

NOTE ON THE DIOPHANTINE EQUATION $X^t + Y^t = BZ^t$

Benjamin Dupuy Institut de Mathématiques, Université Bordeaux I benjamin.dupuy@math.u-bordeaux1.fr

Received: 3/8/10, Accepted: 12/29/10, Published: 2/4/11

Abstract

In this paper, we consider the diophantine equation $X^t + Y^t = BZ^t$ where X, Y, Z are nonzero coprime integers. We prove that this equation has no non-trivial solution with the exponent t dividing Z under certain conditions on t and B.

1. Introduction

Let t > 3 be a prime number, B be a nonzero rational integer. Consider the equation

$$X^t + Y^t = BZ^t \tag{1}$$

where X, Y, Z are coprime nonzero rational integers.

Definition 1 Let t > 3 be a prime number. We say that t is a good prime number if and only if

- its index irregularity $\iota(t)$ is equal to zero, or
- $t \nmid h_t^+$ and none of the Bernoulli numbers B_{2nt} , $n = 1, \ldots, \frac{t-3}{2}$, is divisible by t^3 .

For a prime number t with $t < 12.10^6$, it has been recently proved that none of the Bernoulli numbers B_{2nt} , $n = 1, \ldots, \frac{t-3}{2}$, is divisible by t^3 (see [2]). Furthermore, h_t^+ is prime to t for $t < 7.10^6$. In particular, every prime number $t < 7.10^6$ is a good prime number.

Recently the diophantine Equation (1) has been studied by Preda Mihăilescu in [3]. In his paper, he requires that B is such that B > 1, $(t, \phi(Rad(B))) = 1$, and the pairwise relatively prime nonzero integers X, Y, Z satisfy the condition $t^3 | BZ$ where t is a prime number such that $t \nmid h_t^+$ and none of the Bernoulli numbers B_{2nt} ,

 $n = 1, \ldots, \frac{t-3}{2}$, is divisible by t^3 . Particularly, if *B* is prime to *t*, he requires that $t^3|Z$. Unfortunately, the proof of a very fundamental fact in his proof is wrong (see Section 4 of this paper), so that Theorem 1 of [3] has not been yet proved.

As usual, we denote by ϕ the Euler function. For the following, we fix t > 3 a good prime number, and a rational integer B prime to t, such that for every prime number l dividing B, we have $-1 \mod t$ is a member of $< l \mod t >$, the subgroup of \mathbb{F}_t^{\times} generated by l mod t. For example, it is the case if for every prime number l dividing B, l mod t is not a square.

In this paper, using very similar methods to those used in [3], we prove the following theorem (with a stronger condition on B, but a much weaker condition on Z than that used by Mihăilescu).

Theorem 2 Equation (1) has no solution in pairwise relatively prime non zero integers X, Y, Z with t|Z.

In particular, using a recent result of Bennett *et al.*, we deduce the following corollary.

Corollary 3 Suppose that $B^{t-1} \neq 2^{t-1} \mod t^2$ and B has a divisor r such that $r^{t-1} \neq 1 \mod t^2$. Then Equation (1) has no solution in pairwise relatively prime nonzero integers X, Y, Z.

2. Proof of the Theorem

First, we suppose that $\iota(t) = 0$. Let us prove the following lemma.

Lemma 4 Let ζ be a primitive t-th root of unity and $\lambda = (1 - \zeta)(1 - \overline{\zeta})$. Suppose there exist algebraic integers x, y, z in the ring $\mathbb{Z}[\zeta + \overline{\zeta}]$, an integer $m \ge t$, and a unit η in $\mathbb{Z}[\zeta + \overline{\zeta}]$ such that x, y, z and λ are pairwise coprime and satisfy

$$x^t + y^t = \eta \lambda^m B z^t. \tag{2}$$

Then z is not a unit of $\mathbb{Z}[\zeta + \overline{\zeta}]$. Moreover, there exist algebraic integers x', y', z' in $\mathbb{Z}[\zeta + \overline{\zeta}]$, an integer $m' \geq t$, and a unit η' in $\mathbb{Z}[\zeta + \overline{\zeta}]$ such that x', y', z', λ and η' satisfy the same properties. The algebraic number z' divides z in $\mathbb{Z}[\zeta]$. The number of prime ideals of $\mathbb{Z}[\zeta]$ counted with multiplicity and dividing z' is strictly less than that dividing z.

Proof. Equation (2) becomes

$$(x+y)\prod_{a=1}^{t-1}\left(x+\zeta^{a}y\right)=\eta\lambda^{m}Bz^{t}.$$

By hypothesis, for every prime number l dividing B, we have $-1 \mod t \in < l \mod t >$. In particular B is prime to $\frac{x^t + y^t}{x + y}$. In fact, suppose there exists γ a prime factor of B in $\mathbb{Z}[\zeta]$ such that $\gamma | \frac{x^t + y^t}{x + y}$. Then there exist $a \in \{1, \ldots, t-1\}$ such that $\gamma | (x + \zeta^a y)$. Let l be the rational prime number under γ . Since $-1 \mod t$ is an element of the subgroup of \mathbb{F}_t^{\times} generated by $l \mod t$, we deduce that the decomposition group of γ contains the complex conjugation $j \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ that is $\gamma^j = \gamma$. In particular, $\gamma | (x + \zeta^a y)$ implies that $\gamma | (x + \zeta^{-a} y)$ since x, y are real. So $\gamma | (\zeta^a - \zeta^{-a})y$. Since γ is a prime ideal, we deduce that $\gamma | y$ or $\gamma | (\zeta^a - \zeta^{-a})$. But x and y are coprime so y is prime to γ . Since (B, p) = 1 and $\zeta^a - \zeta^{-a}$ is a generator of the only prime ideal of $\mathbb{Z}[\zeta]$ above p, we cannot have $\gamma | (\zeta^a - \zeta^{-a})$: we get a contradiction. So B and $\frac{x^t + y^t}{x + y}$ are coprime as claimed. In fact, we have proved the following result: B is prime to every factor of the form $\frac{a^t + b^t}{a + b}$ where a and b are coprime elements of $\mathbb{Z}[\zeta + \overline{\zeta}]$.

Then $B \mid (x+y)$ in $\mathbb{Z}[\zeta]$. Therefore we get

$$\frac{x+y}{B}\prod_{a=1}^{t-1} \left(x+\zeta^a y\right) = \eta \lambda^m z^t$$

Following the same method¹ as in Section 9.1 of [4], one can show that there exist real units $\eta_0, \eta_1, \ldots, \eta_{t-1} \in \mathbb{Z}[\zeta + \overline{\zeta}]^{\times}$ and algebraic integers $\rho_0 \in \mathbb{Z}[\zeta + \overline{\zeta}]$, $\rho_1, \ldots, \rho_{t-1} \in \mathbb{Z}[\zeta]$ such that

$$x + y = \eta_0 B \lambda^{m - \frac{t - 1}{2}} \rho_0^t, \quad \frac{x + \zeta^a y}{1 - \zeta^a} = \eta_a \rho_a^t, \quad a = 1, \dots, t - 1.$$
(3)

Let us show that z is not a unit. As ρ_1 divides z in $\mathbb{Z}[\zeta]$, it is thus enough to show that ρ_1 is not one. Put $\alpha = \frac{x+\zeta y}{1-\zeta}$. One has

$$\alpha = -y + \frac{x+y}{1-\zeta} \equiv -y \mod (1-\zeta)^2.$$

So $\frac{\overline{\alpha}}{\alpha} \equiv 1 \mod (1-\zeta)^2$. Suppose that ρ_1 is a unit. Then, the quotient $\frac{\overline{\rho_1}^t}{\rho_1^t}$ is a unit of modulus 1 of the ring $\mathbb{Z}[\zeta]$, thus a root of the unity of this ring by the Kronecker theorem. However, the only roots of the unity of $\mathbb{Z}[\zeta]$ are the 2*t*-th roots of the unity (see [4]). As the unit η_1 is real, thus there exists an integer *l* and $\epsilon = \pm 1$ such as $\frac{\overline{\eta_1 \cdot \rho_1}}{\eta_1 \cdot \rho_1^t} = \frac{\overline{\rho_1}^t}{\rho_1^t} = \epsilon \zeta^l$. Therefore, we have

$$\frac{\overline{\alpha}}{\alpha} = \epsilon \zeta^l.$$

As $\frac{\overline{\alpha}}{\alpha} \equiv 1 \mod (1-\zeta)^2$, we get $\epsilon \zeta^l \equiv 1 \mod (1-\zeta)^2$, so $\epsilon \zeta^l = 1$, i.e., $\frac{\overline{\alpha}}{\alpha} = 1$. So

$$\frac{x+\zeta y}{1-\zeta} = \frac{x+\overline{\zeta}y}{1-\overline{\zeta}},$$

¹Recall that $t \nmid h_t^+$ since $\iota(t) = 0$

because x and y are real numbers. From this equation, we deduce that

$$\frac{x+\zeta y}{1-\zeta} = \frac{\zeta x+y}{\zeta-1}$$
, i.e., $(x+y)(\zeta+1) = 0$.

We get a contradiction. So the algebraic integer ρ_1 (and then z) is not a unit. This completes the proof of the first part of the lemma.

Let us prove the existence of x', y', z', η' , and m'. It is just an adaptation of the computations done in Paragraph 9.1 of Chapter 9 of [4] for the second case of the Fermat equation. Here we give the main ideas. Let $a \in \{1, \ldots, p-1\}$ be a fixed integer. We take $\lambda_a = (1 - \zeta^a)(1 - \zeta^{-a})$. By (3), there exist a real unit η_a and $\rho_a \in \mathbb{Z}[\zeta]$ such that

$$\frac{x+\zeta^a y}{1-\zeta^a} = \eta_a \rho_a^t,$$

and taking the conjugates (we know that $x, y \in \mathbb{R}$), we have

$$\frac{x+\zeta^{-a}y}{1-\zeta^{-a}} = \eta_a \overline{\rho_a}^t$$

Thus

$$x + \zeta^a y = (1 - \zeta^a) \eta_a \rho_a^t, \quad x + \zeta^{-a} y = (1 - \zeta^{-a}) \eta_a \overline{\rho_a}^t.$$

Multiplying the previous equalities, we obtain

$$x^{2} + y^{2} + \left(\zeta^{a} + \zeta^{-a}\right) xy = \lambda_{a} \eta_{a}^{2} \left(\rho_{a} \overline{\rho_{a}}\right)^{t}.$$
(4)

Taking the square of $x + y = \eta_0 B \lambda^{m - \frac{t-1}{2}} \rho_0^t$ gives

$$x^{2} + y^{2} + 2xy = \eta_{0}^{2}B^{2}\lambda^{2m-t+1}\rho_{0}^{2t}.$$
(5)

The difference between equations (5), (4) and then division by λ_a gives

$$-xy = \eta_a^2 \left(\rho_a \overline{\rho_a}\right)^t - \eta_0^2 B^2 \lambda^{2m-t+1} \rho_0^{2t} \lambda_a^{-1}.$$
 (6)

As t > 3, there exists an integer $b \in \{1, \ldots, t-1\}$ such that $b \neq \pm a \mod t$. For this integer b, we get

$$-xy = \eta_b^2 \left(\rho_b \overline{\rho_b}\right)^t - \eta_0^2 B^2 \lambda^{2m-t+1} \rho_0^{2t} \lambda_b^{-1}.$$
 (7)

The difference between equations (6) and (7) gives, after simplifying,

$$\eta_a^2 \left(\rho_a \overline{\rho_a}\right)^t - \eta_b^2 \left(\rho_b \overline{\rho_b}\right)^t = \eta_0^2 B^2 \lambda^{2m-t+1} \rho_0^{2t} \left(\lambda_a^{-1} - \lambda_b^{-1}\right).$$

But as $b \neq \pm a \mod t$, we have $\lambda_a^{-1} - \lambda_b^{-1} = \frac{(\zeta^{-b} - \zeta^{-a})(\zeta^{a+b} - 1)}{\lambda_a \lambda_b} = \frac{\delta'}{\lambda}$, where δ' is a unit. We know that λ_a , λ_b and λ are real numbers and so the unit δ' is a real unit. So there exists a real unit $\eta' = \frac{\delta' \cdot \eta_a^2}{\eta_b^2}$ such that

$$\left(\frac{\eta_a}{\eta_b}\right)^2 \left(\rho_a \overline{\rho_a}\right)^t + \left(-\rho_b \overline{\rho_b}\right)^t = \eta' B^2 \lambda^{2m-t} \left(\rho_0^2\right)^t.$$
(8)

The condition $\iota(t) = 0$ implies that $\frac{\eta_a}{\eta_b}$ is a *t*-th power in $\mathbb{Z}[\zeta + \overline{\zeta}]$. Thus there exists $\xi \in \mathbb{Z}[\zeta + \overline{\zeta}]$ such that $\frac{\eta_a}{\eta_b} = \xi^t$. In fact, we know that

$$\eta_a \rho_a^t = \frac{x + \zeta^a y}{1 - \zeta^a}, \quad x + y = \eta_0 B \lambda^{m - \frac{t - 1}{2}} \rho_0^t \equiv 0 \mod (1 - \zeta)^{2m - t + 1}.$$

Then

$$\eta_a \rho_a^t = -y + \frac{x+y}{1-\zeta^a} \equiv -y \mod (1-\zeta)^{2m-t} \equiv -y \mod t.$$

Also $\eta_b \rho_b^t \equiv -y \mod t$ and $\frac{\eta_a}{\eta_b} \equiv \left(\frac{\rho_b}{\rho_a}\right)^t \mod t$. But Lemma 1.8 in [4] shows that there exists an integer l such that

$$\frac{\eta_a}{\eta_b} \equiv l \bmod t,$$

with $\left(\frac{\rho_b}{\rho_a}\right)^t$ congruent to l modulo t.

By Theorem 5.36 of [4], the unit $\frac{\eta_a}{\eta_b}$ is a *t*-th power in $\mathbb{Z}[\zeta]$ so we have the existence of $\xi_1 \in \mathbb{Z}[\zeta]$ such that $\frac{\eta_a}{\eta_b} = \xi_1^t$. As the unit $\frac{\eta_a}{\eta_b}$ is real, one has $\xi_1^t = \overline{\xi_1}^t$. Therefore, there exists an integer *g* such that $\overline{\xi_1} = \zeta^g \xi_1$. Taking $\xi = \zeta^{gh} \xi_1$ where *h* is the inverse of 2 mod *t*, we have

$$\overline{\xi} = \xi, \quad \xi^t = \xi_1^t = \frac{\eta_a}{\eta_b},$$

i.e., $\frac{\eta_a}{\eta_b} = \xi^t$, where $\xi \in \mathbb{Z}[\zeta + \overline{\zeta}]$. We put

$$x' = \xi^2 \rho_a \overline{\rho_a}, \quad y' = -\rho_b \overline{\rho_b}, \quad z' = \rho_0^2, \quad m' = 2m - t.$$

One can verify that $x'^t + y'^t = \eta' B^2 \lambda^{m'} z'^t$. Obviously, B^2 is prime to t and for all prime l dividing B^2 , we have $-1 \mod t \in \langle l \mod t \rangle$, the subgroup of \mathbb{F}_t^{\times} generated by $l \mod t$. Moreover, we have already seen that the algebraic integer ρ_1 is not a unit in $\mathbb{Z}[\zeta]$. As $\rho_0 \rho_1$ divides z in $\mathbb{Z}[\zeta]$, the number of prime ideals counted with multiplicity and dividing z' in $\mathbb{Z}[\zeta]$ is then strictly less than that dividing zand $m' = 2m - t \geq 2t - t = t$. This completes the proof of the lemma. \Box

Now let (X, Y, Z) be a solution of (1) in pairwise relatively prime non zero integers with t|Z. Let $Z = t^v Z_1$ with $t \nmid Z_1$. Equation (1) becomes

$$X^t + Y^t = Bt^{tv}Z_1^t.$$

Let ζ be a primitive *t*-th root of unity and $\lambda = (1-\zeta)(1-\overline{\zeta})$. The previous equation becomes

$$X^{t} + Y^{t} = B \frac{t^{tv}}{\lambda^{tv \frac{t-1}{2}}} \lambda^{tv \frac{t-1}{2}} Z_{1}^{t}.$$

INTEGERS: 11 (2011)

The quotient $\eta = \frac{t^{tv}}{\lambda^{tv}\frac{t-1}{2}}$ is a real unit in the ring $\mathbb{Z}[\zeta + \overline{\zeta}]$. Take $m = tv\frac{t-1}{2} \ge t$. We have just proved that there exist $\eta \in \mathbb{Z}[\zeta + \overline{\zeta}]^{\times}$ and an integer $m \ge t$ such that

$$X^t + Y^t = \eta B \lambda^m Z_1^t, \tag{9}$$

where X, Y, λ and Z_1 are pairwise coprime.

We can apply Lemma 4 to Equation (9). By induction, one can prove the existence of the sequence of algebraic Z_i such that $Z_{i+1}|Z_i$ in $\mathbb{Z}[\zeta]$ and the number of prime factors in $\mathbb{Z}[\zeta]$ is strictly decreasing. So there exists an n such that Z_n is a unit. But Lemma 4 indicates that each of the Z_i is not a unit, a contradiction which proves the theorem in the case $\iota(t) = 0$.

In the other case, $(t, h_t^+) = 1$ and none of the Bernoulli numbers B_{2nt} , $n = 1, \ldots, \frac{t-3}{2}$ is divisible by t^3 . In particular, with the notation of the proof of the lemma, there exists $\xi \in \mathbb{Z}[\zeta + \overline{\zeta}]$ such that $\frac{\eta_a}{\eta_b} = \xi^t$ (see [4], pp. 174-176). So the results of the previous lemma are valid in the second case. We conclude as before. The theorem is proved.

3. Proof of the Corollary

Let X, Y, Z be a solution in pairwise relatively prime nonzero integers of Equation (1). By the theorem, the integer Z is prime to t. Furthermore, $B\phi(B)$ is coprime to t, $B^{t-1} \neq 2^{t-1} \mod t^2$ and B has a divisor r such that $r^{t-1} \neq 1 \mod t^2$. So by the theorem 4.1 of [1], Equation (1) has no solution for such t and B.

4. Some Remarks on Mihăilescu's Paper

For the reader's convenience, recall "Fact 3:"

Fact 3 of [3] Let ρ , $\varpi \in \mathbb{Q}[\zeta]^+$; set

$$\mu_a = \frac{\rho - \zeta^a \varpi}{1 - \zeta^a}, \quad C = \frac{\rho^t - \varpi^t}{t(\rho - \varpi)},$$

and suppose $(\mu_a, \mu_b) = 1$ for $a \neq b$. If $\rho^t - \varpi^t = \beta \cdot \gamma^t$ and none of the prime ideals $\tau | \beta$ are totally split, then $(\beta, \mu_a) = 1$ for all $a \in \{1, \ldots, t-1\}$. In particular, $\beta | (\rho - \varpi)$.

His method to prove this fact is the following: he supposes that we can find a prime ideal τ of β such that $\tau | \mu_a$ for some $a \in \{1, \ldots, t-1\}$. By hypothesis, none of the prime ideals of β are totally split in the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$. So there exist

INTEGERS: 11 (2011)

 $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ such that $\sigma(\tau) = \tau$. In particular $\sigma(\tau) = \tau | \sigma(\mu_a)$. So we have $\tau | \mu_a$ and $\tau | \sigma(\mu_a)$.

Then Mihăilescu claims we have a contradiction since (μ_a, μ_b) for all $a \neq b$. But this last argument does not follow. Indeed,

$$\sigma(\mu_a) = \frac{\sigma(\rho) - \sigma(\zeta^a)\sigma(\varpi)}{1 - \sigma(\zeta^a)}$$

and this last number is not of the form μ_b for some $b \in \{1, \ldots, t-1\}$. Indeed, ρ and ϖ are just elements of $\mathbb{Q}[\zeta]^+$.

Acknowledgments I thank Professor Yuri Bilu, Florian Luca and the referee for very helpful suggestions.

References

- M.A. Bennett, K. Gyory, M. Mignotte, A Pintèr, Binomial Thue equations and polynomial powers. Compos. Math. 142 (2006), 1103-1121.
- [2] Buhler, J. Crandall, R. Ernvall, R. Metsankyla, T. Shokrollahi, A. Irregular Primes and cyclotomic invariants to 12 million. J. Symbolic Computation, **31** (2001), 89-96.
- [3] Mihăilescu Preda. On solutions of the equation $X^n + Y^n = BZ^n$ with n|BZ. Acta Arithmetica, **136** (2009), 1-6.
- [4] Washington, L. Introduction to Cyclotomic Fields, Second Ed., Springer, Berlin, 1997.