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Abstract
Simson’s identity is a well-known Fibonacci identity in which the difference of cer-

tain order 2 products has a particularly pleasing form. Other old and beautiful

identities of a similar nature are attributed to Catalan, Gelin and Cesàro, and Tag-

iuri. Catalan’s identity can be described as a family of product difference Fibonacci
identities of order 2 with 1 parameter. In Section 2 of this paper we present four

families of product difference Fibonacci identities that involve higher order prod-

ucts. Being self-dual, each of these families may be regarded as a higher order

analogue of Catalan’s identity. We also state two conjectures that give the form

of similar families of arbitrary order. In the final section we give other interesting

product difference Fibonacci identities.

1. Introduction

The Fibonacci numbers are defined, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

The Lucas numbers are defined, for all integers n, by

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

By a Product Difference Fibonacci Identity (PDFI) of order s we mean an identity

of the form
s�

i=1

Fn+ai −
s�

i=1

Fn+bi = Dn (ai, bi; s) = Dn, (1)

where s ≥ 1, and ai and bi are specified integers. This notation and terminology

was introduced by Fairgrieve and Gould [5].

Two well-known and attractive PDFIs of orders 2 and 4, respectively, are

Fn−1Fn+1 − F 2
n = (−1)

n, (2)
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and

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1. (3)

According to Dickson [3, page 393], (2) was discovered by Robert Simson in 1753.

Again, according to Dickson [3, page 401], (3) was stated by E. Gelin and proved

by E. Cesàro. Indeed, our discovery of (21) and (22) was motivated by the beauty

of (3).

The following generalization of (2) is due to Catalan [1]:

Fn−aFn+a − F 2
n = (−1)

n+a+1F 2
a . (4)

Morgado [7] used (4) to give an alternative proof of (3). More generally there is

Fn+aFn+b − FnFn+a+b = (−1)
nFaFb, (5)

which Dickson [3, page 404] attributes to A. Tagiuri in 1901. Everman, Danese, and

Venkannayah [4] rediscovered (5) in 1960, submitting it as a problem for readers of

The American Mathematical Monthly.

In order to bridge the gap between (2) and (3), Melham [6] offered the following

PDFI of order 3:

Fn+1Fn+2Fn+6 − F 3
n+3 = (−1)

nFn. (6)

Melham also noticed the companion formula

FnFn+4Fn+5 − F 3
n+3 = (−1)

n+1Fn+6, (7)

but gave it little significance since it can be obtained from (6). More precisely, in

(6) we replace n with −n, and use the fact that

F−n = (−1)
n+1Fn (8)

to obtain (7).

Following up on Melham’s contribution, Fairgrieve and Gould [5] chose to write

(6) and (7) as

Fn−2Fn−1Fn+3 − F 3
n = (−1)

n−1Fn−3, (9)

and

Fn+2Fn+1Fn−3 − F 3
n = (−1)

nFn+3, (10)

respectively. They then called (9) and (10) dual identities since, with the use of

(8), each identity can be obtained from the other by the replacement of n with −n.

Fairgrieve and Gould also discovered

Fn−2F
2
n+1 − F 3

n = (−1)
n−1Fn−1, (11)

and

Fn+2F
2
n−1 − F 3

n = (−1)
nFn+1, (12)
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another pair of dual identities of order 3 that Melham had missed.

Fairgrieve and Gould called each of (2) and (3) self-dual identities, since the

dual of each is itself. Interestingly, (4) is self-dual, but (5) is not self-dual. Both,

however, are certainly beautiful.

Furthermore, inspired by (2) and (3), Fairgrieve and Gould considered the prod-

uct differences
s�

i=1

Fn−iFn+i − F 2s
n (13)

for s = 3, 4, 5, . . .. They showed how to produce a self-dual PDFI of order 2s for

each s = 3, 4, 5, . . .. Each such identity can therefore be regarded as a higher order

analogue of (2) and (3). They produced no self-dual PDFI of odd order, and we

have not cited such an identity in the literature.

Let us agree to designate Catalan’s identity as a family of PDFIs of order 2 with

1 parameter. Therefore, we say that Tagiuri’s identity is a family of PDFIs of order

2 with 2 parameters. In Section 2, for each 3 ≤ s ≤ 6, we present a family of PDFIs

of order s with s−1 parameters. Furthermore, like Catalan’s identity, each of these

four families is self-dual. We therefore regard each of these families as a higher

order analogue of Catalan’s identity.

In Section 2 we state our main results, and in Section 3 we indicate a method of

proof. In Section 4, we state two conjectures pertaining to higher order analogues of

our main results. Finally, in Section 5, we give other product difference Fibonacci

identities that we feel are interesting.

2. The Main Results

Theorem 1. If a and b are integers, then

Fn+a+bFn−aFn−b − Fn−a−bFn+aFn+b = (−1)
n+a+bFaFbFa+bLn.

Theorem 2. If a, b, and c are integers, then

Fn+a+b+cFn−aFn−bFn−c − Fn−a−b−cFn+aFn+bFn+c (14)

= (−1)
n+a+b+cFa+bFa+cFb+cF2n.

We have discovered generalizations of Theorems 1 and 2, and these generaliza-

tions are given in Theorems 5 and 6, respectively.
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So that we can state the next theorem succinctly, we introduce some notation.

Define

∆ (n; a, b, c, d) = Fn+a+b+c+dFn−aFn−bFn−cFn−d (15)

−Fn−a−b−c−dFn+aFn+bFn+cFn+d.

Then we have

Theorem 3. If a, b, c, and d are integers, then

∆ (n; a, b, c, d) = (−1)
nLn

�
∆ (−1; a, b, c, d)F 2

n

+(−1)
a+b+c+dFaFbFcFdFa+b+c+dFn−1Fn+1

�
.

To state the next theorem we use the notation in (15) with an extra parameter,

and with the obvious meaning.

Theorem 4. If a, b, c, d, and e are integers, then

∆ (n; a, b, c, d, e) = (−1)
nF2n

�
∆ (−1; a, b, c, d, e)F 2

n

−1

6
[∆ (−2; a, b, c, d, e) + 3∆ (−1; a, b, c, d, e)]Fn−1Fn+1

�
.

3. The Proofs

We have managed to prove the theorems in the previous section with the verifica-
tion theorem of Dresel [2, page 171]. To illustrate, we prove Theorem 4.

In the terminology of Dresel, the identity in Theorem 4 is homogeneous of degree

6 in the variable n. As Dresel explains, since (−1)n = (αβ)n, where α and β are the

roots of x2 − x − 1 = 0, then (−1)n is of degree 2 in the variable n. Furthermore,

since, for instance, F2−a = F−(a−2) = (−1)a−1Fa−2, then F2−a is of degree 3 in the

variable a.

Since the identity in Theorem 4 is homogeneous of degree 6 in the variable n, to

prove it with the verification theorem of Dresel we need only verify its validity for

seven distinct values of n. Accordingly, we write down the cases that correspond

to n = 1, 2, 3, 4, 5, 6, and 7. We are required to prove each of these seven cases.

Now, each of these seven cases is an identity that is homogeneous of degree 4 in the

variable a. Therefore, to prove any one of these seven cases, we need only verify its

validity for five distinct values of a; say a = 1, 2, 3, 4, and 5. Thus far, we have

thirty-five identities in the variables b, c, d, and e that we are required to prove.
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Continuing in the same manner, we are ultimately required to verify the identity

stated in Theorem 4 for 7×5×5×5×5×5 distinct ordered 6-tuples (n, a, b, c, d, e).
With six nested “For” loops, we managed to perform these verifications, and thereby

complete the proof of Theorem 4 in a matter of seconds with the use of the computer

algebra system Mathematica 6.0.

In the final paragraph of the introduction we remarked that the identities in

Theorems 1-4 are self-dual. This is easily seen with the use of (8) together with the

fact that L−n = (−1)nLn.

4. Families of Self-Dual PDFIs Order 7 and Higher

We have continued our investigation into higher order analogues of Theorems 1-4.

In this section we state our observations as conjectures that set forth higher order

families of PDFIs that are self-dual. Once again we employ the same notation used

in Theorems 3 and 4.

Our first conjecture deals with PDFIs of order 7, 9, 11, . . ..

Conjecture 1. For k ≥ 2 let a1, . . . , a2k+2 be arbitrary integers. Then

∆ (n; a1, . . . , a2k+2) = (−1)
n+a1+···+a2k+2Ln

�
c2kF 2k

n +

2k−1�

i=1

c2k−iF
2k−i
n−1 F i

n+1

�
,

in which c2k−i = ci for i = 1, . . . , k − 1.

Our second conjecture deals with PDFIs of order 8, 10, 12, . . ..

Conjecture 2. For k ≥ 2 let a1, . . . , a2k+3 be arbitrary integers. Then

∆ (n; a1, . . . , a2k+3) = (−1)
n+a1+···+a2k+3F2n

�
c2kF 2k

n +

2k−1�

i=1

c2k−iF
2k−i
n−1 F i

n+1

�
,

in which c2k−i = ci for i = 1, . . . , k − 1.

In both of these conjectures the coefficients ci are expressible in terms of ∆ with

the appropriate arguments. Furthermore, we can find the ci by substituting various

values of n, and solving the resulting system of linear equations. Indeed, because

of the symmetry in the ci, this task can be accomplished with k +1 different values

of n.

To illustrate, we consider Conjecture 1 for the case k = 2 and find the coefficients

ci. Furthermore, we prove this case of Conjecture 1 so that this case becomes a

theorem. Since c1 = c3, we require only three equations to solve for c1, c2, c3, and

c4. We form these three equations by substituting n = 0, n = 1, and n = 2, and

solve these equations to obtain
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c1 = −1

6
(−1)

a1+···+a6 [6∆ (0; a1, . . . , a6)− 3∆ (1; a1, . . . , a6)−∆ (2; a1, . . . , a6)] ,

c2 =
1

6
(−1)

a1+···+a6 [15∆ (0; a1, . . . , a6)− 6∆ (1; a1, . . . , a6)− 2∆ (2; a1, . . . , a6)] ,

c3 = −1

6
(−1)

a1+···+a6 [6∆ (0; a1, . . . , a6)− 3∆ (1; a1, . . . , a6)−∆ (2; a1, . . . , a6)] ,

c4 = −(−1)
a1+···+a6∆ (1; a1, . . . , a6) .

Finally, in the same manner as for the proof of Theorem 4, we perform verifica-

tions for 8×5×5×5×5×5×5 appropriately chosen ordered 7-tuples (n, a1, . . . , a6).

We can verify that we have indeed completed these verifications, thus establishing

the truth of Conjecture 1 for k = 2.

5. Other PDFIs of Interest

In the course of our research, we discovered other interesting PDFIs that are worthy

of mention.

The five identities that follow are of order 3, and none is self-dual. To conserve

space, we give only one identity in each dual pair.

Fn−3F
2
n+1 − F 2

n−2Fn+3 = 4(−1)
nFn, (16)

F 2
n−1Fn+3 − F 2

nFn+1 = (−1)
nLn, (17)

Fn−1F
2
n+1 − Fn−2FnFn+3 = (−1)

nLn+1, (18)

Fn−5F
2
n+2 − F 2

n−1Fn+1 = 4(−1)
nLn+1, (19)

Fn−1F
2
n − Fn−4Fn+1Fn+2 = (−1)

nLn+2. (20)

The two identities that follow are of order 4, and both are self-dual. By any

measure they are certainly attractive.

F 2
n−1F

2
n+1 − F 2

n−2F
2
n+2 = 4(−1)

nF 2
n , (21)

Fn−3Fn−1Fn+1Fn+3 − F 4
n = (−1)

nL2
n. (22)

Each of (16)-(20) is homogeneous of degree 3 in the variable n. Accordingly, to

prove (16)-(20), we need only verify the validity of each for four distinct values of

n. Likewise, to prove (21) and (22), we need only verify the validity of each for five

distinct values of n.

Alternatively, we can prove each of (16)-(22) by expressing the left and right sides

as polynomials in Fn and Fn+1, using Simson’s identity to substitute Fn−1Fn+1−F 2
n
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for (−1)n. We leave the details to the reader. Identity (21) also follows from

Simson’s identity and Catalan’s identity upon factorization of the left side.

In our next theorem we give a family of PDFIs of order 3 with 3 parameters.

For c = 0 this family reduces to the family given in Theorem 1, otherwise the

identities in (23) are not self-dual. In Theorem 5, (a, b, c) = (1, 1,−1) yields (16),

while (a, b, c) = (−1,−1, 1) yields the dual of (16).

Theorem 5. If a, b, and c are integers, then

Fn+a+b−cFn−a+cFn−b+c − Fn−a−b+cFn+aFn+b (23)

= (−1)
n+a+b+cFa+b−c (FcFn+a+b−c + (−1)

cFa−cFb−cLn) .

In our final theorem we present a pleasing family of PDFIs of order 4 with 4

parameters. For d = 0 the family of identities in (24) reduces to the family given

in Theorem 2, otherwise the identities in (24) are not self-dual.

Theorem 6. If a, b, c, and d are integers, then

Fn+a+b+c−dFn−a+dFn−b+dFn−c+d − Fn−a−b−c+2dFn+aFn+bFn+c (24)

= (−1)
n+a+b+cFa+b−dFa+c−dFb+c−dF2n+d.

The proofs of Theorems 5 and 6 follow along the same lines described in Section

3. Note that identity (24) is homogeneous of degree 4 in the variables a, b, c, and

n. The product on the right of (24) is of degree 10 in the variable d. We therefore

insert (−1)2d in the first product on the left, and (−1)4d in the second product on

the left. This makes (24) homogeneous of degree 10 in the variable d. Therefore,

to prove (24) with Dresel’s verification theorem, we are required to verify it for

5× 5× 5× 5× 11 distinct ordered 5-tuples (n, a, b, c, d). Once again, we performed

these verifications with the use Mathematica 6.0, thereby proving Theorem 6.

A little care is needed in the proof of Theorem 5. It is easy to see that (23) is

homogeneous of degree 3 in n, and homogeneous of degree 4 in a and also in b. For

the variable c we need to insert various powers of (−1)c in the appropriate places

to see that (23) is homogeneous of degree 13 in c. The proof of Theorem 5 then

follows by Dresel’s verification theorem.
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