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Abstract
Let gj denote the largest integer that is represented exactly j times as a non-negative
integer linear combination of {x1, . . . , xn}. We show that for any k > 0, and n = 5,
the quantity g0−gk is unbounded. Furthermore, we provide examples with g0 > gk

for n ≥ 6 and g0 > g1 for n ≥ 4.

1. Introduction

Let X ={x1, x2, . . . , xn} be a set of distinct positive integers with gcd(x1, x2, . . . , xn)
= 1. The Frobenius number g(x1, x2, . . . , xn) is defined to be the largest integer that
cannot be expressed as a non-negative integer linear combination of the elements of
X. For example, g(6, 9, 20) = 43.

The Frobenius number — the name comes from the fact that Frobenius men-
tioned it in his lectures, although he apparently never wrote about it — is the
subject of a huge literature, which is admirably summarized in the book of Ramı́rez
Alfonśın [5].

Recently, Brown et al. [2] considered a generalization of the Frobenius number,
defined as follows: gj(x1, x2, . . . , xn) is largest integer having exactly j represen-
tations as a non-negative integer linear combination of x1, x2, . . . , xn. (If no such
integer exists, Brown et al. defined gj to be 0, but for our purposes, it seems
more reasonable to leave it undefined.) Thus g0 is just g, the ordinary Frobe-
nius number. They observed that, for a fixed n-tuple (x1, x2, . . . , xn), the function
gj(x1, x2, . . . , xn) need not be increasing (considered as a function of j). For exam-
ple, they gave the example g35(4, 7, 19) = 181 while g36(4, 7, 19) = 180. They asked
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if there are examples for which g1 < g0. Although they did not say so, it makes
sense to impose the condition that

no xi can be written as a non-negative integer linear
combination of the others, (∗)

for otherwise we have trivial examples such as g0(4, 5, 8, 10) = 11 and g1(4, 5, 8, 10) =
9. We call a tuple satisfying (∗) a reasonable tuple.

In this note we show that the answer to the question of Brown et al. is “yes,” even
for reasonable tuples. For example, it is easy to verify that g0(8, 9, 11, 14, 15) = 21,
while g1(8, 9, 11, 14, 15) = 20. But we prove much more: we show that

g0(2n− 2, 2n− 1, 2n, 3n− 3, 3n) = n2 −O(n),

while for any fixed k ≥ 1 we have gk(2n−2, 2n−1, 2n, 3n−3, 3n) = O(n). It follows
that for this parameterized 5-tuple and all k ≥ 1, we have g0 − gk →∞ as n →∞.

For other recent work on the generalized Frobenius number, see [1, 3, 4].

2. The Main Result

We define Xn = {2n − 2, 2n − 1, 2n, 3n − 3, 3n}. It is easy to see that this is a
reasonable 5-tuple for n ≥ 5. If we can write t as a non-negative linear combination
of the elements of Xn, we say t has a representation or is representable.

We define R(j) to be the number of distinct representations of j as a non-negative
integer linear combination of the elements of Xn.

Theorem 1 (a) gk(Xn) = (6k + 3)n− 1 for n > 6k + 3, k ≥ 1.

(b) g0(Xn) = n2 − 3n + 1 for n ≥ 6;

Before we prove Theorem 1, we need some lemmas.

Lemma 2 (a) R((6k + 3)n− 1) ≥ k for n ≥ 4 and k ≥ 1.

(b) R((6k + 3)n− 1) = k for n > 6k + 3 and k ≥ 1.

Proof. First, we note that

(6k + 3)n− 1 = 1 · (2n− 1) + (3t− 1) · (2n) + (2(k − t) + 1) · (3n) (1)

for any integer t with 1 ≤ t ≤ k. This provides at least k distinct representations
for (6k + 3)n− 1 and proves (a). We call these k representations special.

To prove (b), we need to see that the k special representations given by (1) are,
in fact, all representations that can occur.
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Suppose that (a, b, c, d, e) is a 5-tuple of non-negative integers such that

a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n) = (6k + 3)n− 1. (2)

Reducing this equation modulo n, we get −2a− b− 3d ≡ −1 (mod n). Hence there
exists an integer m such that 2a + b + 3d = mn + 1. Clearly m is non-negative.
There are two cases to consider: m = 0 and m ≥ 1.

If m = 0, then 2a + b + 3d = 1, which, by the non-negativity of the coefficients
a, b, d implies that a = d = 0 and b = 1. Thus by (2) we get 2n− 1 + 2cn + 3en =
(6k + 3)n− 1, or

2c + 3e = 6k + 1. (3)

Taking both sides modulo 2, we see that e ≡ 1 (mod 2), while taking both sides
modulo 3, we see that c ≡ 2 (mod 3). Thus we can write e = 2r + 1, c = 3s − 1,
and substitute in (3) to get k = r + s. Since s ≥ 1, it follows that 0 ≤ r ≤ k − 1,
and this gives our set of k special representations in (1).

If m ≥ 1, then n+1 ≤ mn+1 = 2a+ b+3d, so n ≤ 2a+ b+3d−1. However, we
know that (6k + 3)n− 1 ≥ a(2n− 2) + b(2n− 1) + d(3n− 3) > (n− 1)(2a + b + 3d).
Hence (6k+3)n > (n−1)(2a+b+3d)+1 > (n−1)(2a+b+3d−1) ≥ (n−1)n. Thus
6k + 3 > n− 1. It follows that if n > 6k + 3, then this case cannot occur, so all the
representations of (6k + 3)n− 1 are accounted for by the k special representations
given in (1). !

We are now ready to prove Theorem 1 (a).

Proof. We already know from Lemma 2 that for n > 6k + 3, the number N :=
(6k + 3)n − 1 has exactly k representations. It now suffices to show that if t has
exactly k representations, for k ≥ 1, then t ≤ N .

We do this by assuming t has at least one representation, say t = a(2n−2)+b(2n−
1)+c(2n)+d(3n−3)+e(3n), for some 5-tuple of non-negative integers (a, b, c, d, e).
Assuming these integers are large enough (it suffices to assume a, b, c, d, e ≥ 3), we
may take advantage of the internal symmetries of Xn to obtain additional repre-
sentations with the following swaps.

(a) 3(2n) = 2(3n); hence

a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n)

= a(2n− 2) + b(2n− 1) + (c + 3)(2n) + d(3n− 3) + (e− 2)(3n).

(b) 3(2n− 2) = 2(3n− 3); hence

a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n)

= (a + 3)(2n− 2) + b(2n− 1) + c(2n) + (d− 2)(3n− 3) + e(3n).
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(c) 2n− 2 + 2n = 2(2n− 1); hence

a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n)

= (a + 1)(2n− 2) + (b− 2)(2n− 1) + (c + 1)(2n) + d(3n− 3) + e(3n).

(d) 2n− 2 + 2n− 1 + 2n = 3n− 3 + 3n; hence

a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n)

= (a+1)(2n− 2)+ (b+1)(2n− 1)+ (c+1)(2n)+ (d− 1)(3n− 3)+ (e− 1)(3n).

We now do two things for each possible swap: first, we show that the requirement
that t have exactly k representations imposes upper bounds on the size of the coef-
ficients. Second, we swap until we have a representation which can be conveniently
bounded in terms of k.

(a) If ( e
2) + ( c

3) ≥ k, we can find at least k + 1 representations of t. Thus we can
find a representation of t with c ≤ 2 and e ≤ 2k − 1.

(b) Similarly, if (d
2)+ (

a
3 ) ≥ k, we can find at least k +1 representations of t. Thus

we can find a representation of t with d ≤ 2k − 1 and a ≤ 2. Combining this
with (a), we can find a representation with a, c ≤ 2 and d + e ≤ 2k − 1.

(c) If ( b
2) + min{a, c} ≥ k, we can find at least k + 1 representations of t. Thus

we can find a representation of t with |b−min{a, c}| ≤ 1. If we start with the
assumption a, c ≤ 2, this ensures that min{a, b, c} ≤ (a+b+c

3 ) ≤ min{a, b, c}+ 1
and max{a, b, c}−min{a, b, c} ≤ 3.

(d) If min{a, b, c} + min{d, e} ≥ k we can find at least k + 1 representations of t.
When this swap is followed by (a) or (b) (if necessary) we can find a represen-
tation with d + e ≤ 2k − 1, a + b + c ≤ 3 and a, c ≤ 2.

Putting this all together, we see that t ≤ (2n − 1) + 2(2n) + (2k − 1)(3n) =
(6k + 3)n− 1, as desired. !

In order to prove Theorem 1 (b), we need a lemma.

Lemma 3 The integers k(n − 1), k(n − 1) + 1, . . . , kn are representable for k = 2
and k ≥ 4 and for n ≥ 4.

Proof. We prove the result by induction on k. The base cases are k = 2, 4, and we
have the representations given below:



INTEGERS: 11 (2011) 5

4n− 4 = 2(2n− 2)
4n− 3 = (2n− 2) + (2n− 1)
4n− 2 = 2(2n− 1)
4n− 1 = (2n− 1) + (2n)

4n = 2(2n).

Now suppose ln−m is representable for 4 ≤ l < k and 0 ≤ m ≤ l. We want to
show that kn − t is representable for 0 ≤ t ≤ k. There are three cases, depending
on k (mod 3).

If k ≡ 0 (mod 3), and k ≥ 4, then (k − 2)n− t = kn− t− 2n is representable if
t ≤ k− 2; otherwise (k− 2)n− t+2 = kn− t− (2n− 2) is representable. By adding
2n or 2n + 2, respectively, we get a representation for kn− t.

If k ≡ 1 (mod 3), and k ≥ 4, or if k ≡ 2 (mod 3), then (k− 3)n− t = kn− t− 3n
is representable if t ≤ k − 3; otherwise (k − 3)n − t + 3 = kn − t − (3n − 3) is
representable. By adding 3n or 3n + 3, respectively, we get a representation for
kn− t. !

Now we prove Theorem 1 (b).
Proof. First, let’s show that every integer > n2−3n+1 is representable. Since if

t has a representation, so does t+2n−2, it suffices to show that the 2n−2 numbers
n2 − 3n + 2, n2 − 3n + 3, . . . , n2 − n− 1 are representable.

We use Lemma 3 with k = n − 2 to see that the numbers (n − 2)(n − 1) =
n2−3n+2, . . . , (n−2)n = n2−2n are all representable. Now use Lemma 3 again with
k = n−1 to see that the numbers (n−1)(n−1) = n2−2n+1, . . . , (n−1)n = n2−n
are all representable. We therefore conclude that every integer > n2 − 3n + 1 has a
representation.

Finally, we show that n2 − 3n + 1 does not have a representation. Suppose, to
get a contradiction, that it does:

n2 − 3n + 1 = a(2n− 2) + b(2n− 1) + c(2n) + d(3n− 3) + e(3n).

Reducing modulo n gives 1 ≡ −2a − b − 3d (mod n), so there exists an integer m
such that 2a+ b+3d = mn−1. Since a, b, d are non-negative, we must have m ≥ 1.

Now n2−3n+1 ≥ a(2n−2)+ b(2n−1)+d(3n−3) > (n−1)(2a+ b+3d). Thus

n2 − 3n + 1 ≥ (n− 1)(mn− 1) = mn2 − (m + 1)n + 1. (4)

If m = 1, we get n2 − 3n + 1 ≥ n2 − 2n + 1, a contradiction. Hence m ≥ 2. From
(4) we get (m− 1)n2 − (m− 2)n ≤ 0. Since n ≥ 1, we get (m− 1)n− (m− 2) ≤ 0,
a contradiction. !
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3. Additional Remarks

One might object to our examples because the numbers are not pairwise relatively
prime. But there also exist reasonable 5-tuples with g0 > g1 for which all pairs are
relatively prime: for example, g0(9, 10, 11, 13, 17) = 25, but g1(9, 10, 11, 13, 17) = 24.
More generally one can use the techniques in this paper to show that

g0(10n− 1, 15n− 1, 20n− 1, 25n, 30n− 1) = 50n2 − 1

and
g1(10n− 1, 15n− 1, 20n− 1, 25n, 30n− 1) = 50n2 − 5n

for n ≥ 1, so that g0 − g1 →∞ as n →∞.
For k ≥ 2, let f(k) be the least non-negative integer i such that there exists

a reasonable k-tuple X with gi(X) > gi+1(X). A priori f(k) may not exist. For
example, if k = 2, then we have gi(x1, x2) = (i + 1)x1x2 − x1 − x2, so gi(x1, x2) <
gi+1(x1, x2) for all i. Thus f(2) does not exist. In this paper, we have shown that
f(5) = 0.

This raises the obvious question of other values of f .

Theorem 4 We have f(i) = 0 for i ≥ 4.

Proof. As mentioned in the Introduction, the example (8, 9, 11, 14, 15) shows that
f(5) = 0.

For i = 4, we have the example g0(24, 26, 36, 39) = 181 and g1(24, 26, 36, 39) =
175, so f(4) = 0. (This is the reasonable quadruple with g0 > g1 that minimizes
the largest element.)

We now provide a class of examples for i ≥ 6. For n ≥ 6 define Xn as follows:

Xn = (n + 1, n + 4, n + 5, [n + 7..2n + 1], 2n + 3, 2n + 4),

where by [a..b] we mean the list a, a + 1, a + 2, . . . , b.
For example, X8 = (9, 12, 13, 15, 16, 17, 19, 20). Note that Xn is of cardinality n.

We make the following three claims for n ≥ 6.

(a) Xn is reasonable.

(b) g0(Xn) = 2n + 7.

(c) g1(Xn) = 2n + 6.

(a): To see that Xn is reasonable, assume that some element x is in the N-span
of the other elements. Then either x = ky for some k ≥ 2, where y is the smallest
element of Xn, or x ≥ y + z, where y, z are the two smallest elements of Xn. It is
easy to see both of these lead to contradictions.
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(b) and (c): Clearly 2n + 7 is not representable, and 2n + 6 has the single
representation (n+1)+(n+5). It now suffices to show that every integer ≥ 2n+8
has at least two representations. And to show this, it suffices to show that all
integers in the range [2n + 8..3n + 8] have at least two representations.

Choosing (n + 4) + [n + 7..2n + 1] and (n + 5) + [n + 7..2n + 1] gives two distinct
representations for all numbers in the interval [2n + 12..3n + 5]. So it suffices to
handle the remaining cases 2n + 8, 2n + 9, 2n + 10, 2n + 11, 3n + 6, 3n + 7, 3n + 8.
This is done as follows:

2n + 8 = (n + 1) + (n + 7) = 2(n + 4)

2n + 9 = (n + 4) + (n + 5) =

{
3(n + 1), if n = 6;
(n + 1) + (n + 8), if n ≥ 7.

2n + 10 = 2(n + 5) =






(n + 1) + (2n + 3), if n = 6;
3(n + 1), if n = 7;
(n + 1) + (n + 9), if n ≥ 8.

2n + 11 = (n + 4) + (n + 7) =






(n + 1) + (2n + 4), if n = 6;
(n + 1) + (2n + 3), if n = 7;
3(n + 1), if n = 8;
(n + 1) + (n + 10), if n ≥ 9.

3n + 6 = 2(n + 1) + (n + 4) = (n + 5) + (2n + 1)
3n + 7 = 2(n + 1) + (n + 5) = (n + 4) + (2n + 3)
3n + 8 = (n + 5) + (2n + 3) = (n + 4) + (2n + 4).

!

We do not know the value of f(3). The example

g14(8, 9, 15) = 172
g15(8, 9, 15) = 169

shows that f(3) ≤ 14.

Conjecture 5 f(3) = 14.

We have checked all triples with largest element ≤ 200, but have not found any
counterexamples.
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