $4, \mathcal{G}\left(a, f_{j}(a)-1\right)=j$. Hence, by Lemma $3(\mathrm{a}), a-\left(f_{j}(a)-1\right) \equiv f_{j}\left(f_{j}(a)-1\right)\left(\bmod f_{j}(a)\right)$. Thus $a+1 \equiv f_{j}\left(f_{j}(a)-1\right)$ $\left(\bmod f_{j}(a)\right)$.

Lemma 7. Let $a \geq 1$. If $\mathcal{G}(a, a) \neq 1$, then $\operatorname{gcd}\left(f_{1}(a), a+1\right)>1$.
Proof. The proof is by induction on a. The condition holds for $a=1$, since $\mathcal{G}(1,1)=$ 1. Fix $a>1$ and suppose the condition holds for all $b<a$. Assume that $\mathcal{G}(a, a) \neq 1$. Then $f_{1}(a) \geq 2$ by Remark 2 . Let $b=f_{1}(a)-1$. By Lemma $6, f_{1}(b)=R_{f_{1}(a)}(a+1)$. Note that if $f_{1}(b)=0$, then $a+1$ is a multiple of $f_{1}(a)$, which gives the required result. So we suppose that $f_{1}(b) \neq 0$. By the inductive hypothesis, $\operatorname{gcd}\left(f_{1}(b), b+\right.$ $1)>1$. Let us denote $\lambda=\operatorname{gcd}\left(f_{1}(b), b+1\right)$. So λ divides $f_{1}(b)$ and $b+1=f_{1}(a)$. Therefore, λ also divides $a+1$, since $f_{1}(b)=R_{f_{1}(a)}(a+1)$. Hence λ also divides $\operatorname{gcd}\left(f_{1}(a), a+1\right)$, which gives us the required result.

3. Proof of the Theorem

We first establish the following result.
Lemma 8. Suppose that $1 \leq a \leq b$.
(a) If $\mathcal{G}(a, b)=0$, then $\operatorname{gcd}(a+1, b+1)=1$.
(b) If $\mathcal{G}(a, b)=1$, then $\operatorname{gcd}(a+1, b+1)$ is a prime number.
(c) If $a+1$ is prime, then $\mathcal{G}(a, b)=1$ iff $a+1$ is a factor of $b+1$.

Proof. The proof is by induction on a. Note that all three parts of the lemma are true for $a=1$, by Remark 2 .
(a) Suppose $\mathcal{G}(a, b)=0$. So $a<b$, by Remark 2 . We have $b=k \cdot(a+1)+R_{a+1}(b)$ for some integer $k \geq 1$. So by Lemma $3, \mathcal{G}\left(a, a+1+R_{a+1}(b)\right)=\mathcal{G}(a, b)=0$. So by Lemma $4, \mathcal{G}\left(a, R_{a+1}(b)\right)=0$. Note that $R_{a+1}(b) \leq a$. In fact, since $\mathcal{G}\left(a, R_{a+1}(b)\right)=$ 0 and $\mathcal{G}(a, a) \neq 0$ by Remark 2, we have $R_{a+1}(b)<a$. Hence, by the inductive hypothesis, $\operatorname{gcd}\left(a+1, R_{a+1}(b)+1\right)=1$. Therefore, $\operatorname{gcd}(a+1, b+1)=1$.
(b) Now suppose that $\mathcal{G}(a, b)=1$. First consider the case where $a=b$. Then none of the positions (a, i), for $0 \leq i<a$ have nim-value 1 . Let p be a prime less than a and consider the position ($a, p-1$). By part (c) of the inductive hypothesis, since p is prime and $\mathcal{G}(a, p-1) \neq 1$, we have that p is not a factor of $a+1$. Thus $a+1$ is not a multiple of any prime less than a. Therefore, $a+1$ is prime; that is, $\operatorname{gcd}(a+1, a+1)$ is prime. Now we treat the case where $a<b$. By Lemma 4, we have $\mathcal{G}\left(a, R_{a+1}(b)\right)=1$. Hence, by the inductive hypothesis, $\operatorname{gcd}\left(a+1, R_{a+1}(b)+1\right)$ is prime. Since $\operatorname{gcd}(a+1, b+1)=\operatorname{gcd}\left(a+1, R_{a+1}(b)+1\right)$, this gives the required result.
(c) Assume that $a+1$ is prime. If $\mathcal{G}(a, b)=1$, then by part (b), $\operatorname{gcd}(a+1, b+1)=$ $a+1$, so $a+1$ is a factor of $b+1$. Conversely, if $a+1$ is a factor of $b+1$, then $\mathcal{G}(a, b)=\mathcal{G}(a, a)$ by Lemma 3 . So it remains to show that $\mathcal{G}(a, a)=1$. By Lemma 7 , if $\mathcal{G}(a, a) \neq 1$, then $\operatorname{gcd}\left(f_{1}(a), a+1\right)>1$, which, as $a+1$ is prime, would imply that $a+1$ is a factor of $f_{1}(a)$. But this is impossible as $f_{1}(a) \leq a$, by definition.

Finally, we deduce the theorem. First, if $\mathcal{G}(a, a)=1$, then $a+1=\operatorname{gcd}(a+1, a+1)$ is a prime number, by part (b) of the previous lemma. Conversely, if $a+1$ is prime, then by part (c) of the previous lemma, $\mathcal{G}(a, a)=1$.

4. Computational Considerations

Notice that knowledge of the function f_{1} enables one to decide whether a given position has nim-value 1. Indeed, given position (a, b), one can use Lemma 3(a) to reduce to the case where $a \leq b \leq 2 a$. Since there is only one position in this range with nim-value 1 , by Lemma $3(\mathrm{~b})$, it remains to check whether $f_{1}(a)=b-a$.

The function f_{1} can be computed recursively, as we will now explain. If $a+1$ is prime, then $f_{1}(a)=0$, by the theorem. Otherwise, $f_{1}(a)>0$ and $\mathcal{G}\left(a, f_{1}(a)-\right.$ $1)=1$, by Lemma $4(\mathrm{~b})$. There may be several positions of nim-value 1 of the form (a, c) with $0 \leq c<a$. The key point is that $f_{1}(a)-1$ is the largest of these
c values; indeed, as $\left(a, a+f_{1}(a)\right)$ has nim-value 1 , none of the positions

$$
\left(a, f_{1}(a)\right),\left(a, f_{1}(a)+1\right), \ldots,\left(a, a+f_{1}(a)-1\right)
$$

has nim-value 1. So, assuming $f_{1}(x)$ is known for $x<a$, we compute $f_{1}(a)$ as follows. Consider the successive positions $(a, a-i)$, for $i=1,2,3, \ldots$. Proceed until a position $(a, a-i)$ is found with nim-value 1 ; as explained above, this is done by checking whether $f_{1}(a-i)=R_{a-i+1}(i)$. Then, $f_{1}(a)=a-i+1$. In this manner, the positions with nim-value 1 can be computed without knowledge of the positions of the other nim-values. By using Lemma $4(\mathrm{a})$, the positions with nim-value 0 can be determined separately, in the same manner.

References

[1] Grant Cairns and Nhan Bao Ho, The Sprague-Grundy function of the real game Euclid, preprint.
[2] A. J. Cole and A. J. T. Davie, A game based on the Euclidean algorithm and a winning strategy for it, Math. Gaz. 53 (1969), 354-357.
[3] David Collins, Variations on a theme of Euclid, Integers 5 (2005), no. 1, G3, 12 pp. (electronic).
[4] J. W. Grossman, A nim-type game, problem \#1537, Math. Mag. 70 (1997), 382.
[5] Gabriel Nivasch, The Sprague-Grundy function of the game Euclid, Discrete Math. 306 (2006), no. 21, 2798-2800.
[6] Edward L. Spitznagel, Jr., Properties of a game based on Euclid's algorithm, Math. Mag. 46 (1973), 87-92.

