ON CONGRUENT NUMBERS WITH THREE PRIME FACTORS

Lindsey Reinholz
Department of Mathematics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1 V7.
reinholz@interchange.ubc.ca
Blair K. Spearman
Department of Mathematics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7.
blair.spearman@ubc.ca
Qiduan Yang
Department of Mathematics and Statistics University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7.
qiduan. yang@ubc.ca

Received: 9/7/10, Accepted: 1/12/10, Published: 3/18/11

Abstract

A method is given for constructing congruent numbers with three prime factors of the form $8 k+3$. A family of such numbers is given for which the Mordell-Weil rank of their associated elliptic curves equals 2 , the maximal rank and expected rank for a congruent number curve of this type.

1. Introduction

A positive integer n is a congruent number if it is equal to the area of a right triangle with rational sides. Equivalently, the rank of the elliptic curve

$$
\begin{equation*}
y^{2}=x\left(x^{2}-n^{2}\right) \tag{1}
\end{equation*}
$$

is positive. Otherwise n is non-congruent. We use the notation $p_{i}, q_{i}, r_{i}, \ldots$ to denote prime numbers of the form $8 k+i$. In certain cases, congruent numbers or non-congruent numbers are characterized in terms of their prime factors. For example, Monsky [5] showed that p_{5} and p_{7} are congruent numbers, while Gennochi [3] and Tunnell [8] showed that p_{3} and $p_{3} q_{3}$ are non-congruent. Kida [4] noticed that $1419=3 \cdot 11 \cdot 43$ is the only congruent number less that 4500 of the form $p_{3} q_{3} r_{3}$ and that quite often a 2 -descent shows that a number of the form $p_{3} q_{3} r_{3}$ is
non-congruent. Other congruent numbers $p_{3} q_{3} r_{3}$ less than 10,000 include $4587=$ $3 \cdot 11 \cdot 139,4731=3 \cdot 19 \cdot 83,6963=3 \cdot 11 \cdot 211,7611=3 \cdot 43 \cdot 59$ and $9339=3 \cdot 11 \cdot 283$. Our main purpose in this paper is to give a family of congruent numbers $n=p_{3} q_{3} r_{3}$ for which we can prove that the Mordell-Weil rank of (1) is equal to 2 , the maximal rank for a congruent number curve of this type. It is also the expected rank according to parity conjectures on the rank as described by Dujella, Janfada and Salami in the introduction of [2]. This family is obtained by specialization of a larger family which we use to generate congruent numbers $p_{3} q_{3} r_{3}$. Both of these families are conjecturally infinite. We prove the following theorem.

Theorem 1. Suppose that the prime numbers q and r have the form

$$
\begin{aligned}
& q=3 u^{4}+3 v^{4}-2 u^{2} v^{2} \\
& r=3 u^{4}+3 v^{4}+2 u^{2} v^{2}
\end{aligned}
$$

for nonzero integers u and v. Set $n=3 q r$. Then $q \equiv r \equiv 3(\bmod 8)$, n is a congruent number and the congruent number elliptic curve given by (1) has rank equal to 2.

In Section 2, we give our method of construction for congruent numbers $p_{3} q_{3} r_{3}$, and give the background material necessary for the proof of our theorem. In Section 3 , we discuss the generation of $p_{3} q_{3} r_{3}$ congruent numbers and give the proof of our theorem.

2. Preliminary Results

Since the definition of a congruent integer can be immediately extended to rational numbers we can give the following lemma.

Lemma 2. Let v be a rational number with $v \notin(-\infty-1] \cup[0,1]$. Then

$$
\begin{equation*}
v(v-1)(v+1) \tag{2}
\end{equation*}
$$

is a congruent number.
Proof. The restriction on v ensures that it is positive. If v is an integer, the congruent number $v(v-1)(v+1)$ is a special case of a formula in [1]. It is sufficient to note that if $n=v(v-1)(v+1)$ is a rational number then the congruent number curve (1) has the non-torsion point

$$
(x, y)=\left(\frac{\left(1+v^{2}\right)^{2}}{4}, \frac{\left(v^{2}+1\right)\left(v^{2}+2 v-1\right)\left(v^{2}-2 v-1\right)}{8}\right)
$$

Lemma 3. Suppose that the prime numbers p_{3}, q_{3}, and r_{3} satisfy

$$
\begin{aligned}
& q_{3}=p_{3} a^{2}-16 b^{2} \\
& r_{3}=p_{3} a^{2}+16 b^{2}
\end{aligned}
$$

for integers a and b. Then $n=p_{3} q_{3} r_{3}$ is a congruent number.
Proof. Put $v=p_{3} a^{2} / 16 b^{2}$ in (2) to give the congruent number

$$
\begin{equation*}
p_{3} a^{2} / 16 b^{2}\left(p_{3} a^{2} / 16 b^{2}-1\right)\left(p_{3} a^{2} / 16 b^{2}+1\right) \tag{3}
\end{equation*}
$$

This number is positive if we impose the restrictions stated in Lemma 1. Since congruent numbers scaled by squares are still congruent, we multiply by $2^{12} b^{6} / a^{2}$ to obtain the stated congruent number $p_{3} q_{3} r_{3}$.

Lemma 4. If

$$
\begin{equation*}
n=3\left(3+3 z^{4}-2 z^{2}\right)\left(3+3 z^{4}+2 z^{2}\right) \tag{4}
\end{equation*}
$$

for a rational number $z \neq 0, \pm 1$ then the rank of the congruent number curve (1) is at least 2 with at most finitely many exceptions.

Proof. This formula for n is obtained from the congruent number formula in Lemma 1 where we set

$$
v=\frac{3 z^{4}-2 z^{2}+3}{4 z^{2}}
$$

noting that $z \neq 0, \pm 1$ implies that $v>1$. Then we scale to remove squares. For this value of n, the congruent number curve (1) over $\mathbb{Q}(z)$ possesses the two points

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)=\left(-9\left(3+3 z^{4}-2 z^{2}\right)\left(z^{2}-1\right)^{2}, 36\left(3+3 z^{4}-2 z^{2}\right)^{2} z\left(z^{2}-1\right)\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\left(x_{2}, y_{2}\right)= & \left(\frac{3\left(3+3 z^{4}+2 z^{2}\right)^{2}\left(3+3 z^{4}-2 z^{2}\right)}{4 z^{2}}\right. \\
& \left.\frac{9\left(3+3 z^{4}-2 z^{2}\right)^{2}\left(3+3 z^{4}+2 z^{2}\right)^{2}\left(z^{2}+1\right)}{8 z^{3}}\right) \tag{6}
\end{align*}
$$

If $z=2$, then our formula (4) yields the congruent number $n=7611=3 \cdot 43 \cdot 59$ while (5) and (6) give two points on $y^{2}=x\left(x^{2}-7611^{2}\right)$, namely

$$
\left(x_{1}, y_{1}\right)=(-3483,399384)
$$

and

$$
\left(x_{2}, y_{2}\right)=\left(\frac{449049}{16}, \frac{289636605}{64}\right)
$$

Magma confirms that these two non-torsion points are independent in the group of rational points on $y^{2}=x\left(x^{2}-7611^{2}\right)$. By Silverman's specialization theorem [7], the points (5) and (6) are independent over $\mathbb{Q}(z)$ and are therefore independent for all rational values of z with at most finitely many exceptions.

Remark 5. Under the further restriction that $3+3 z^{4}-2 z^{2}=p_{3} c^{2}$ and $3+3 z^{4}+$ $2 z^{2}=q_{3} d^{2}$ for distinct primes p_{3} and q_{3} different from 3, and rational numbers, z, c, and d, then a longer argument using a 2 -descent would show that the points (5) and (6) are always independent. This statement applies to our main theorem.

In order to bound the rank $r(n)$ of the congruent curves in our theorem, we need Monsky's formula for $s(n)$, the 2-Selmer rank [2], [5]. The quantity $s(n)$ is an upper bound for $r(n)$. Let n be a squarefree positive integer with odd prime factors $P_{1}, P_{2}, \ldots, P_{t}$. We define diagonal $t \times t$ matrices $D_{l}=\left(d_{i}\right)$ for $l \in\{-2,-1,2\}$, and the square $t \times t$ matrix $A=\left(a_{i j}\right)$ by

$$
\begin{aligned}
d_{i} & = \begin{cases}0, & \text { if }\left(\frac{l}{P_{i}}\right)=1, \\
1, & \text { if }\left(\frac{l}{P_{i}}\right)=-1,\end{cases} \\
a_{i j} & =\left\{\begin{array}{ll}
0, & \text { if }\left(\frac{P_{j}}{P_{i}}\right)=1, j \neq i, \\
1, & \text { if }\left(\frac{P_{j}}{P_{i}}\right)=-1, j \neq i,
\end{array} \quad a_{i i}=\sum_{j: j \neq i} a_{i j} .\right.
\end{aligned}
$$

Then

$$
s(n)= \begin{cases}2 t-\operatorname{rank}_{\mathbb{F}_{2}}\left(M_{o}\right), & \text { if } n=P_{1} P_{2} \cdots P_{t} \tag{7}\\ 2 t-\operatorname{rank}_{\mathbb{F}_{2}}\left(M_{e}\right), & \text { if } n=2 P_{1} P_{2} \cdots P_{t}\end{cases}
$$

where M_{o} and M_{e} are the $2 t \times 2 t$ matrices:

$$
M_{o}=\left[\begin{array}{c|c}
A+D_{2} & D_{2} \tag{8}\\
\hline D_{2} & A+D_{-2}
\end{array}\right], \quad M_{e}=\left[\begin{array}{c|c}
D_{2} & A+D_{2} \\
\hline A^{T}+D_{2} & D_{-1}
\end{array}\right] .
$$

Lemma 6. If $n=p_{3} q_{3} r_{3}$ then $s(n) \leq 2$.
Proof. We calculate $s(n)$ using formulas (7) and (8) with $P_{1}=p_{3}, P_{2}=q_{3}$ and $P_{3}=r_{3}$ for all possible choices of values of the Legendre symbols $\left(\frac{p_{3}}{q_{3}}\right),\left(\frac{p_{3}}{r_{3}}\right)$ and $\left(\frac{q_{3}}{r_{3}}\right)$. For example if

$$
\left(\frac{p_{3}}{q_{3}}\right)=+1,\left(\frac{p_{3}}{r_{3}}\right)=-1 \text { and }\left(\frac{q_{3}}{r_{3}}\right)=+1
$$

then M_{o} is given by

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Its rank over \mathbb{F}_{2} is equal to 4 so that (7) gives $s(n)=2$. We record the results for all 8 cases in the following table.

$$
\text { Values of } s(n)
$$

$\left(\frac{p_{3}}{q_{3}}\right)$	$\left(\frac{p_{3}}{r_{3}}\right)$	$\left(\frac{q_{3}}{r_{3}}\right)$	$s(n)$
+1	+1	+1	0
+1	+1	-1	0
+1	-1	+1	2
+1	-1	-1	0
-1	+1	+1	0
-1	+1	-1	2
-1	-1	+1	0
-1	-1	-1	0

Remark 7. In the proof of Lemma 4, the six cases where $s(n)=0$ are related by permutation of the primes p_{3}, q_{3} and r_{3}. The cases where $s(n)=2$ are similarly related.

3. Generating Congruent Numbers $p_{3} q_{3} r_{3}$ and Proof of Theorem

We recall Schinzel's hypothesis H [6], which states if a finite product $Q(x)=$ $\prod_{i=1}^{m} f_{i}(x)$ of polynomials $f_{i}(x) \in \mathbb{Z}[x]$ has no fixed divisors, then all of the $f_{i}(x)$ will be simultaneously prime, for infinitely many integral values of x. From this hypothesis we deduce that for any fixed prime p_{3} the two forms

$$
\begin{equation*}
p_{3} a^{2}-16 b^{2} \quad \text { and } \quad p_{3} a^{2}+16 b^{2} \tag{9}
\end{equation*}
$$

will assume prime values infinitely often. In order to obtain q_{3}, r_{3} prime numbers from these two forms, we must have a odd. By Lemma 2 the number $n=p_{3} q_{3} r_{3}$ will be congruent. All of the examples of congruent numbers mentioned in the introduction have $p_{3}=3$, but we can generate examples for any fixed prime p_{3} using (9). For example if $p_{3}=43$ then using (9) with $a=9$ and $b=1$ yields the value

$$
n=p_{3} q_{3} r_{3}=43 \cdot 3467 \cdot 3499
$$

which by Lemma 2 is a congruent number. Now we give the proof of our theorem.

Proof. If the formulas for q and r given in our theorem assume prime values, then u and v must have opposite parity from which it follows that $p \equiv q \equiv 3(\bmod 8)$. From Lemma 3, the congruent number curve

$$
y^{2}=x\left(x^{2}-n^{2}\right)
$$

with $n=3\left(3+3 z^{4}-2 z^{2}\right)\left(3+3 z^{4}+2 z^{2}\right)$ has rank at least 2 for all but finitely many values of the rational number z. Hence, setting $z=u / v$ and scaling by v^{8} shows that $n=3 q r$ is a congruent number. By the remark just after Lemma 3, the curve (1) with $n=3 q r$ has rank at least 2 . However Lemma 4 shows that $s(n) \leq 2$, and since the rank is bounded above by $s(n)$ the rank is at most 2 . Thus the rank equals 2 and the theorem is proved.

Example 8. A few smaller congruent numbers whose associated congruent number curves have rank 2 and which are generated by the formulas in our theorem include $7611=3 \cdot 43 \cdot 59,1021683291=3 \cdot 13219 \cdot 25763$ and $2700420027=3 \cdot 30203 \cdot 29803$.

Acknowledgements Research supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] R. Alter, The Congruent Number Problem. Amer. Math. Monthly, 87 (1) (1980), 43-45.
[2] A. Dujella, A.S. Janfada and S. Salami, A search for high rank congruent number elliptic curves. J. Integer Seq., 12 (5) (2009), Article 09.5.8.
[3] A. Gennochi, Note analitche sopra tre scritti. Annali di Scienze Matematische e Fisiche, 6 (1855).
[4] M. Kida, On the Rank of an Elliptic Curve in Elementary 2-extensions. Proc. Japan. Acad., 69 (10) (1993), 422-425.
[5] P. Monsky, Mock Heegner points and congruent numbers. Math. Z., 204 (1) (1990), 45-68.
[6] A. Schinzel and W. Sierpiński, Sur certain hypothèses concernant les nombres premiers. Acta Arith., 4 (1958), 185-208.
[7] J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. 106, Springer, New York (1986).
[8] J.B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2. Invent. Math., 72 (2) (1983), 323-334.

