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Abstract
In a 1966 paper by C.A.B. Smith, the short and long conjunctive sums of games
are defined and methods are described for determining the theoretical winner of a
game constructed using one type of these sums. In this paper, we develop a method
for determining the winner of a game constructed using arbitrary combinations of
these sums.

1. Introduction

The conjunctive sum of two combinatorial games is a new game in which both
component games are played concurrently. A move in the composite game consists
of making a move in each component game. These games were originally introduced
by Smith in [1]. Conway, in [3], notes that there are two distinct ending conditions
for such sums: the short-rule and the long-rule. When playing with the short-rule,
the composite game ends when the first component game ends. When using the
long-rule, the composite ends when the last component game ends. There are well-
known quantities called the remoteness and the suspense of a game that allow one to
analyze games constructed from only short-rule conjunctive sums or only long-rule
conjunctive sums. In this paper, we determine what information about a game is
relevant for analyzing constructions using arbitrary combinations of short-rule and
long-rule conjunctive sums.

In Section 2, we define a combinatorial game; introduce remoteness and suspense;
discuss some simple games that we use later; and prove some basic results about
these concepts. In Section 3, we give a more precise description of the problem
we wish to solve and discuss an example of a game that could be analyzed with a
solution. In Section 4, we solve the aforementioned problem by finding information
about a game that allows us to analyze it under short and long conjunctive sums.
In Section 5, we analyze the set of values that this information can actually take. In
Section 6, we study the misère versions of games under short and long conjunctive
sums. In Section 7, we discuss the addition of the operation we call concatenation.
In Section 8, we discuss directions for further research.
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2. Definitions, Notation and Preliminary Results

In this section we will provide definitions of what we mean by a game and give
rigorous definitions of the shortened and continued conjunctive sums. We will then
review the theory of Remoteness and Suspense of a game. These definitions and
results (found in Sections 2.1, 2.3 and 2.4) are essentially recastings of results of
Smith ([1]) into more modern terminology. It should be noted though that the
notion of Remoteness dates back at least to Steinhaus ([2]) in 1925. In Section 2.5
we introduce a class of games that will prove very important in our later analysis
and prove some basic results about them. Finally in Section 2.6, we use this theory
to prove a pair of important lemmas.

Throughout this paper, unless stated otherwise, Greek letters represent ordinal
numbers, uppercase Roman letters represent games and lowercase Roman letters
represent members of an indexing set.

2.1. Games

We deal only with impartial games. These are games where in any position the op-
tions are the same for either player. Note that considering games under conjunctive
sums this is the general case, since for each position of a game we can encode whose
turn it is into the position. So for the purposes of this paper, we use the following
definition of a game:

Definition. A game is defined recursively as a set of other games, also referred
to as options or positions. The game is played by two players, First and Second.
The two players alternate making moves, with First going first. On a turn, a player
picks an option of the last position picked (or a position of the original game if it is
the first move). The game ends once a player is unable to make a move (the current
position is the empty set). The last player to make a move wins the game.

Notice that First wins a game G if and only if the game takes an odd number of
moves to play.

Most of our results will depend on the axiom of foundation which states that
if there is any property, P , such that whenever P holds for all elements of a set
X, P also holds for X, then P holds for all sets. This essentially allows us to use
induction on sets.

Definition. A game G is winning if First has a strategy by which he can guarantee
that he will win. Otherwise, G is losing.

We now recall some basic facts about games.
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Lemma 1. A game is winning if and only if one of its options is losing. A game
is losing if and only if Second has a winning strategy.

Proof. This follows easily by induction.

Corollary 2. For any game G, some player has a winning strategy.

Definition. If A and B are games, let A =w B denote that A and B are either
both winning or both losing.

We define the game 0 to be ∅. We now define the short and long conjunctive
sums of games recursively.

Definition. If A and B are games with options {Ai} and {Bj} respectively, the
short-rule conjunctive sum, or short conjunctive sum, of A and B, denoted A ∧B,
is 0 if A = 0 or if B = 0 and {Ai ∧Bj} otherwise. The long-rule conjunctive sum,
or long conjunctive sum, of A and B, denoted A#B, is A if B = 0, B if A = 0 and
{Ai #Bj} otherwise.

2.2. Ordinal Numbers

In this section we give a brief review of ordinal numbers and their properties. A
reader already familiar with the ordinal numbers should feel free to skip this section.

Definition. An ordinal number is the order type of a well-ordered set.

The finite ordinals are the order types given by linear orderings on finite sets of
a given size. So n is the well-ordering on {1, 2, . . . , n}.

Note that if we have two well-ordered sets, it can be shown by induction that
one is isomorphic to a subset of the other. This provides a natural linear order on
the ordinal numbers. It is well-known that this ordering on the ordinal numbers is
itself a well-ordering and furthermore, that it has the least-upper-bound property.

All ordinals α have a successor, α+1. Ordinals which are not successors are called
limit ordinals. It can be shown by induction that any ordinal can be obtained by
taking finitely many successors of a limit ordinal.

2.3. Remoteness and Suspense

In this section we define the remoteness and suspense, which are ordinal numbers
associated to a game. The idea behind these numbers is as follows. In a short
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conjunctive sum, it only matters who wins the first component game (to end).
Hence if you are winning a component game, you should try to win it as quickly as
possible. On the other hand if you are losing a component game, you should try to
lose it as slowly as possible. Likewise, for long conjunctive sums, you should try to
win component games slowly or lose them quickly. The remoteness and suspense
are the (ordinal) lengths of time that the game should take to play using these
strategies for playing short sums and long sums respectively.

We begin by defining remoteness. First we need to define a notion of what it
means for the length of a game to correspond to being winning, for which the
following definition suffices.

Definition. Let an ordinal number be R-even if it is either a finite even ordinal
or a limit ordinal plus a finite even ordinal. Let an ordinal be R-odd if it is not
R-even.

The idea here is that R-odd lengths correspond to winning games. Next we need
to define an order on these lengths corresponding to how much First would like a
subgame to be of that length.

Definition. We define a linear ordering ≥R on ordinal numbers by letting α ≥R β
if and only if one of the following hold:

• α is R-odd and β is R-even

• α ≤ β and both are R-odd

• α ≥ β and both are R-even

We can now recursively define the remoteness of a game.

Definition. Given a game G = {Gi} we define the ordinal R(G), called the re-
moteness of G, to be 0 if G = 0 and otherwise

R(G) =





minR(Gi) is R-even(R(Gi) + 1), if some R(Gi) is R-even,

supi(R(Gi) + 1), otherwise.

In other words, R(G) is the least upper bound in the R-ordering of the ordinals of
the form R(Gi) + 1.

We use an analogous approach to define suspense.

Definition. Let an ordinal number be S-even if it is either a finite even ordinal or
a limit ordinal plus a finite odd ordinal. Let an ordinal be S-odd if it is not S-even.
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Definition. We define a linear ordering ≥S on ordinal numbers by letting α ≥S β
if and only if one of the following hold:

• α is S-odd and β is S-even

• α ≥ β and both are S-odd

• α ≤ β and both are S-even

Definition. Given a game G = {Gi} we define the ordinal S(G), called the suspense
of G, to be 0 if G = 0 and otherwise

S(G) =






supS(Gi) is S-even(S(Gi) + 1), if some S(Gi) is S-even,

mini(S(Gi) + 1), otherwise.

In other words, S(G) is the least upper bound in the S-ordering of ordinals of the
form S(Gi) + 1.

2.4. The Properties of the Remoteness and Suspense

We now prove the properties of remoteness and suspense that allow them to be
used to determine the winners of games constructed using short conjunctive sums
and games constructed using long conjunctive sums respectively.

A game is winning if it takes an odd number of turns. Therefore, it should be
winning if it has odd remoteness.

Lemma 3. A game G = {Gi} is winning if and only if its remoteness is R-odd.

Proof. We proceed by induction. If G = 0, then R(G) = 0, which is R-even and G
is losing. Assume that for all options Gi of G that Gi is winning if and only if R(Gi)
is R-odd. If G is winning, then at least one option is losing, hence R(Gi) is R-even
for some option, Gi. In this case R(G) = (minR(Gi) is R-even R(Gi)) + 1, which is
one more than an R-even number. Hence R(G) is R-odd. If G is losing, then all
options of G are winning, hence R-odd. So R(G) = supi(R(Gi) + 1), which is the
sup of a set of R-even numbers. Thus R(G) is either the largest of these numbers
or a limit ordinal. In either case, R(G) is R-even. This completes the proof.

Next we show how remoteness behaves under short conjunctive sums. The idea
is that the subgames A and B should take R(A) and R(B) turns. Hence the whole
game should take min(R(A), R(B)) turns.

Lemma 4. If A and B are games, then R(A ∧B) = min(R(A), R(B)).
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Proof. Let A = {Ai} and B = {Bj}. We proceed by induction. Suppose that one
of A or B is 0. Without loss of generality B = 0. Then A∧B = 0, so R(A∧B) = 0.
Since B = 0, we have R(B) = 0, hence R(A ∧B) = min(R(A), R(B)).

Assume that R(Ai ∧Bj) = min(R(Ai), R(Bj)) for all i, j.
Case 1: min(R(A), R(B)) is R-even
Without loss of generality R(A) ≤ R(B). Then R(A) is R-even. Hence R(Ai) is
R-odd for all i. Now, R(A) = supi(R(Ai) + 1). Since R(A) ≤ R(B), for no j is
R(Bj) both R-even and less than R(A). Hence all j for which R(Bj) is R-even have
R(Bj) ≥ R(A) > R(Ai) for all i. Hence, min(R(Ai), R(Bj)) = R(Ai∧Bj) is always
R-odd. So,

R(A ∧B) = sup
i,j

(min(R(Ai), R(Bj)) + 1) ≤ sup
i

(R(Ai) + 1) = R(A).

For each i, supj(R(Bj) + 1) ≥ R(B) ≥ R(A) ≥ R(Ai) + 1, so there exists a
j with R(Bj) ≥ R(Ai). Hence R(A ∧ B) = supi,j(min(R(Ai), R(Bj)) + 1) ≥
supi(R(Ai) + 1) = R(A). Hence R(A) ≥ R(A ∧ B) ≥ R(A). So R(A ∧ B) =
R(A) = min(R(A), R(B)).

Case 2: min(R(A), R(B)) is R-odd
Without loss of generality R(A) ≤ R(B). We have

R(A) = min
R(Ai) is R-even

R(Ai) + 1.

Let Ak be an option such that R(Ak)+1 = R(A). Since R(B) ≥ R(A), there exists
j such that R(Bj) ≥ R(Ak). Hence, R(Ak ∧ Bj) = R(Ak) is R-even. Hence since
some option of A ∧B is R-even, thus

R(A ∧B) = min
i,j

(min(R(Ai), R(Bj)) + 1)

where the minimum is taken over terms where min(R(Ai), R(Bj)) is R-even. At
least one such term equals R(Ak), and all other such terms equal R(Ai) or R(Bj) for
some i or j. Since R(Bj) ≥ R(Ak) whenever R(Bj) is R-even and R(Ai) ≥ R(Ak)
whenever R(Ai) is R-even, we have R(A) = R(Ak) + 1 ≥ R(A∧B) ≥ R(Ak) + 1 =
R(A). Hence R(A ∧B) = R(A) = min(R(A), R(B)).

We now state the analogous results for suspense. The proofs proceed along
similar lines and are left to the reader.

Lemma 5. A game G = {Gi} is winning if and only if its suspense is S-odd.

Next we show how suspense behaves under long conjunctive sums. The idea is
that the subgames A and B should take S(A) and S(B) turns. Hence the whole
game should take max(S(A), S(B)) turns.
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Lemma 6. If A and B are games, then S(A#B) = max(S(A), S(B)).

2.5. Some Important Games

We now define a set of games that will prove necessary in later work.

Definition. If α > β are ordinal numbers, define the game [α,β] recursively by
[α,β] = {[γ, δ] : α > γ ≥ β, γ > δ}.

Definition. If α is an ordinal, let [α] = [α + 1,α].

The idea is that we would like a game [α] that in some sense takes α moves to
play, where α is an ordinal number. For finite ordinals, this is easy to produce,
but for infinite ordinals we need to specify what we mean. In particular we want
the structure of decisions made to determine the length of the game look like the
process of starting at α and repeatedly picking a smaller ordinal number. The first
coordinate of the subgame [α,β] can be thought of as keeping track of our place. On
the other hand, we would like to guarantee that this process doesn’t skip too many
ordinals. This is why the second coordinate is used to ensure that both players can
guarantee that the rate of descent is as slow as they desire. Note further that when
making a move to [γ, δ] it is in one’s interest to make δ as large as possible, since
increasing the size of δ will only serve to decrease the number of options that the
opponent has on their next turn.

Lemma 7. If A has all the options of B, then R(A) ≥R R(B).

Proof. The claim follows directly from the definition of remoteness.

Lemma 8. R([α]) is α.

Proof. We proceed by induction. If α = 0, then [α + 1,α] = [1, 0] = 0 which has
remoteness 0. Assume that the statement is true for all [β] with β < α.

Case 1: α is not a limit ordinal.
We have [α+1,α] = {[α,β] : β < α}. Since [α,β] has all of the options of [α,α−1],
Lemma 7 implies that R([α,β]) ≥R R([α,α−1]). Since R([α+1,α]) depends only on
the sufficiently R-small remotenesses of its options, R([α+1,α]) = R({[α,α−1]}) =
R([α,α− 1]) + 1 = α, as desired.

Case 2: α is a limit ordinal.
We have [α + 1,α] = {[α,β] : β < α}. The inductive hypothesis implies that
games of the form [α′,β′], with α′ ≤ α, can be losing only if α′ = β′ + 1. This
is because if α′ > β′ + 1, [α′,β′] has a losing options of the form [γ + 1, γ],
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where α > γ + 1 ≥ β and γ is R-even. Therefore, all options of [α + 1,α] are
winning, and so [α + 1,α] is losing. The losing options of [α,β] are options of the
form [γ + 1, γ] with α > γ + 1 ≥ β and these have options have remoteness γ.
So R([α,β]) is R-odd and between α and β. Hence the remoteness of any option
of [α + 1,α] is R-odd and can be an arbitrarily large ordinal less than α. Hence
R([α + 1,α]) = supβ(R([α,β]) + 1) = α, as desired.

We now show an important property of these games in relation to remoteness.

Lemma 9. If G is a game, then R(G) is one less than the smallest ordinal α such
that G ∧ [α] '=w [α].

Proof. Let R(G) = β. By Lemmas 4 and 8 if α ≤ β then R(G∧ [α]) = min(β,α) =
α = R([α]), so by Lemma 3 G ∧ [α] =w [α]. But if α = β + 1, then R(G ∧ [α]) =
min(β + 1,β) = β. Since R([α]) = β + 1, we have G ∧ [α] '=w [α]. The lemma
follows.

We now state the analogous results for suspense. Again the proofs are similar.

Lemma 10. If A has all the options of B, then S(A) ≥S S(B).

Lemma 11. S([α]) is α if α is finite, and α + 1 otherwise.

Lemma 12. If G is a game, then S(G) is determined uniquely by the α for which
G# [α] is winning.

We next determine the short and long conjunctive sums of these special games.
Before we can do this though, we need a new definition of equivalence.

Definition. If A and B are games let A = B mean that their underlying sets are
the same. This is equivalent to saying that for every option Ai of A, there is an
option Bj of B with Ai = Bj ; and that for every option Bj of B, there is an option
Ai of A with Ai = Bj .

It is immediate that:

Lemma 13. If A,B and G are games with A = B, then:

1. A =w B,

2. A ∧G = B ∧G,

3. A#G = B #G.
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Lemma 14. [α,β] ∧ [γ, δ] = [min(α, γ),min(β, δ)].

Proof. We proceed by induction. If one of the components is 0 = [1, 0], (say
[γ, δ] is) then the whole game is 0 and [min(α, γ),min(β, δ)] = [1, 0] = 0. As-
sume that the statement is true for all α′ < α and γ′ < γ. Then the options of
[α,β] ∧ [γ, δ] are [α′,β′] ∧ [γ′, δ′] = [min(α′, γ′),min(β′, δ′)] under the restrictions
that α > α′ ≥ β, γ > γ′ ≥ δ, α′ > β′ and γ′ > δ′. These restrictions imply that
min(α, γ) > min(α′, γ′) ≥ min(β, δ) and min(α′, γ′) > min(β′, δ′). Also there are
no further restrictions on min(α′, γ′) and min(β′, δ′). Hence the above restrictions
are equivalent to [min(α′, γ′),min(β′, δ′)] being an option of [min(α, γ),min(β, δ)].
This proves the lemma.

Lemma 15. [α,β]# [γ, δ] = [max(α, γ),max(β, δ)].

Proof. The proof is analogous to that of Lemma 14.

Lastly, we show that if these games are played in a conjunctive sum, the order
in which they end should be relative to the ordinal indexing the game.

Lemma 16. Suppose that we have finitely many distinct ordinals αi. Consider the
games [αi] being played in parallel, with First and Second taking turns making a
move in each game. Either player can guarantee that:

• The game [αi] ends before the game [αj ] if and only if αi < αj.

• This player wins all of the component games that are theoretically winning for
them.

Proof. We show that either player can maintain the following properties:

1. They are winning all of the component games that they were initially winning

2. For the component games that were originally [αi] and [αj ] with αi > αj , we
wish to ensure that the current positions [βi, γi] and [βj , γj ] satisfy βi > βj

and that on the opponent’s turn, γi ≥ βj .

These clearly hold in the initial position and clearly if they hold forever, we ensure
the necessary conditions on play.

It is clear that if (1) and (2) hold on the opponent’s turn, that they will hold
at the beginning of the next turn. This is because the opponent cannot make a
winning game losing and when picking options [β′i, γ′i] and [β′j , γ′j ] of [βi, γi] and
[βj , γj ], he must have β′i ≥ γi ≥ βj > β′j .
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On our player’s turn, we show that he can begin with the component game
corresponding to the smallest αi and work towards larger αi picking moves in the
component games that do not violate the invariants. First we note that subgames
corresponding to winning αi were losing on the previous turn, and hence must be in
a position [βi, γi] with βi R-even. Suppose that moves have been picked in all of the
component games corresponding to αk with αk < αi. We need to pick an option
[β′i, γ′i] of [βi, γi] that is winning if [αi] was and has γ′i ≥ β′j . But we know that
βi > βj > β′j . Hence since we can pick options [β′i, γ′i] of [βi, γi] that are loosing if
necessary and have γ′i arbitrarily large subject to the condition that γ′i +2 ≤ βi, we
can pick such an option with γ′i ≥ β′j , thus maintaining our invariant.

2.6. Two Important Lemmas

In this section we prove two important lemmas that will allow us to manipulate
conjunctive sums of our simple games.

Lemma 17. For games A and B, (A ∧B)# [α,β] =w (A# [α,β]) ∧ (B# [α,β]).

The basic motivational idea behind Lemma 17 is that the simple game [α,β] can
basically be played in only one way. If the two copies of this game on the right-
hand-side are required to be played in the same way though, then the two games
are the same.

Proof. Case 1: The player p who can win [α,β], is winning (A ∧B)# [α,β].

Player p must be able to win (A∧B)#[α,β] in such a way that he is always winning
the [α,β] component game. Indeed if he is winning both components, he can win by
winning both independently and otherwise if he makes a losing move in the [α,β]
component, he is losing the whole game. Since all losing positions of [α,β] are of
the form [γ +1, γ], player p can win the game (A# [α,β])∧ (B# [α,β]) by ensuring
the following:

• He is always winning the [α,β] components of the game and that these com-
ponents have the same first part

• If the current position is (X # [γ, δ]) ∧ (Y # [γ, ε]), then he is winning the
game (X ∧ Y )# [γ,max(δ, ε)]

This way p ensures that the [α,β] components of the game end at the same time,
are won by him and that the first of the A and B components ends before this or
is won by player p. Hence player p wins (A# [α,β]) ∧ (B # [α,β]).
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Case 2: The player p not winning [α,β], is winning (A ∧B)# [α,β].

Call the game (A # [α,β]) ∧ (B # [α,β]) game Z. Player p can win game Z by
doing the following. Have a game of [α,β] along side of game Z. Make moves
for the opponent in the side game to ensure that the opponent is always winning
the side game and that the first coordinate of the side game is at least as high as
the first coordinate of the [α,β] components of game Z. Furthermore, this can be
carried out by controlling the moves in the side game made on the other player’s
turn. Player p makes arbitrary moves in the [α,β] components of game Z on his
turn and makes moves in the A and B components of game Z and the side game so
that he is winning the short sum of A and B long summed with the side game (he
can do this because he is winning (A∧B)# [α,β]). Hence the [α,β] components of
game Z end before the side game. Since player p loses the side game, but wins the
game consisting of the short sum of the A and B components of Z long summed
with the side game, the first of the A or B components to end is won by player p
and after both of the [α,β] components are over. Hence, playing this way, player p
wins (A# [α,β]) ∧ (B # [α,β]).

We now prove the analogous result interchanging short and long sums.

Lemma 18. For games A and B, (A#B) ∧ [α,β] =w (A ∧ [α,β])# (B ∧ [α,β]).

Proof. The proof is analogous to that of Lemma 17.

In particular, we obtain the following corollary:

Corollary 19.

(A ∧B)# [α] =w (A# [α]) ∧ (B # [α]);
(A#B) ∧ [α] =w (A ∧ [α])# (B ∧ [α]).

3. Our Main Objective

The main objective of this paper is to solve games constructed using both short and
long conjunctive sums, in the same way that suspense and remoteness allow us to
solve games that are constructed using only one type of these sums. In particular
we want to associate to each game G some relatively simple information I(G) so
that we can easily compute the following:

1. I(0)

2. I({Gi}) from I(Gi)

3. I(A ∧B) from I(A) and I(B)
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4. I(A#B) from I(A) and I(B)

5. who wins G from I(G).

Note that remoteness has all of these properties but 4 and suspense has all but
3. Given this information, we would be able to solve games such as the following
example.

Start with a rectangular array of nodes. On each turn, the array is separated into
a number of rectangular subarrays. On each turn, the player whose turn it is applies
one of the following operations to each subarray: either delete all the nodes in a
row, potentially splitting it into two subarrays, or put a divider between adjacent
columns, splitting it into two subarrays. The game ends when there is a path of
deleted nodes from the top of the original array to the bottom of the original array
that passes through no dividers.

Let us analyze the above game. Let G(r, c) denote the version of the game with
r rows and c columns where r ≥ 0 and c ≥ 1. We set G(0, c) = 0. Otherwise,
deleting a row splits the game into a long conjunctive sum of G(r′, c) and G(r′′, c)
where r′+r′′ = r−1, and r′ and r′′ are the number of rows in the two halves. If we
add a divider, we end up with the short conjunctive sum of G(r, c′) and G(r, c′′),
where c′ and c′′ are the number of columns on either side, which satisfy c′+ c′′ = c.
Hence if r > 0, we have

G(r, c) = {G(r′, c)#G(r′′, c) : r′ + r′′ = r − 1} ∪ {G(r, c′) ∧G(r, c′′) : c′ + c′′ = c}.

We can solve this game by computing I(G(0, c)) = I(0), then using conditions 2, 3,
and 4 to recursively compute G(r, c) from G(r′, c′) with r′ ≤ r, c′ ≤ c and one of
these inequalities strict. Once we have computed I(G(r, c)), we use condition 5 to
determine who wins the game.

4. The Information Needed

4.1. The Definition of I(G)

We here define the information I(G) that we associate with a game and show that
it satisfies the conditions in Section 3.

Definition. For a game G, let I(G) be the function that takes pairs of ordinal
numbers to the set {First,Second} by sending (α,β) to the winner of (G∧ [α])# [β].

Note that this information must be obtainable from any classification of games
under short and long conjunctive sum. In particular, this is in some sense the least
amount of information needed.
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4.2. Some Definitions Equivalent to I(G)

In this section we present some information to associate with games equivalent to
knowing I(G).

Lemma 20. Knowing I(G) is equivalent to knowing the winner of (G# [α]) ∧ [β]
for all α,β.

Proof. By Corollary 19 and Lemma 14,

(G# [α]) ∧ [β] =w (G ∧ [β])# ([α] ∧ [β]) =w (G ∧ [β])# ([min(α,β)]).

Hence the winner of (G# [α]) ∧ [β] can be determined from I(G). On the other
hand, by Corollary 19 and Lemma 15,

(G ∧ [α])# [β] =w (G# [β]) ∧ ([α]# [β]) =w (G# [β]) ∧ ([max(α,β)]).

Hence I(G) can be determined from the winners of (G# [α]) ∧ [β] for all α,β.

We now define a more convenient equivalent piece of information.

Definition. For a game G, define functions, rG and sG, from the ordinal numbers
to the ordinal numbers, by

rG(λ) = R(G# [λ]);
sG(λ) = S(G ∧ [λ]).

Corollary 21. Knowing I(G) is equivalent to knowing rG(ω) for all ω and to
knowing sG(ω) for all ω.

Proof. The claim follows immediately from Lemmas 9, 12 and 20.

4.3. Computing I(0)

In this section we show the Condition 1 from Section 3 is satisfied by I(G).

Lemma 22. (0 ∧ [α])# [β] is winning if and only if β is R-odd.

Proof. The claim follows from the fact that (0 ∧ [α])# [β] = 0# [β] = [β].
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4.4. Computing I({Gi}) from I(Gi)

In this section we show that Condition 2 from Section 3 is satisfied by I(G). We
consider three cases.

Lemma 23. ({Gi} ∧ 0)# [α] is winning if and only if α is R-odd.

Proof. The claim follows from the fact that ({Gi} ∧ 0)# [α] = [α].

Lemma 24. ({Gi} ∧ [α])# 0 is winning if and only if for some Gi and α′ < α,
Gi ∧ [α′′] is losing for all α > α′′ ≥ α′.

Proof. ({Gi}∧ [α])# 0 = {Gi}∧ [α]. By Lemma 1, this game is winning if and only
if some option, Gi ∧ [α,α′] is losing. This game has options equal to the union of
the options of Gi ∧ [α′′] for α > α′′ ≥ α′. Therefore, by Lemma 1, it is losing if and
only if Gi ∧ [α′′] is losing for all such α′′.

Lemma 25. If α,β > 0, then ({Gi} ∧ [α]) # [β] is winning if and only if there
exists an index i and ordinals α′ < α and β′ < β such that (Gi ∧ [α′′])# [β′′] is
losing for all α > α′′ ≥ α′ and β > β′′ ≥ β′.

Proof. By Lemma 1, ({Gi}∧ [α])# [β] is winning if and only if some option, (Gi ∧
[α,α′])#[β,β′] is losing. This option has exactly the same options as the union of the
options of ({Gi}∧ [α′′])# [β′′] taken over α > α′′ ≥ α′ and β > β′′ ≥ β′. Therefore,
by Lemma 1, (Gi ∧ [α,α′])# [β,β′] is losing if and only if all of (Gi ∧ [α′′])# [β′′]
are losing.

4.5. Simplification of I(G)

Our original definition of I(G) required that we know who wins (G ∧ [α])# [β] for
all pairs of ordinals α,β. Here we show that we really only need to know the winner
for all sufficiently small ordinals.

Lemma 26. For every game, G, there exists an ordinal γ such that

(G ∧ [α])# [β] =w [β]

if β > γ, and
(G ∧ [α])# [β] =w G# [β]

if α > γ.

The idea of this proof is that the game G cannot take longer than (the ordinal)
γ moves for some γ.
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Proof. We prove by induction that there is an ordinal γ so that for any δ > γ if
games G and [δ] are played side by side then either player can guarantee that the
copy of [δ] ends after the copy of G no matter how the copy of G is played, and
so that they win the copy of [δ] if it was theoretically winning for them. We prove
this by induction. If for each option Gi of G there is a corresponding γi, we pick
γ > supi γi. Then for δ > γ the first player can pick the option [δ, δ′] from [δ] so
that:

• he is winning [δ, δ′] if he was winning [δ]
• δ′ ≥ supi γi.
Second is now faced with the games Gi and [δ, δ′]. But his move from [δ, δ′] must

be an option of some game [ε] for [ε] > δ′ ≥ γi. Since by induction both First and
Second can achieve the appropriate aims for the pair of games G, [ε] for any such ε
and since some such [ε] will necessarily make the game winning for Second if and
only if [δ] was originally winning for Second, our conditions are met.

This means that if β > γ, the player who is winning [β] can guarantee that they
win this subgame and that it ends after G does, thus winning the composite game.

If α > γ, the player who is winning G∆[β] can both guarantee that they win the
latter of G and [β] to end and that the [α] component ends after the G component,
thus winning the composite game.

4.6. Some Technical Lemmas

Here we prove a few technical lemmas that will be used in the next two sections.

Lemma 27. We have (G ∧ [α])# [α] =w (G# [α]) ∧ [α] =w [α].

The idea of this proof is that the subgames [α] should end at the same time
therefore at the same time as the entire game.

Proof. Let p be the player who is winning [α]. Player p is able to play the [α]
subgames of (G ∧ [α])# [α] or (G# [α]) ∧ [α], guaranteeing that:

1. He wins both subgames

2. Both subgames end at the same time.

Using this strategy, p can force a win in either of the other two composite games.

Corollary 28. If α ≥ β, then

(G ∧ [β])# [α] =w [α];
(G# [α]) ∧ [β] =w [β].
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Proof. The claim follows immediately from Corollary 19 and Lemmas 14, 15 and
27.

From the results above we get useful bounds on the sizes of rG(α), sG(α).

Lemma 29. For a game G and an ordinal α,

rG(α) ≥ α;
sG(α) ≤ α.

Proof. By Corollary 28, we have (G# [α])∧ [β] =w [β] for β ≤ α. Hence by Lemma
9, we have rG(α) ≥ α.

Also, by Corollary 28, we have (G∧ [α])# [β] =w [β] for β ≥ α. If S(G∧ [α]) = γ
were greater than α, then we would have (G ∧ [α])# [α] =w (G ∧ [α])# [α + 1] by
Lemmas 5 and 6. On the other hand, [α] '=w [α + 1], leading to a contradiction.
Hence sG(α) ≤ α.

4.7. Computing I(A ∧ B)

In this section we show how to compute I(A∧B) from I(A) and I(B), proving that
I satisfies Condition 3 in Section 3. We will use the most convenient form of I(G)
given in Corollary 21.

Lemma 30. For games A and B and an ordinal λ, we have

rA∧B(λ) = min(rA(λ), rB(λ)).

The reason to suspect this is that Corollary 19 suggests that (A ∧B)# [λ] and
(A# [λ])∧ (B# [λ]) are very similar. If they were the same, the above result would
follow from Lemma 4.

Proof. For an ordinal number κ > λ, Corollary 19 and Lemmas 14 and 15 imply
that

((A ∧B)# [λ]) ∧ [κ] =w(A ∧B ∧ [κ])# [λ]

=w(A# [λ]) ∧ (B # [λ]) ∧ [κ].

For κ ≤ λ, Lemma 29 implies that rA∧B(λ), rA(λ), rB(λ) ≥ κ.
Therefore, by considering the remotenesses, we find that

((A ∧B)# [λ]) ∧ [κ] =w [κ] =w (A# [λ]) ∧ (B # [λ]) ∧ [κ].
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Therefore, we have

((A ∧B)# [λ]) ∧ [κ] =w (A# [λ]) ∧ (B # [λ]) ∧ [κ]

for all κ. Hence by Lemma 9,

R((A ∧B)# [λ]) = min(R(A# [λ]), R(B # [λ])),

or
rA∧B(λ) = min(rA(λ), rB(λ)).

4.8. Computing I(A " B)

Analogously, we can compute I(A#B) from I(A) and I(B). In particular we have
the following:

Lemma 31. For games A and B and an ordinal λ, we have

sA#B(λ) = max(sA(λ), sB(λ)).

4.9. Computing the Winner of G

Here we show how to determine the winner of G from I(G), showing that I satisfies
Condition 5 of Section 3.

Lemma 32. G is winning if and only if rG(0) is R-odd.

Proof. By Lemma 3, G is winning if and only if R(G) = R(G # [0]) = rG(0) is
R-odd.

4.10. Summary

So we have proved the following:

Theorem 33. I(G) can be computed from a sufficiently large ordinal γ (dependant
on G) and the set of pairs of ordinals (α,β) so that (G ∧ α)# β is winning (and
hence can be stored as a set rather than a proper class). Furthermore, it is possible
to compute the following:

1. I(0)

2. I({Gi}) from I(Gi)

3. I(A ∧B) from I(A) and I(B)

4. I(A#B) from I(A) and I(B)

5. who wins G from I(G)

Proof. The theorem follows from Lemmas 21, 22, 25, 26, 30, 31 and 32.
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5. Classification of rG

In this section we classify the functions from the ordinal numbers to the ordinal
numbers that can actually occur as functions rG for some game G. We do this in
three steps. First we state a number of conditions that rG must satisfy. Next we
describe a construction of game that we will use. Finally we use our construction
to produce games with a given sequence of rG that satisfies the conditions from the
first step.

In particular we will show that a function r from ordinal numbers to ordinal
numbers is rG for some game G if and only if:

1. r(α) ≥ α for all α with equality for sufficiently large α

2. Letting α+ and α− be the smallest R-odd and R-even ordinals respectively so
that r(α±) = α±, then

For β > α+ and β R-odd, r(β) = β

For β > α− and β R-even, r(β) = β

If S([α+]) ≥S S([β]) ≥S S([γ]) ≥S S([α−]), then r(β) ≥R r(γ)

3. Either r(0) = r(1) or r(α) = α for all α

4. Either r(1) = r(2) or r(α) = α for all R-odd α

We call these the remoteness conditions.

5.1. Conditions

First recall Corollary 29 which states that rG(α) ≥ α. By Lemma 26, equality holds
for all sufficiently large α. Hence we can define

Definition. For a game G, let G+ and G− be the smallest R-odd and R-even
ordinals, respectively, such that rG(G+) = G+ and rG(G−) = G−.

Next we would like to show that G± form a boundary between one type of
behavior of rG and another type.

Lemma 34. If α ≥ G+ and α is R-odd or α ≥ G− and α is R-even, then rG(α) = α.

Proof. By Corollary 29 and Lemma 9, it is enough to show that

(G# [α]) ∧ [α + 1] =w [α].
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Without loss of generality α is R-odd. Hence we need to show that (G#[α])∧[α+1]
is winning. Now by Corollary 19 and Lemma 14 we have

(G# [α]) ∧ [α + 1] =w (G ∧ [α + 1])# [α].

Since S([α]) ≥S S([G+]), considering the suspense tells us that (G ∧ [α + 1])# [α]
is winning if (G ∧ [α + 1])# [G+] is. But we have

(G ∧ [α + 1])# [G+] = (G# [G+]) ∧ [α + 1],

which is winning because it has remoteness of G+.

For the next step we use the following technical lemma.

Lemma 35. If S([α]) ≥S S([β]), then for γ > α,β, (G# [α]) ∧ [γ] is winning if
(G ∧ [γ])# [β] is winning.

Proof. By Corollary 19 and Lemma 14, we have

(G# [α]) ∧ [γ] =w (G ∧ [γ])# [α];
(G# [β]) ∧ [γ] =w (G ∧ [γ])# [β].

Since S([α]) ≥S S([β]),

(G# [α]) ∧ [γ] ≥S (G ∧ [γ])# [β].

Our result now follows from the definition of ≥S and Lemma 5.

Lemma 36. If S([G+]) ≥S S([α]) ≥S S([β]) ≥S S([G−]), then rG(α) ≥R rG(β).

Proof. Case 1: α '= G+, β '= G−.
This implies that rG(α) > α, rG(β) > β.
Case 1a: rG(α) is R-odd.
If β > rG(α), then rG(β) > rG(α) and our result holds trivially. Otherwise, it
suffices to show that (G # [β]) ∧ [rG(α) − 1] is losing. Using Lemma 35 with
γ = rG(α)− 1 and the fact that (G# [α]) ∧ [rG(α)− 1] is losing proves our result.
Case 1b: rG(α) is R-even.
If α ≥ rG(β), then our result follows trivially from rG(α) ≥ rG(β). Otherwise,
since G # [α] is losing and S([α]) ≥S S([β]), G # [β] is losing. Hence, it is
sufficient to show that for all sufficiently large R-odd γ with γ < rG(β) that
(G# [α]) ∧ [γ] is winning. For “sufficiently large” we can substitute the condition
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γ ≥ max(α,β). In this case our result follows from Lemma 35 applied to such γ
and the fact that (G# [β]) ∧ [γ] is winning.

Case 2: α = G+.
Suppose for sake of contradiction that the lemma does not hold. Then by Case 1
of the lemma, we can find an R-odd β with β < α and rG(β) >R α. The rG(β) is
R-odd and less than α. Consider rG(rG(β)). On the one hand, since rG(β) > β,
Case 1 of the lemma implies that rG(rG(β)) ≥R rG(β). On the other hand, since
rG(β) < α, we have that rG(rG(β)) > rG(β) and thus rG(rG(β)) <R rG(β), thus
reaching a contradiction.

Case 3: β = G−.
This is analogous to Case 2.

We also have a few boundary cases to deal with.

Lemma 37. rG(0) = rG(1) unless rG(α) = α for all α.

Proof. If rG(0) '= rG(1), G '= G# [1], so it must be possible for G to end in fewer
than one move. Hence G = 0. Hence rG(α) = α.

Lemma 38. rG(1) = rG(2) unless G+ = 1.

Proof. If rG(1) '= rG(2), then G# [1] '= G# [2], so either G is 0 or it is possible for
G to end in one move. If G can end in one move, 0 must be an option of the initial
position. Therefore, (G# [1]) ∧ [2] is winning because First can move to the game
(0# 0) ∧ [1] = 0. Hence rG(1) = 1, so G+ = 1.

Proposition 39. For any game G, the function rG satisfies the remoteness condi-
tions.

Proof. This follows from Corollary 29 and Lemmas 26, 34, 36, 37 and 38.

5.2. A Class of Games

Here we define a class of games that we will use for our constructions in the next
section. It will turn out that games in this class achieve almost all possible values
of I(G).

Definition. Let S be a set of closed sets of ordinal numbers greater than or equal
to 2 (closed under the order topology of the ordinals) . Define the Two-Choice-
Game, G(S) as follows: For each α in an element of an element of S, construct the
Potential Game, [α]. On First’s first move, he picks an element of S and makes
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a move in each of the potential games associated with elements of it. On Second’s
first move, he picks a potential game in the set that First picks and makes another
move in it. They then play the game defined by the current position of the potential
game chosen by Second.

Example. Suppose S = {{3, 5}, {10}}. First could pick {3, 5} and make the
moves [2] and [4] in the games [3] and [5] respectively. Then Second could pick the
potential game corresponding to 3 and make the move [1]. First is now left with
the game [1] and has to make the move to [0], at which point the game ends.

Two-Choice-Games are nice because it is easy to compute I(G) for them. In
particular, the meta-game of choosing which potential game is actually used, can
be thought of as taking place before the rest of the game. We prove that:

Lemma 40. For a Two-Choice-Game, G(S), the game (G(S)#[α])∧[β] is winning
for the player that can force the potential game that is played to correspond to an
ordinal γ so that ([γ]# [α]) ∧ [β] is winning for that player.

Proof. First, we may assume that β ≥ α, because otherwise

(G(S)# [α]) ∧ [β] =w [β] =w ([γ]# [α]) ∧ [β].

We prove this lemma by constructing a winning strategy to (G(S)# [α]) ∧ [β]
for the appropriate player. If this is Second, there is only one potential game in
which he moves. Therefore, he can play to guarantee that for the γ chosen that
([γ]# [α]) ∧ [β] is winning for him, but can also play all potential games and the
games [α] and [β] in the way described in Lemma 16, thus guaranteeing that they
win (G(S) # [α]) ∧ [β]. If First is winning he can employ a similar strategy. If
neither α nor β are limit ordinals of the elements of the chosen elements of S, then
First can still maintain the orders of each of the potential games with [α] and [β]
by sending then to [α,α′] and [β,β′] with no potential between α and α′ or β and
β′. On the other hand if either α or β are limits of such γ, then since this set is
closed, either α or β is a limit ordinal and an element of the chosen element of S.
In this case, First is not winning ([γ]# [α])∧ [β] since γ = α or γ = β and is a limit
ordinal (and hence losing).

5.3. The Construction

Here we produce a construction showing that any sequence r satisfying the remote-
ness conditions can be realized as r = rG for some game G.
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Theorem 41. If r is a function from the ordinal numbers to the ordinal numbers,
then there exists a game G with r(α) = rG(α) for all α if and only if r satisfies the
remoteness conditions.

Proof. We already have the only if part. Now we need to construct G.

Case 1: r(α) = α for all α.

We can let G = 0.

Case 2: r(0) = r(1) = r(2).

For ordinal numbers α with α ≥ 2 and S([α+]) ≥S S([α]) ≥S S([α−]), we define
the set Eα as follows:

• Eα contains r(α)

• If α is R-odd, Eα contains all ordinals less than α that are at least 2

• If α is R-even, Eα contains α + 1

• If r(α) is R-even, then Eα contains some ζ where ζ is larger than any r(β)
with S([α+]) ≥S S([β]) ≥S S([α−])

• Eα contains no other elements.

We let G be the Two-Choice-Game G = G({Eα}). We now show that for this G,
r(α) = rG(α). We do this by using Lemma 40.

Case 2a: α is R-odd and α ≥ α+.

If First picks Eα+ , then he guarantees that the potential game γ picked has γ ≤ α.
Therefore, ([γ]# [α]) ∧ [α + 1] is winning. Therefore, rG(α) ≤ α, so by Corollary
29, rG(α) = α = r(α).

Case 2b: α is R-even and α ≥ α−.

No matter which Eβ First picks, Second can always pick a potential game corre-
sponding to a γ with γ < α. This is because he can make γ = 2 if β is R-odd,
γ = β + 1 if β < α− and γ = r(β) if β = α−. Therefore by Lemma 40, Second can
win (G# [α]) ∧ [α + 1], so rG(α) ≤ α. Hence by Corollary 29, rG(α) = α = r(α).

Case 2c: α is R-odd and 1 < α < α+.

First can pick Eα on his first move. Then the possible potential games played
correspond to the ordinals less than α, r(α), α − 1 and possibly ζ. When any of
these are taken in a long conjunctive sum with [α], the result is at least as R-large
as r(α). This is because the possibilities for the max of α and γ are: α, ζ, r(α).
Since ζ is only an option if rG(α) is R-even, rG(α) is the R-smallest. Hence we have
by Lemma 40 that rG(α) ≥R r(α).
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On the other hand, Second can guarantee that when the potential game chosen
is combined in a long conjunctive sum with [α], the result is at least as R-small as
r(α). If First picks Eβ with S([β]) ≤S S([α]), then Second may pick either r(β)
or ζ. r(α) ≥R R([max(α, r(β))]) unless α > r(β) and rG(α) is R-odd, in which
case r(α) ≥R ζ. If, on the other hand, β is R-odd and β > α, Second can pick the
potential game α + 1 which yields α + 1 which is R-even and hence α + 1 ≤R r(α).
Hence we have by Lemma 40 that rG(α) ≤R r(α).

Case 2d: α is R-even and 0 < α < G−.

First can pick Eα on his first move. Then the possible potential games played
correspond to ordinals α + 1, r(α) and ζ (the last only if r(α) is R-even). The
maximums of these with α are α + 1, r(α), and perhaps, ζ. All of these are at least
as R-large as r(α), since α + 1 is R-odd and at most r(α), and since ζ > r(α) and
only available if r(α) is R-even. Hence we have by Lemma 40 that rG(α) ≥R r(α).

On the other hand, Second can guarantee that when the potential game chosen
is taken in a long conjunctive sum with [α], the result is at least as R-small as r(α).
Suppose First picks Eβ on his first turn. If β is R-even and β < α, Second may
pick β + 1 whose max with α is α, which is R-smaller than r(α) because α ≤ r(α)
and α is R-even. If β is R-odd, Second may pick 2 as the potential game, thus
making this max α again. If β is R-even and β ≥ α, then Second may pick r(β).
Now, max(α, r(β)) ≤R r(α) since α ≤R r(α) and r(β) ≤R r(α) by the remoteness
conditions. Hence we have by Lemma 40 that rG(α) ≤R r(α).

Case 2e: α equals 0 or 1.

Since G cannot possibly end in fewer than two turns, G# [0] = G# [1] = G# [2].
Hence rG(α) = rG(2) = rG(2) = rG(α).

Case 3: r(1) = r(0) = 1.

Notice that if we replace r(1), r(0) by r(2) and α+ by 3, we have an r satisfying
the remoteness conditions. Therefore, by Case 2, there exists a game G′ with rG′

equal to this new function. Define G = G′ ∪ {∅} (i.e. G′ with the extra option of
ending the game after one turn). Clearly, First can win (G′ # [α]) ∧ [α + 1] for α
R-odd by picking ∅ on his first move. Therefore, rG(1) = 1. Also since G '= 0,
rG(0) = rG′(1) = 1. On the other hand, when playing (G# [α])∧ [β] with α R-even
and α ≤ β, it is never advantageous to move to ∅ on the first move. Hence for α
R-even, rG(α) = rG′(α) = r(α). This completes the proof of the theorem.

6. Misère Play

In this section, we discuss the strategy behind the misère play of games under
conjunctive sum. The idea of misère play is that the game is played in the same
way, only the objective is reversed (you are now trying to lose the game). In other
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words, the objective now is to be the first player unable to move. In this section we
discuss the analysis of misère games under short and long conjunctive sums. We
first introduce a new operation, and then adapt I(G) to handle misère games as
well as normal ones.

6.1. The Sequential Compound

Here we define the operation of sequential compound as defined in [4] and derive
some of its basic properties.

Definition. If A = {Ai} and B are games, let their Sequential Compound A → B
be the game defined by 0 → B = B and A → B = {Ai → B} if A '= 0.

In other words in the sequential compound, we have copies of each of the games
and on a turn either make a move in A if it is not over, and otherwise makes move
in B. Equivalently, you play A and when done, play B. In the following lemma we
show the importance of concatenation to analysis of misère play.

Lemma 42. The misère version of G is winning if and only if G → [1] is winning.

Proof. When playing G → [1], after the subgame G ends, there is one more move
made. Hence the winner of the subgame G is the loser of G → [1]. Hence one can
force a win in G → [1] only if one can force a loss in G, which is equivalent to forcing
a win in the misère version of G.

6.2. Analysis of Misère Play

Next, we follow some steps to show that all of the operations in the conditions in
Section 3 can be done for misère play using I(G → [1]).

Lemma 43. I(0 → [1]) can be computed.

Proof. I(0 → [1]) = I(1). ([1]# [α])∧ [β] = [min(max(α, 1),β)], hence it is winning
if and only if min(max(α, 1),β) is R-odd.

Lemma 44. I({Gi}→ [1]) can be computed from I(Gi → [1]).

Proof. By definition, I({Gi} → [1]) = I({Gi → [1]}). Hence by Lemma 25, it can
be computed from I(Gi → [1]).

Lemma 45. I((A ∧B) → [1]) can be computed from I(A → [1]) and I(B → [1]).
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Proof. Note that (A ∧B) → [1] = (A → [1]) ∧ (B → [1]). This is because in either
case, the game ends one turn after the first of the subgames A and B end. Hence
by Lemma 30 we can compute I((A ∧ B) → [1]) = I((A → [1]) ∧ (B → [1])) from
I(A → [1]) and I(B → [1]).

Lemma 46. I((A#B) → [1]) can be computed from I(A → [1]) and I(B → [1]).

Proof. Note that (A#B) → [1] = (A → [1])# (B → [1]). This is because in either
case, the game ends one turn after the last of the subgames A and B end. Hence
by Lemma 31 we can compute I((A#B) → [1]) = I((A → [1])# (B → [1])) from
I(A → [1]) and I(B → [1]).

Combining the above we have

Theorem 47. The information I(G → [1]) associated with a game G satisfies the
conditions in Section 3 for misère play.

7. Short Games with Sequential Compound

It would be nice to have some information similar to I(G) that allows us to solve
games constructed using either type of conjunctive sum as well as sequential com-
pound. Unfortunately, we only know of such a theory for a restricted class of games
known as short games.

Definition. Call a game G short if there exists an integer N so that G will always
end after at most N moves. We let N(G) stand for the smallest such integer.

Shortness of a game is essentially a finiteness condition that excludes, for exam-
ple, infinite ordinal games.

In this section, we use script Roman letters to represent sets and use Greek letters
for finite ordinals or equivalently for non-negative integers.

Definition. For G a short game, let J(G) be the set of all subsets S ⊂ {0, 1, 2, . . .}
so that First may force G to end in exactly a number of moves in S.

Note that J(G) is easy to compute for two-choice games. For example, we have
that J({{[1]}, {[0], [2]}}) contains the sets {3}, {2, 4} and any supersets of these.
We show that J(G) contains all information necessary to determine the winner of
short games constructed using concatenation and conjunctive sums. First we note
that as a base case we know J(0). Namely:

Lemma 48. J(0) = {S : 0 ∈ S}.
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Proof. The game ends in 0 moves regardless of play. Hence First can force the game
to end in some number of moves in S if and only if 0 ∈ S.

Additionally, we can compute J of a game that was constructed out of short
games in any of these ways. In particular we prove that:

Theorem 49. For A,B,G,Gi short games, the following hold:

• If {Gi} is short, then J({Gi}) can be determined from J(Gi).

• A ∧B is short and J(A ∧B) can be determined from J(A) and J(B).

• A#B is short and J(A#B) can be determined from J(A) and J(B).

• A → B is short and J(A → B) can be determined from J(A) and J(B).

This allows us to recursively compute J(G). We note that this is enough to
determine the winner of G. In particular:

Lemma 50. If G is a short game, G is winning if and only if the set of odd numbers
is in J(G).

Proof. G is winning if and only if First can cause it to end in an odd number of
moves. This is the case if and only if the set of odd numbers is in J(G).

We now proceed with the proofs of the statements in Theorem 49.

Definition. If S is a set of non-negative integers and α is an integer, then we let
S − α = {β : β + α ∈ S}.

Lemma 51. If G = {Gi} is short, then S ∈ J(G) if and only if for some Gi, no
element of J(Gi) is disjoint from S − 1.

Proof. By definition S ∈ J(G) if and only if First can force G to end in some
number of moves in S. This is equivalent to saying that First can pick some option
Gi and then force the game to end in some number of extra moves in S − 1. This
is equivalent to saying that Second can force Gi to end in such a number of moves.
Equivalently this says that First cannot force Gi to end in some number of moves
in the compliment of S−1. Hence this is equivalent to all elements of J(Gi) having
nontrivial intersection with S − 1.

Lemma 52. If A and B are short games, then G = A ∧B is short, and J(G) can
be determined from J(A) and J(B).
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Proof. For the first claim, note that G must end in at most min(N(A), N(B))
moves. For a given set S, we need a way to determine from J(A) and J(B) whether
S ∈ J(G). Given S we define an ordering ≥RS on nonnegative integers so that
α ≥RS β if one of the following holds:

• α ∈ S and β '∈ S

• α ≤ β and α,β ∈ S

• α ≥ β and α,β '∈ S

For any short game H, we consider First and Second playing the game H so that
First is trying to maximize the length of the game under the ≥RS ordering and
Second is trying to minimize it. We define rS(H) to be the length of the game
when First and Second play with these strategies. Note that because H is short,
this value is well defined. We claim that rS(G) = min(rS(A), rS(B)). This is
because the length of G is maximized under the RS ordering when the lengths of
each of the component games are individually maximized. This in turn follows from
noting that if α ≥RS α′, then min(α,β) ≥RS min(α′,β).

We note that rS(A) is easily determined from J(A) by noting that rS(A) is the
largest α under the ≥RS ordering, so that First can force the length of A to be at
least as large as α. Hence from J(A) and J(B) one can determine rS(A) and rS(B)
and, from those, rS(G). Last we note that S ∈ J(G) if and only if First can force
the length of G to be in S. This is the case if and only if rS(G) ∈ S. Hence we can
determine if S is in J(G).

Lemma 53. If A and B are short games, then G = A#B is short, and J(G) can
be determined from J(A) and J(B).

Proof. The proof is analogous to that of Lemma 52.

Lemma 54. If A and B are short, then so is G = A → B. Furthermore J(G) can
be determined from J(A) and J(B).

Proof. For the first claim, note that the number of turns it takes to play G is at
most N(A)+N(B). Suppose that while playing G it takes α turns to complete the
play of A. First is still able to force the length of the full game G to lie in a set S if
and only if he can force the remaining game B to take some number of turns lying
in S−α. If α is even, this is possible if and only if (S−α) ∈ J(B). Otherwise, since
it is Second’s turn when the game B starts, it is possible if and only if all elements
of J(B) have non-trivial intersection with S − α. Hence if we let S ′ be the set of
all α so that either
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• α is even and (S − α) ∈ J(B), or

• α is odd and all elements of J(B) have non-trivial intersection with S − α,

then S ∈ J(G) if and only if S ′ ∈ J(A).

Theorem 49 now follows immediately from Lemmas 48, 51, 52, 53, 54, and 50.
We note that J(G) contains a lot more information than I(G) does. Unfortu-

nately this extra information is necessary in order to do the required computations.
In particular we show that:

Theorem 55. If G is a short game, J(G) can be determined from knowing the
winners of all games constructed by taking G and combining it with other short
games using the operations ∧,#, and →.

Proof. For α a non-negative integer, we let [[α]] denote the game that takes exactly
α moves to play.

We note that, since G cannot take more than N(G) moves, S ∈ J(G) if and only
if (S \ {0, 1, . . . , N(G)}) ∈ J(G). Hence S ∈ J(G) if and only if (S \ {0, 1, . . . ,α}) ∈
J(G) for all sufficiently large α. Therefore to determine J(G) it suffices to determine
which finite sets S are in J(G).

Let S be a finite set of non-negative integers. Let α be an upper bound for
S ∪ {N(G)}. Let Se and So be the sets of even and odd integers in S, respectively.
Let GS,α be the two-choice game defined by the following sets of integers:

• {β : 2α− β ∈ So} ∪ {3α + 2}, and

• {2, 2α− β} for some β ∈ Se.

Consider the game HG,S,α = ((G → GS,α) ∧ [[3α + 2]]) # [[α + 2]]. We ask the
question of when First is able to force this game to end in either α + 2 turns or in
2α turns.

Assuming that G takes an even number γ of turns to play, First starts off playing
GS,α. If he picks the first set, Second can guarantee that the game ends in 3α + 2
turns. If First picks another set corresponding to a β ∈ Se, the composite game
will end in either α + 2 turns or 2α− β + γ turns. Hence First can force H to end
in the appropriate number of turns exactly when γ ∈ Se.

Suppose on the other hand that G ended in an odd number γ of moves. Second
makes the first move in GS,α. If Second picks the first set, First will cause the game
H to end in either 3α + 2 moves or in 2α− β + γ moves for some β ∈ So. If Second
made any other move, First could cause H to end in α + 2 moves. Hence, First can
end H in an appropriate number of moves if and only if γ ∈ So.
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Putting the above together, if α > N(G), then {α + 2, 2α} ∈ J(HG,S,α) if and
only if S ∈ J(G).

Lastly we need a way to detect whether {α + 2, 2α} ∈ J(HG,S,α). Consider the
case where α is even. We claim that the game

((HG,S,α → {[[0]], [[α− 2]]}) ∧ [[2α + 2]])# [[2α]]

is winning exactly when this is the case. Note that First wins the above composite
if and only if HG,S,α → {[[0]], [[α− 2]]} ends in exactly 2α + 1 turns. Clearly this is
possible to achieve exactly when HG,S,α ended in either 2α moves or α + 2 moves.

Therefore, S ∈ J(G) if and only if ((HG,S,α → {[[0]], [[α−1]]})∧[[2α+2]])#[[2α]]
is winning for all sufficiently large even α.

We conclude our discussion of sequential compound by discussing exactly which
sets are possible as values of J(G). It is obvious that if S ∈ J(G) that any superset
of S is in J(G). We have also noted above that for sufficiently large α, at least N(G),
S ∈ J(G) if and only if (S \ {0, 1, 2, . . . ,α}) ∈ J(G). There are two final restrictions
coming from games that can end in a small number of moves. In particular, if G can
end in 0 moves, G = 0. Therefore, if for some S, (S ∪ {0}) ∈ J(G) and S '∈ J(G),
then J(G) = J(0). Additionally, if G can end in one turn, First can force it to.
Hence if for some S, (S ∪ {1}) ∈ J(G), and S '∈ J(G), then {1} ∈ J(G).

It is not hard to show that any set of sets of natural numbers satisfying the above
properties can be given as J(G) for some short game G. In fact we can require that
G be either a two-choice game, a two-choice game with the extra starting option 0,
or 0.

8. Further Work

There are still several ways in which the theory of conjunctive sums of games could
be extended. Probably, the most important of these is finding a formal duality
between short and long conjunctive sums. Almost all of the results in this paper
are true under a duality that sends short sum, remoteness, min, etc. to long sum,
suspense, max, etc. In fact most of these dual results are also in the paper. It would
be nice to see a way to formalize this duality.

Question 1. Is there a formal duality between short and long conjunctive sums,
and if so, what is it?
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The main problem that we see with developing a formal duality is that it would
need to interchange the operations of min and max for ordinal numbers. The duality
would need to extend the space of games somewhat since without doing so formal
duality fails. For example, there exists a game, 0, so that G# 0 = G for all G, but
no game X so that G ∧X = G for all G.

Next there is the problem of classifying the algebraic structure of short and long
conjunctive sums given that we now know the appropriate equivalence.

Question 2. Is there a better way to think about the algebraic structure of games
under # and ∧ under the equivalence A ∼ B if I(A) = I(B)?

It is also unknown if there is a closed form solution to the example game we gave.

Question 3. For which r and c is G(r, c) winning, where G is the game in Section
3?

J(G) works only for short games. It would be nice to extend the theory to
arbitrary games.

Question 4. Is there a new function, J ′(G), that satisfies the properties listed in
Theorem 49, as well as being enough to determine the winner of G, but for all games
rather than just short ones?
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