NOTE ON THE DIOPHANTINE EQUATION $X^{t}+Y^{t}=B Z^{t}$

Benjamin Dupuy
Institut de Mathématiques, Université Bordeaux I
benjamin.dupuy@math.u-bordeaux1.fr

Received: 3/8/10, Accepted: 12/29/10, Published: 2/4/11

Abstract

In this paper, we consider the diophantine equation $X^{t}+Y^{t}=B Z^{t}$ where X, Y, Z are nonzero coprime integers. We prove that this equation has no non-trivial solution with the exponent t dividing Z under certain conditions on t and B.

1. Introduction

Let $t>3$ be a prime number, B be a nonzero rational integer. Consider the equation

$$
\begin{equation*}
X^{t}+Y^{t}=B Z^{t} \tag{1}
\end{equation*}
$$

where X, Y, Z are coprime nonzero rational integers.
Definition 1 Let $t>3$ be a prime number. We say that t is a good prime number if and only if

- its index irregularity $\iota(t)$ is equal to zero, or
- $t \nmid h_{t}^{+}$and none of the Bernoulli numbers $B_{2 n t}, n=1, \ldots, \frac{t-3}{2}$, is divisible by t^{3}.

For a prime number t with $t<12.10^{6}$, it has been recently proved that none of the Bernoulli numbers $B_{2 n t}, n=1, \ldots, \frac{t-3}{2}$, is divisible by t^{3} (see [2]). Furthermore, h_{t}^{+}is prime to t for $t<7.10^{6}$. In particular, every prime number $t<7.10^{6}$ is a good prime number.

Recently the diophantine Equation (1) has been studied by Preda Mihăilescu in [3]. In his paper, he requires that B is such that $B>1,(t, \phi(\operatorname{Rad}(B)))=1$, and the pairwise relatively prime nonzero integers X, Y, Z satisfy the condition $t^{3} \mid B Z$ where t is a prime number such that $t \nmid h_{t}^{+}$and none of the Bernoulli numbers $B_{2 n t}$,
$n=1, \ldots, \frac{t-3}{2}$, is divisible by t^{3}. Particularly, if B is prime to t, he requires that $t^{3} \mid Z$. Unfortunately, the proof of a very fundamental fact in his proof is wrong (see Section 4 of this paper), so that Theorem 1 of [3] has not been yet proved.

As usual, we denote by ϕ the Euler function. For the following, we fix $\boldsymbol{t}>\mathbf{3} a$ good prime number, and a rational integer B prime to t, such that for every prime number l dividing B, we have $-1 \bmod t$ is a member of $\langle l \bmod t\rangle$, the subgroup of \mathbb{F}_{t}^{\times}generated by $l \bmod t$. For example, it is the case if for every prime number l dividing $B, l \bmod t$ is not a square.

In this paper, using very similar methods to those used in [3], we prove the following theorem (with a stronger condition on B, but a much weaker condition on Z than that used by Mihăilescu).

Theorem 2 Equation (1) has no solution in pairwise relatively prime non zero integers X, Y, Z with $t \mid Z$.

In particular, using a recent result of Bennett et al., we deduce the following corollary.

Corollary 3 Suppose that $B^{t-1} \neq 2^{t-1} \bmod t^{2}$ and B has a divisor r such that $r^{t-1} \neq 1 \bmod t^{2}$. Then Equation (1) has no solution in pairwise relatively prime nonzero integers X, Y, Z.

2. Proof of the Theorem

First, we suppose that $\iota(t)=0$. Let us prove the following lemma.
Lemma 4 Let ζ be a primitive t-th root of unity and $\lambda=(1-\zeta)(1-\bar{\zeta})$. Suppose there exist algebraic integers x, y, z in the ring $\mathbb{Z}[\zeta+\bar{\zeta}]$, an integer $m \geq t$, and a unit η in $\mathbb{Z}[\zeta+\bar{\zeta}]$ such that x, y, z and λ are pairwise coprime and satisfy

$$
\begin{equation*}
x^{t}+y^{t}=\eta \lambda^{m} B z^{t} . \tag{2}
\end{equation*}
$$

Then z is not a unit of $\mathbb{Z}[\zeta+\bar{\zeta}]$. Moreover, there exist algebraic integers $x^{\prime}, y^{\prime}, z^{\prime}$ in $\mathbb{Z}[\zeta+\bar{\zeta}]$, an integer $m^{\prime} \geq t$, and a unit η^{\prime} in $\mathbb{Z}[\zeta+\bar{\zeta}]$ such that $x^{\prime}, y^{\prime}, z^{\prime}$, λ and η^{\prime} satisfy the same properties. The algebraic number z^{\prime} divides z in $\mathbb{Z}[\zeta]$. The number of prime ideals of $\mathbb{Z}[\zeta]$ counted with multiplicity and dividing z^{\prime} is strictly less than that dividing z.

Proof. Equation (2) becomes

$$
(x+y) \prod_{a=1}^{t-1}\left(x+\zeta^{a} y\right)=\eta \lambda^{m} B z^{t}
$$

By hypothesis, for every prime number l dividing B, we have $-1 \bmod t \in<l \bmod t>$. In particular B is prime to $\frac{x^{t}+y^{t}}{x+y}$. In fact, suppose there exists γ a prime factor of B in $\mathbb{Z}[\zeta]$ such that $\gamma \left\lvert\, \frac{x^{t}+y^{t}}{x+y}\right.$. Then there exist $a \in\{1, \ldots, t-1\}$ such that $\gamma \mid\left(x+\zeta^{a} y\right)$. Let l be the rational prime number under γ. Since $-1 \bmod t$ is an element of the subgroup of \mathbb{F}_{t}^{\times}generated by $l \bmod t$, we deduce that the decomposition group of γ contains the complex conjugation $j \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ that is $\gamma^{j}=\gamma$. In particular, $\gamma \mid\left(x+\zeta^{a} y\right)$ implies that $\gamma \mid\left(x+\zeta^{-a} y\right)$ since x, y are real. So $\gamma \mid\left(\zeta^{a}-\zeta^{-a}\right) y$. Since γ is a prime ideal, we deduce that $\gamma \mid y$ or $\gamma \mid\left(\zeta^{a}-\zeta^{-a}\right)$. But x and y are coprime so y is prime to γ. Since $(B, p)=1$ and $\zeta^{a}-\zeta^{-a}$ is a generator of the only prime ideal of $\mathbb{Z}[\zeta]$ above p, we cannot have $\gamma \mid\left(\zeta^{a}-\zeta^{-a}\right)$: we get a contradiction. So B and $\frac{x^{t}+y^{t}}{x+y}$ are coprime as claimed. In fact, we have proved the following result: B is prime to every factor of the form $\frac{a^{t}+b^{t}}{a+b}$ where a and b are coprime elements of $\mathbb{Z}[\zeta+\bar{\zeta}]$.

Then $B \mid(x+y)$ in $\mathbb{Z}[\zeta]$. Therefore we get

$$
\frac{x+y}{B} \prod_{a=1}^{t-1}\left(x+\zeta^{a} y\right)=\eta \lambda^{m} z^{t}
$$

Following the same method ${ }^{1}$ as in Section 9.1 of [4], one can show that there exist real units $\eta_{0}, \eta_{1}, \ldots, \eta_{t-1} \in \mathbb{Z}[\zeta+\bar{\zeta}]^{\times}$and algebraic integers $\rho_{0} \in \mathbb{Z}[\zeta+\bar{\zeta}]$, $\rho_{1}, \ldots, \rho_{t-1} \in \mathbb{Z}[\zeta]$ such that

$$
\begin{equation*}
x+y=\eta_{0} B \lambda^{m-\frac{t-1}{2}} \rho_{0}^{t}, \quad \frac{x+\zeta^{a} y}{1-\zeta^{a}}=\eta_{a} \rho_{a}^{t}, \quad a=1, \ldots, t-1 \tag{3}
\end{equation*}
$$

Let us show that z is not a unit. As ρ_{1} divides z in $\mathbb{Z}[\zeta]$, it is thus enough to show that ρ_{1} is not one. Put $\alpha=\frac{x+\zeta y}{1-\zeta}$. One has

$$
\alpha=-y+\frac{x+y}{1-\zeta} \equiv-y \bmod (1-\zeta)^{2}
$$

So $\frac{\bar{\alpha}}{\alpha} \equiv 1 \bmod (1-\zeta)^{2}$. Suppose that ρ_{1} is a unit. Then, the quotient $\frac{{\overline{\rho_{1}}}^{t}}{\rho_{1}^{t}}$ is a unit of modulus 1 of the ring $\mathbb{Z}[\zeta]$, thus a root of the unity of this ring by the Kronecker theorem. However, the only roots of the unity of $\mathbb{Z}[\zeta]$ are the $2 t$-th roots of the unity (see [4]). As the unit η_{1} is real, thus there exists an integer l and $\epsilon= \pm 1$ such as $\frac{\overline{\eta_{1}} \cdot \overline{\rho_{1}}}{\eta_{1} \cdot \rho_{1}^{t}}=\frac{\overline{\rho_{1}} t}{\rho_{1}^{t}}=\epsilon \zeta^{l}$. Therefore, we have

$$
\frac{\bar{\alpha}}{\alpha}=\epsilon \zeta^{l}
$$

As $\frac{\bar{\alpha}}{\alpha} \equiv 1 \bmod (1-\zeta)^{2}$, we get $\epsilon \zeta^{l} \equiv 1 \bmod (1-\zeta)^{2}$, so $\epsilon \zeta^{l}=1$, i.e., $\frac{\bar{\alpha}}{\alpha}=1$. So

$$
\frac{x+\zeta y}{1-\zeta}=\frac{x+\bar{\zeta} y}{1-\bar{\zeta}}
$$

[^0]because x and y are real numbers. From this equation, we deduce that
$$
\frac{x+\zeta y}{1-\zeta}=\frac{\zeta x+y}{\zeta-1}, \text { i.e., }(x+y)(\zeta+1)=0
$$

We get a contradiction. So the algebraic integer ρ_{1} (and then z) is not a unit. This completes the proof of the first part of the lemma.

Let us prove the existence of $x^{\prime}, y^{\prime}, z^{\prime}, \eta^{\prime}$, and m^{\prime}. It is just an adaptation of the computations done in Paragraph 9.1 of Chapter 9 of [4] for the second case of the Fermat equation. Here we give the main ideas. Let $a \in\{1, \ldots, p-1\}$ be a fixed integer. We take $\lambda_{a}=\left(1-\zeta^{a}\right)\left(1-\zeta^{-a}\right)$. By (3), there exist a real unit η_{a} and $\rho_{a} \in \mathbb{Z}[\zeta]$ such that

$$
\frac{x+\zeta^{a} y}{1-\zeta^{a}}=\eta_{a} \rho_{a}^{t}
$$

and taking the conjugates (we know that $x, y \in \mathbb{R}$), we have

$$
\frac{x+\zeta^{-a} y}{1-\zeta^{-a}}=\eta_{a}{\overline{\rho_{a}}}^{t}
$$

Thus

$$
x+\zeta^{a} y=\left(1-\zeta^{a}\right) \eta_{a} \rho_{a}^{t}, \quad x+\zeta^{-a} y=\left(1-\zeta^{-a}\right) \eta_{a}{\overline{\rho_{a}}}^{t} .
$$

Multiplying the previous equalities, we obtain

$$
\begin{equation*}
x^{2}+y^{2}+\left(\zeta^{a}+\zeta^{-a}\right) x y=\lambda_{a} \eta_{a}^{2}\left(\rho_{a} \overline{\rho_{a}}\right)^{t} . \tag{4}
\end{equation*}
$$

Taking the square of $x+y=\eta_{0} B \lambda^{m-\frac{t-1}{2}} \rho_{0}^{t}$ gives

$$
\begin{equation*}
x^{2}+y^{2}+2 x y=\eta_{0}^{2} B^{2} \lambda^{2 m-t+1} \rho_{0}^{2 t} . \tag{5}
\end{equation*}
$$

The difference between equations (5), (4) and then division by λ_{a} gives

$$
\begin{equation*}
-x y=\eta_{a}^{2}\left(\rho_{a} \overline{\rho_{a}}\right)^{t}-\eta_{0}^{2} B^{2} \lambda^{2 m-t+1} \rho_{0}^{2 t} \lambda_{a}^{-1} \tag{6}
\end{equation*}
$$

As $t>3$, there exists an integer $b \in\{1, \ldots, t-1\}$ such that $b \neq \pm a \bmod t$. For this integer b, we get

$$
\begin{equation*}
-x y=\eta_{b}^{2}\left(\rho_{b} \overline{\rho_{b}}\right)^{t}-\eta_{0}^{2} B^{2} \lambda^{2 m-t+1} \rho_{0}^{2 t} \lambda_{b}^{-1} \tag{7}
\end{equation*}
$$

The difference between equations (6) and (7) gives, after simplifying,

$$
\eta_{a}^{2}\left(\rho_{a} \overline{\rho_{a}}\right)^{t}-\eta_{b}^{2}\left(\rho_{b} \overline{\rho_{b}}\right)^{t}=\eta_{0}^{2} B^{2} \lambda^{2 m-t+1} \rho_{0}^{2 t}\left(\lambda_{a}^{-1}-\lambda_{b}^{-1}\right) .
$$

But as $b \neq \pm a \bmod t$, we have $\lambda_{a}^{-1}-\lambda_{b}^{-1}=\frac{\left(\zeta^{-b}-\zeta^{-a}\right)\left(\zeta^{a+b}-1\right)}{\lambda_{a} \lambda_{b}}=\frac{\delta^{\prime}}{\lambda}$, where δ^{\prime} is a unit. We know that λ_{a}, λ_{b} and λ are real numbers and so the unit δ^{\prime} is a real unit. So there exists a real unit $\eta^{\prime}=\frac{\delta^{\prime} \cdot \eta_{0}^{2}}{\eta_{b}^{2}}$ such that

$$
\begin{equation*}
\left(\frac{\eta_{a}}{\eta_{b}}\right)^{2}\left(\rho_{a} \overline{\rho_{a}}\right)^{t}+\left(-\rho_{b} \overline{\rho_{b}}\right)^{t}=\eta^{\prime} B^{2} \lambda^{2 m-t}\left(\rho_{0}^{2}\right)^{t} \tag{8}
\end{equation*}
$$

The condition $\iota(t)=0$ implies that $\frac{\eta_{a}}{\eta_{b}}$ is a t-th power in $\mathbb{Z}[\zeta+\bar{\zeta}]$. Thus there exists $\xi \in \mathbb{Z}[\zeta+\bar{\zeta}]$ such that $\frac{\eta_{a}}{\eta_{b}}=\xi^{t}$. In fact, we know that

$$
\eta_{a} \rho_{a}^{t}=\frac{x+\zeta^{a} y}{1-\zeta^{a}}, \quad x+y=\eta_{0} B \lambda^{m-\frac{t-1}{2}} \rho_{0}^{t} \equiv 0 \bmod (1-\zeta)^{2 m-t+1}
$$

Then

$$
\eta_{a} \rho_{a}^{t}=-y+\frac{x+y}{1-\zeta^{a}} \equiv-y \bmod (1-\zeta)^{2 m-t} \equiv-y \bmod t
$$

Also $\eta_{b} \rho_{b}^{t} \equiv-y \bmod t$ and $\frac{\eta_{a}}{\eta_{b}} \equiv\left(\frac{\rho_{b}}{\rho_{a}}\right)^{t} \bmod t$. But Lemma 1.8 in [4] shows that there exists an integer l such that

$$
\frac{\eta_{a}}{\eta_{b}} \equiv l \bmod t
$$

with $\left(\frac{\rho_{b}}{\rho_{a}}\right)^{t}$ congruent to l modulo t.
By Theorem 5.36 of [4], the unit $\frac{\eta_{a}}{\eta_{b}}$ is a t-th power in $\mathbb{Z}[\zeta]$ so we have the existence of $\xi_{1} \in \mathbb{Z}[\zeta]$ such that $\frac{\eta_{a}}{\eta_{b}}=\xi_{1}^{t}$. As the unit $\frac{\eta_{a}}{\eta_{b}}$ is real, one has $\xi_{1}^{t}=\bar{\xi}_{1}{ }^{t}$. Therefore, there exists an integer g such that $\overline{\xi_{1}}=\zeta^{g} \xi_{1}$. Taking $\xi=\zeta^{g h} \xi_{1}$ where h is the inverse of $2 \bmod t$, we have

$$
\bar{\xi}=\xi, \quad \xi^{t}=\xi_{1}^{t}=\frac{\eta_{a}}{\eta_{b}},
$$

i.e., $\frac{\eta_{a}}{\eta_{b}}=\xi^{t}$, where $\xi \in \mathbb{Z}[\zeta+\bar{\zeta}]$. We put

$$
x^{\prime}=\xi^{2} \rho_{a} \overline{\rho_{a}}, \quad y^{\prime}=-\rho_{b} \overline{\rho_{b}}, \quad z^{\prime}=\rho_{0}^{2}, \quad m^{\prime}=2 m-t
$$

One can verify that $x^{\prime t}+y^{\prime t}=\eta^{\prime} B^{2} \lambda^{m^{\prime}} z^{\prime t}$. Obviously, B^{2} is prime to t and for all prime l dividing B^{2}, we have $-1 \bmod t \in\langle l \bmod t\rangle$, the subgroup of \mathbb{F}_{t}^{\times} generated by $l \bmod t$. Moreover, we have already seen that the algebraic integer ρ_{1} is not a unit in $\mathbb{Z}[\zeta]$. As $\rho_{0} \rho_{1}$ divides z in $\mathbb{Z}[\zeta]$, the number of prime ideals counted with multiplicity and dividing z^{\prime} in $\mathbb{Z}[\zeta]$ is then strictly less than that dividing z and $m^{\prime}=2 m-t \geq 2 t-t=t$. This completes the proof of the lemma.

Now let (X, Y, Z) be a solution of (1) in pairwise relatively prime non zero integers with $t \mid Z$. Let $Z=t^{v} Z_{1}$ with $t \nmid Z_{1}$. Equation (1) becomes

$$
X^{t}+Y^{t}=B t^{t v} Z_{1}^{t}
$$

Let ζ be a primitive t-th root of unity and $\lambda=(1-\zeta)(1-\bar{\zeta})$. The previous equation becomes

$$
X^{t}+Y^{t}=B \frac{t^{t v}}{\lambda^{t v \frac{t-1}{2}}} \lambda^{t v \frac{t-1}{2}} Z_{1}^{t}
$$

The quotient $\eta=\frac{t^{t v}}{\lambda^{t v \frac{t-1}{2}}}$ is a real unit in the ring $\mathbb{Z}[\zeta+\bar{\zeta}]$. Take $m=t v \frac{t-1}{2} \geq t$. We have just proved that there exist $\eta \in \mathbb{Z}[\zeta+\bar{\zeta}]^{\times}$and an integer $m \geq t$ such that

$$
\begin{equation*}
X^{t}+Y^{t}=\eta B \lambda^{m} Z_{1}^{t} \tag{9}
\end{equation*}
$$

where X, Y, λ and Z_{1} are pairwise coprime.
We can apply Lemma 4 to Equation (9). By induction, one can prove the existence of the sequence of algebraic Z_{i} such that $Z_{i+1} \mid Z_{i}$ in $\mathbb{Z}[\zeta]$ and the number of prime factors in $\mathbb{Z}[\zeta]$ is strictly decreasing. So there exists an n such that Z_{n} is a unit. But Lemma 4 indicates that each of the Z_{i} is not a unit, a contradiction which proves the theorem in the case $\iota(t)=0$.

In the other case, $\left(t, h_{t}^{+}\right)=1$ and none of the Bernoulli numbers $B_{2 n t}, n=$ $1, \ldots, \frac{t-3}{2}$ is divisible by t^{3}. In particular, with the notation of the proof of the lemma, there exists $\xi \in \mathbb{Z}[\zeta+\bar{\zeta}]$ such that $\frac{\eta_{a}}{\eta_{b}}=\xi^{t}$ (see [4], pp. 174-176). So the results of the previous lemma are valid in the second case. We conclude as before. The theorem is proved.

3. Proof of the Corollary

Let X, Y, Z be a solution in pairwise relatively prime nonzero integers of Equation (1). By the theorem, the integer Z is prime to t. Furthermore, $B \phi(B)$ is coprime to $t, B^{t-1} \neq 2^{t-1} \bmod t^{2}$ and B has a divisor r such that $r^{t-1} \neq 1 \bmod t^{2}$. So by the theorem 4.1 of [1], Equation (1) has no solution for such t and B.

4. Some Remarks on Mihăilescu's Paper

For the reader's convenience, recall "Fact 3:"

Fact 3 of $[3] \quad$ Let $\rho, \varpi \in \mathbb{Q}[\zeta]^{+}$; set

$$
\mu_{a}=\frac{\rho-\zeta^{a} \varpi}{1-\zeta^{a}}, \quad C=\frac{\rho^{t}-\varpi^{t}}{t(\rho-\varpi)}
$$

and suppose $\left(\mu_{a}, \mu_{b}\right)=1$ for $a \neq b$. If $\rho^{t}-\varpi^{t}=\beta \cdot \gamma^{t}$ and none of the prime ideals $\tau \mid \beta$ are totally split, then $\left(\beta, \mu_{a}\right)=1$ for all $a \in\{1, \ldots, t-1\}$. In particular, $\beta \mid(\rho-\varpi)$.

His method to prove this fact is the following: he supposes that we can find a prime ideal τ of β such that $\tau \mid \mu_{a}$ for some $a \in\{1, \ldots, t-1\}$. By hypothesis, none of the prime ideals of β are totally split in the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$. So there exist
$\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ such that $\sigma(\tau)=\tau$. In particular $\sigma(\tau)=\tau \mid \sigma\left(\mu_{a}\right)$. So we have $\tau \mid \mu_{a}$ and $\tau \mid \sigma\left(\mu_{a}\right)$.

Then Mihăilescu claims we have a contradiction since $\left(\mu_{a}, \mu_{b}\right)$ for all $a \neq b$. But this last argument does not follow. Indeed,

$$
\sigma\left(\mu_{a}\right)=\frac{\sigma(\rho)-\sigma\left(\zeta^{a}\right) \sigma(\varpi)}{1-\sigma\left(\zeta^{a}\right)}
$$

and this last number is not of the form μ_{b} for some $b \in\{1, \ldots, t-1\}$. Indeed, ρ and ϖ are just elements of $\mathbb{Q}[\zeta]^{+}$.

Acknowledgments I thank Professor Yuri Bilu, Florian Luca and the referee for very helpful suggestions.

References

[1] M.A. Bennett, K. Gyory, M. Mignotte, A Pintèr, Binomial Thue equations and polynomial powers. Compos. Math. 142 (2006), 1103-1121.
[2] Buhler, J. Crandall, R. Ernvall, R. Metsankyla, T. Shokrollahi, A. Irregular Primes and cyclotomic invariants to 12 million. J. Symbolic Computation, 31 (2001), 89-96.
[3] Mihăilescu Preda. On solutions of the equation $X^{n}+Y^{n}=B Z^{n}$ with $n \mid B Z$. Acta Arithmetica, 136 (2009), 1-6.
[4] Washington, L. Introduction to Cyclotomic Fields, Second Ed., Springer, Berlin, 1997.

[^0]: ${ }^{1}$ Recall that $t \nmid h_{t}^{+}$since $\iota(t)=0$

