

NORMALITY, PROJECTIVE NORMALITY AND EGZ THEOREM

S. S. Kannan

Chennai Mathematical Institute, Plot No-H1, SIPCOT IT Park, Padur Post, Tamilnadu, India kannan@cmi.ac.in

S. K. Pattanayak

Chennai Mathematical Institute, Plot No-H1, SIPCOT IT Park, Padur Post, Tamilnadu, India santosh@cmi.ac.in

Received: 5/18/09, Revised: 1/6/11, Accepted: 2/20/11, Published: 5/6/11

Abstract

In this note, we prove that the projective normality of $(\mathbb{P}(V)/G, \mathcal{L})$, the celebrated theorem of Erdős-Ginzburg-Ziv and normality of an affine semigroup are all equivalent, where V is a finite dimensional representation of a finite cyclic group G over \mathbb{C} and \mathcal{L} is the descent of the line bundle $\mathcal{O}(1)^{\otimes |G|}$.

1. Introduction

Let V be a finite dimensional representation of a finite cyclic group G over the field of complex numbers \mathbb{C} . Let \mathcal{L} denote the descent of the line bundle $\mathcal{O}(1)^{\otimes |G|}$ to the GIT quotient $\mathbb{P}(V)/G$. In [4], it is shown that $(\mathbb{P}(V)/G, \mathcal{L})$ is projectively normal. Proof of this uses the well known arithmetic result due to Erdős-Ginzburg-Ziv (see [2]).

In this note, we prove that the projective normality of $(\mathbb{P}(V)/G, \mathcal{L})$, the Erdős-Ginzburg-Ziv theorem and normality of an affine semigroup are all equivalent.

2. Preliminaries

Normality of a Semigroup: An affine semigroup M is a finitely generated subsemigroup of \mathbb{Z}^n containing 0 for some n. Let N be the subgroup of \mathbb{Z}^n generated by M. Then, M is called normal if it satisfies the following condition: if $kx \in M$ for some $x \in N$ and $k \in \mathbb{N}$, then $x \in M$. For an affine semigroup M and a field K we can form the affine semigroup algebra K[M] in the following way: as a K-vector space, K[M] has a basis consisting of the symbols X^a , $a \in M$, and the multiplication on K[M] is defined by the K-bilinear extension of $X^a.X^b = X^{a+b}$.

We recall the following theorem from page 141, theorem 4.40 of [1].

Theorem 1. Let M be an affine semigroup, and K be a field. Then M is normal if and only if K[M] is normal, i.e., it is integrally closed in its field of fractions.

Projective Normality: A polarized variety (X, \mathcal{L}) where \mathcal{L} is a very ample line bundle is said to be projectively normal if its homogeneous coordinate ring $\bigoplus_{n \in \mathbb{Z}_{\geq 0}} H^0(X, \mathcal{L}^{\otimes n})$ is integrally closed and is generated as a \mathbb{C} -algebra by $H^0(X, \mathcal{L})$ (see Exercise 5.14, Chapter II, Hartshorne [3]).

3. Main Theorem

In this section we will prove our main theorem.

Theorem 2. The following are equivalent

1. Erdős-Ginzburg-Ziv theorem: Let $(a_1, a_2, \dots, a_m), m \ge 2n - 1$ be a sequence of elements of $\mathbb{Z}/n\mathbb{Z}$. Then there exists a subsequence $(a_{i_1}, a_{i_2}, \dots, a_{i_n})$ of length n whose sum is zero.

2. Let G be a cyclic group of order n and V be any finite dimensional representation of G over \mathbb{C} . Let \mathcal{L} be the descent of $\mathcal{O}(1)^{\otimes n}$. Then $(\mathbb{P}(V)/G, \mathcal{L})$ is projectively normal.

2'. Let G be a cyclic group of order n and V be the regular representation of G over \mathbb{C} . Let \mathcal{L} be the descent of $\mathcal{O}(1)^{\otimes n}$. Then $(\mathbb{P}(V)/G, \mathcal{L})$ is projectively normal.

3. The sub-semigroup M of \mathbb{Z}^n generated by the set $S = \{(m_0, m_1, \cdots, m_{n-1}) \in (\mathbb{Z}_{\geq 0})^n : \sum_{i=0}^{n-1} m_i = n \text{ and } \sum_{i=0}^{n-1} im_i \equiv 0 \mod n\}$ is normal.

Proof. We first prove (1), (2), and (2') are equivalent.

 $(1) \Rightarrow (2)$: This follows from the arguments given in page 2, paragraph 6 of [4].

 $(2) \Rightarrow (2')$: This is straightforward.

 $(2') \Rightarrow (1)$: Let $G = \mathbb{Z}/n\mathbb{Z} = \langle g \rangle$ and let V be the regular representation of G over \mathbb{C} . Let ξ be a primitive *n*th root of unity. Let $\{X_i : i = 0, 1, \dots, n-1\}$ be a basis of V^* given by:

$$g.X_i = \xi^i X_i$$
, for every $i = 0, 1, \dots, n-1$.

By assumption the algebra $\bigoplus_{d \in \mathbb{Z}_{>0}} (Sym^{dn}V^*)^G$ is generated by $(Sym^nV^*)^G$ (*)

Let $(a_1, a_2, \dots, a_m), m \ge 2n - 1$ be a sequence of elements of G. Consider the subsequence $(a_1, a_2, \dots, a_{2n-1})$ of length 2n - 1.

INTEGERS 11 (2011)

Take $a = -(\sum_{i=1}^{2n-1} a_i)$. Then $(\prod_{i=1}^{2n-1} X_{a_i}) X_a$ is a *G*-invariant monomial of degree 2n, i.e., $(\prod_{i=1}^{2n-1} X_{a_i}) X_a \in (Sym^{2n}V^*)^G$.

By (*), there exists a subsequence $(a_{i_1}, a_{i_2}, \dots, a_{i_n})$ of $(a_1, a_2, \dots, a_{2n-1}, a)$ of length n such that $\prod_{j=1}^n X_{a_{i_j}}$ is *G*-invariant. So, $\sum_{j=1}^n a_{i_j} = 0$. Thus, we have the implication.

We now prove $(1) \Rightarrow (3)$ and $(3) \Rightarrow (2')$, which completes the proof of the theorem.

 $(1) \Rightarrow (3)$: Let N be the subgroup of \mathbb{Z}^n generated by M. Suppose that $q(m_0, m_1, \ldots, m_{n-1}) \in M, q \in \mathbb{N}$ and $(m_0, m_1, \cdots, m_{n-1}) \in N$. We need to show that $(m_0, m_1, \ldots, m_{n-1}) \in M$.

Since $q(m_0, m_1, \dots, m_{n-1}) \in M$ we have $q.m_i \geq 0 \forall i$. Hence, $m_i \geq 0 \forall i$. Since N is the subgroup of \mathbb{Z}^n generated by M and M is the sub-semigroup of \mathbb{Z}^n generated by S, N is generated by S as a subgroup of \mathbb{Z}^n . Therefore, the tuple $(m_0, m_1, \dots, m_{n-1})$ is an integral (not necessarily non-negative) linear combination of elements of S, i.e.,

$$(m_0, m_1, \cdots, m_{n-1}) = \sum_{j=1}^p a_j(m_{0,j}, m_{1,j}, \cdots, m_{(n-1),j}),$$

where $a_j \in \mathbb{Z}$ for all $j = 1, 2, \dots, p$ and $(m_{0,j}, m_{1,j}, \dots, m_{(n-1),j}) \in S$. Therefore,

$$\sum_{i=0}^{n-1} m_i = \sum_{i=0}^{n-1} \sum_{j=1}^p a_j m_{ij} = \left(\sum_{j=1}^p a_j \left(\sum_{i=0}^{n-1} m_{i,j}\right)\right) = \left(\sum_{j=1}^p a_j\right) n = kn$$

for some $k \in \mathbb{Z}$. Moreover $k \ge 0$, since $m_i \ge 0 \ \forall i$.

If k = 1 then $\sum_{i=0}^{n-1} m_i = n$ and hence, $(m_0, m_1, \dots, m_{n-1}) \in M$. Otherwise $k \geq 2$ and consider the sequence of integers

$$\underbrace{0,\ldots,0}_{m_0 \text{ times}}, \underbrace{1,\ldots,1}_{m_1 \text{ times}}, \cdots, \underbrace{n-1,\ldots,n-1}_{m_{n-1} \text{ times}}$$

This sequence has at least 2n terms, since $\sum_{i=0}^{n-1} m_i = kn$, $k \ge 2$ and the sum of it's terms is divisible by n by the assumption that $\sum_{i=0}^{n-1} im_i \equiv 0 \mod n$. So by (1) there exists a subsequence of exactly n terms whose sum is a multiple of n, i.e., there exists $(m'_0, m'_1, \cdots, m'_{n-1}) \in \mathbb{Z}^n_{\ge 0}$ with $m'_i \le m_i$, $\forall i$ such that $\sum_{i=0}^{n-1} m'_i = n$ and $\sum_{i=0}^{n-1} im'_i$ is a multiple of n. So $(m'_0, m'_1, \cdots, m'_{n-1}) \in M$. Then, by induction $(m_0, m_1, \cdots, m_{n-1}) - (m'_0, m'_1, \cdots, m'_{n-1}) \in M$ and, hence $(m_0, m_1, \cdots, m_{n-1}) \in M$ as required.

 $(3) \Rightarrow (2')$: The polarized variety $(\mathbb{P}(V)/G, \mathcal{L})$ is $Proj(\bigoplus_{d \in \mathbb{Z}_{\geq 0}} (H^0(\mathbb{P}(V), \mathcal{O}(1)^{\otimes d|G|})^G)$ which is the same as $Proj(\bigoplus_{d \in \mathbb{Z}_{\geq 0}} (Sym^{d|G|}V^*)^G)$. Let $R := \bigoplus_{d \geq 0} R_d$; $R_d := (Sym^{dn}V^*)^G$. Fix a generator g of G and let ξ be a primitive nth root of unity.

INTEGERS 11 (2011)

Write $V^* = \bigoplus_{i=0}^{n-1} \mathbb{C}X_i$, where $\{X_i : i = 0, 1, \cdots, n-1\}$ is a basis of V^* given by: $g \cdot X_i = \xi^i X_i$, for every $i = 0, 1, \cdots, n-1$.

Let R' be the \mathbb{C} -subalgebra of $\mathbb{C}[V]$ generated by $R_1 = (Sym^n V^*)^G$. We first note that $\{X_0^{m_0}.X_1^{m_1}...X_{n-1}^{m_{n-1}}: (m_0, m_1, \cdots, m_{n-1}) \in M\}$ is a \mathbb{C} -vector space basis for R'. We now define the map

 $\Phi: \mathbb{C}[M] \to R'$ by extending linearly the map

 $\Phi(X^{(m_0,m_1,\cdots,m_{n-1})}) = X_0^{m_0} \cdot X_1^{m_1} \cdots X_{n-1}^{m_{n-1}} \text{ for } (m_0,m_1,\ldots,m_{n-1}) \in M.$

Clearly Φ is a homomorphism of \mathbb{C} -algebras. Since $\{X^{(m_0,m_1,\ldots,m_{n-1})}: (m_0,m_1,\ldots,m_{n-1}) \in M\}$ is a \mathbb{C} -vector space basis for $\mathbb{C}[M]$ and $\{X_0^{m_0}.X_1^{m_1}\ldots X_{n-1}^{m_{n-1}}: (m_0,m_1,\ldots,m_{n-1}) \in M\}$ is a \mathbb{C} -vector space basis for R', Φ is an isomorphism of \mathbb{C} -algebras. Hence R' is the semigroup algebra corresponding to the affine semigroup M. Since by assumption M is a normal affine semigroup, by Theorem 1 the algebra R' is normal. Thus, by Exercise 5.14(a) of [3], the implication $(3) \Rightarrow (2')$ follows.

References

- W. Bruns, J.Gubeladze, Polytopes, Rings, and K-Theory. Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
- [2] P. Erdős, A.Ginzburg, A.Ziv, A theorem in additive number theory, Bull. Res. Council, Israel, 10 F(1961) 41-43.
- [3] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
- [4] S. S. Kannan, S.K.Pattanayak, Pranab Sardar, Projective normality of finite groups quotients. Proc. Amer. Math. Soc. 137 (2009), no. 3, pp. 863-867.
- [5] D. Mumford, J.Fogarty and F.Kirwan, Geometric Invariant theory, Springer-Verlag, 1994.