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Abstract
We reintroduce an interpretation of the kth-fold self convolution of the Catalan

numbers by showing that they count the number of words in symbols X and Y ,
where the total number of Y ’s is k more than the total number of X’s, and at no
time are there more Y ’s than k plus the number of X’s. Using this, we exhibit some
of the wide variety of combinatorial interpretations of the kth-fold self convolution
of the Catalan numbers. Finally, we show how these numbers appear as the last
column in a truncated Pascal’s triangle.

1. Introduction

The Catalan numbers, {cn}∞n=0, are well known for having a large variety of com-
binatorial interpretations. In fact Stanley has a list of 176 different interpretations
[9]. Furthermore it would seem natural that there would be a large variety of
combinatorial interpretations for the convolutions of the Catalan numbers as well.
However, these interpretations are either not well known, or have not been stated
explicitly. In fact, the literature either contains explicit formulas for the values of
these convolutions, as in [2], and [8], or contain explicit formulas for a combinatorial
interpretation of the Catalan numbers, as in [1], [5], and [8]. However, no reference
contains a proof showing the combinatorial interpretation without using the explicit
formula.

We will attempt to rectify this situation by determing a large variety of combina-
torial interpretations of the higher convolutions of the Catalan numbers. We do this
by considering the generating functions of both the combinatorial interpretation and
of the convolutions of the Catalan numbers. Furthermore, we show that the convo-
lutions of the Catalan numbers appear as the terminal column in a corresponding
truncated Pascal’s triangle. We begin with some definitions, then show some of the
combinatorial interpretations of higher convolutions of the Catalan numbers, and
finally end with the occurence of these numbers in truncated Pascal’s triangles.
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2. Definitions

We let Z≥0 denote the set of non-negative integers. We begin with the general
definition of the sequence of Catalan numbers, {cn}∞n=0.

Definition 1. For n ∈ Z≥0, the nth Catalan number, cn, is defined by

cn =
1

n + 1

(
2n
n

)
=

(2n)!
(n + 1)!n!

.

Although the above definition gives an explicit statement of cn, the Catalan
numbers are often defined in terms of a combinatorial problem. The particular in-
terpretation we will use is as the number of “proper” words in a two letter alphabet.

Let W be the set of all finite words on {X,Y }. For any w ∈W, define |w| to be
the length of w, i.e. the number of symbols that appear in w. For any 1 ≤ i ≤ |w|,
let wi represent the initial segment of w with length i. Finally, nX(w) and nY (w)
will be the number of occurences of X and Y , respectively, in w.

With this, we define

Definition 2. A word w ∈W is proper if it satisfies the following two properties:

1. For some n ∈ Z≥0, nX(w) = n, nY (w) = n,

2. For all 1 ≤ i ≤ 2n, nY (wi) ≤ nX(wi).

If W(n) is the set of proper words with length 2n, then it is well known [4] that

Proposition 3. For n ∈ Z≥0, cn = |W(n)|.

We now generalize the idea of proper words to k-proper words:

Definition 4. Let k ∈ Z≥0. A word w ∈W is k-proper if it satisfies the following
two properties:

1. For some n ∈ Z≥0, nX(w) = n, nY (w) = n + k,

2. For all 1 ≤ i ≤ 2n + k, nY (wi) ≤ nX(wi) + k.

For n ≥ 0, let W(n, k) be the set of k-proper words with length 2n + k. A result
which follows immediately from the definition is:

Proposition 5. W(n) = W(n, 0).

This directly implies that

Corollary 6. For n ∈ Z≥0, cn = |W(n, 0)|.

We will relate the number of k-proper words to self-convolutions of the Catalan
numbers. So we now define the convolution of a sequence. We choose to do this in
terms of generating functions.
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Definition 7. Given any sequence {an}∞n=0, the generating function for the se-
quence, A(z), is the formal power series

A(z) =
∞∑

n=0

anzn.

With this,

Definition 8. Given a sequence {an}∞n=0 with generating function A(x), the kth-
fold self convolution of {an}∞n=0 is the sequence which has Ak+1(x) as a generating
function. We will let a(n, k) denote the n-th term of the kth-fold self convolution
of {an}∞n=0.

We now give a few examples to illustrate the convolutions of some given se-
quences.

Example 9. Suppose {an}∞n=0 is the constant sequence of 1’s. Then the terms of
the first convolution of {an}∞n=0 can be found as follows:

A2(z) =
(
1 + z + z2 + z3 + · · ·

)
·
(
1 + z + z2 + z3 + · · ·

)

= 1 + (z + z) + (z2 + z2 + z2) + (z3 + z3 + z3 + z3) + · · ·
= 1 + 2z + 3z2 + 4z3 + · · ·

=
∞∑

n=0

(n + 1)zn.

Thus a(n, 1) = n + 1.

Example 10. Suppose {an}∞n=0 is any sequence. Then the second convolution of
{an}∞n=0 can be found as follows:

A3(z) = (a0 + a1z + a2z
2 + · · · )(a0 + a1z + a2z

2 + · · · )(a0 + a1z + a2z
2 + · · · )

= a0a0a0 + (a1a0a0 + a0a1a0 + a0a0a1)z
+(a2a0a0 + a1a1a0 + a1a0a1 + a0a2a0 + a0a1a1 + a0a0a2)z2 + · · ·

This implies that

a(0, 2) = a0a0a0,

a(1, 2) = a1a0a0 + a0a1a0 + a0a0a1,

a(2, 2) = a2a0a0 + a1a1a0 + a1a0a1 + a0a2a0 + a0a1a1 + a0a0a2.

If, in fact, we use the sequence of Catalan numbers, then

c(0, 2) = 1 · 1 · 1 = 1,
c(1, 2) = 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 = 3,
c(2, 2) = 2 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 1 + 1 · 1 · 2 = 9.
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As these examples exhibit, the terms in the kth-fold self convolution of {an}∞n=0

can be computed directly by

a(n, k) =
∑

0≤i1,i2,...,ik,ik+1≤n∑k+1
j=1 ij=n

ai1ai2 · · · aikaik+1 ,

where the summation is over all combinations of k + 1 subscripts which add to n.

3. Equality of the Sequences

We intend to show that the sequence, {|W(n, k)|}∞n=0, of k-proper words and the
sequence, {c(n, k)}∞n=0, of kth-fold self convolution of the Catalan numbers are
equal. We do this by showing that these two sequences have the same generating
function. We consider each sequence separately.

3.1. Catalan Numbers

Let C(z) =
∑∞

n=0 cnzn be the generating function of {cn}∞n=0, and thus Ck+1(z) is
the generating function of {c(n, k)}∞n=0.

It follows immediately from Segner’s recurrence relation for the Catalan numbers
[7] that the following equation holds:

C(z) = zC2(z) + 1. (1)

From this, we obtain the following equation involving higher powers of the Cata-
lan generating function:

zCk+2(z) = Ck+1(z)− Ck(z). (2)

3.2. k-Proper Words

We now consider the generating function for the number of k-proper words. Let
Wk(z) denote the generating function of {|W(n, k)|}∞n=0:

Wk(z) =
∞∑

n=k

|W(n, k)| zn.

In order to determine Wk(z) for k ≥ 0, we begin with the following lemma.

Lemma 11. For n, k ∈ Z≥0, |W(n− 1, k + 2)| = |W(n, k + 1)|− |W(n, k)|

Proof. Let w ∈ W with |w| ≥ 1. One of two possibilities can occur, we consider
each seperately.
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Suppose w = Xw′ with w′ ∈W. In this situation, |w′| = |w|− 1 and for 1 ≤ i ≤
|w′|, nX(wi+1) = nX(w′i) + 1 and nY (wi+1) = nY (w′i). Thus, if w ∈ W(n, k + 1),
then nX(w) = n, nY (w) = n + k + 1, and nY (wi) ≤ nX(wi) + k + 1. This implies
that nX(w′) = n − 1, nY (w′) = (n − 1) + k + 2, and nY (w′i) = nY (wi+1) ≤
nX(wi+1) + k + 1 = nX(w′i) + k + 2. Thus w′ ∈W(n− 1, k + 2).

Now suppose w = Y w′ with w′ ∈ W. Now, |w′| = |w| − 1 and for 1 ≤ i ≤ |w′|,
nX(wi+1) = nX(w′i) and nY (wi+1) = nY (w′i) + 1. Thus, if w ∈ W(n, k + 1), then
nX(w) = n, nY (w) = n + k + 1, and nY (wi) ≤ nX(wi) + k + 1. This implies that
nX(w′) = n, nY (w′) = n + k, and nY (w′i) = nY (wi+1) − 1 ≤ nX(wi+1) + k =
nX(w′i) + k. Thus w′ ∈W(n, k).

These two cases together imply that

|W(n, k + 1)| = |W(n− 1, k + 2)| + |W(n, k)| ,

thus proving the lemma. !

Theorem 12. For k ∈ Z≥0, zWk+2(z) = Wk+1(z)−Wk(z).

Proof. Recall that |W(0, k)| = 1 for all k ≥ 0. Thus:

zWk+2(z) =
∞∑

n=0

|W(n, k + 2)| zn+1 =
∞∑

n=1

|W(n− 1, k + 2)| zn

=
∞∑

n=1

(|W(n, k + 1)|− |W(n, k)|) zn

=
∞∑

n=1

|W(n, k + 1)| zn −
∞∑

n=1

|W(n, k)| zn

=
∞∑

n=0

|W(n, k + 1)| zn −
∞∑

n=0

|W(n, k)| zn

= Wk+1(z)−Wk(z).

!

With this, we immediately obtain the following corollary.

Corollary 13. For n, k ∈ Z≥0, c(n, k) = |W(n, k)|.

4. Combinatorial Interpretations of c(n, k).

With Corollary 13, we can now obtain a large number of combinatorial interpreta-
tions of the kth-fold self-convolution of the Catalan numbers. We begin by inter-
preting k-proper words as a particular subset of proper words.
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Theorem 14. For n ≥ 0 and k ≥ 0, c(n, k) counts the number of proper words
w ∈W(n + k) with wk = XX · · ·X.

Proof. Consider the mapping from W(n, k) to W(n + k) which takes the word
w ∈ W(n, k) to the word Xkw, where Xk denotes k copies of X. This mapping is
clearly a bijection between W(n, k) and {w ∈W(n + k) : wk = XX · · ·X}. Thus,
using Corollary 13, this set has size c(n, k). !

Example 15. We now exhibit this particular interpretation of c(n, k) by consider-
ing a few particular values of both n and k. Consider, in particular, W(4):

W(4) =

{XXXXY Y Y Y,XXXY XY Y Y,XXXY Y XY Y,XXXY Y Y XY,
XXY XXY Y Y,XXY XY XY Y,XXY XY Y XY,XXY Y XXY Y,
XXY Y XY XY,XY XXXY Y Y,XY XXY XY Y,XY XXY Y XY,
XY XY XXY Y,XY XY XY XY }.

Notice, of the 14 elements of W(4), exactly 9 of them begin with at least two X’s.

W(2, 2) = {XXY Y Y Y,XY XY Y Y,XY Y XY Y,XY Y Y XY, Y XXY Y Y,
Y XY XY Y, Y XY Y XY, Y Y XXY Y, Y Y XY XY }.

This agrees with the fact that c(2, 2) = 9.

With Theorem 14 and the standard bijections between the different combinato-
rial interpretations (many of which are exhibited in [3]), we obtain the following
combinatorial interpretations of c(n, k). (there are many more, one for each inter-
pretation of the Catalan numbers.)

Corollary 16. For n ≥ 0 and k ≥ 0, c(n, k) counts the following:

1. The number of balanced strings of n + k brackets with an initial string of at
least k left brackets.

2. The number of lattice paths consisting of either North or East steps, which do
not pass above the line y = x, which start at (k, 0) and end at (n + k, n + k).

3. The number of rooted plane trees with n + k edges whose leftmost branch has
length at least k.

4. The number of increasing functions f on [n + k] = {1, 2, . . . , n + k} where
f(i) = 1 if 1 ≤ i ≤ k.

5. The number of full binary trees with 2(n + k) edges which have only single
vertices on the left side of the first k branches.

6. The number of standard Young tableaus of size (n + k, n + k) where the first
term in the second row is greater than k.

Another immediate corollary of Theorem 14 is

Corollary 17. For n, k ∈ Z≥0, c(n, k) ≤ c(n + k).
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5. Truncating Pascal’s Triangle

In [10], Young, Taylor, and Zwicker showed that the Catalan numbers arise in the
last column when the rows of Pascal’s Triangle are truncated immediately after the
central column. We show that by changing where the rows are truncated, different
convolutions of the Catalan numbers appear in the last column.

As with many combinatorial number theory objects, Pascal’s Triangle can be
defined in many different ways. We will use the recursive definition of Pascal’s
Triangle.

Definition 18. Pascal’s Triangle, P, is defined by

P(n, r) =






0 if n < 0 or r > n,
1 if n = r = 0,

P(n− 1, r) + P(n− 1, r − 1) otherwise.

We show the terms of the first five rows of P in Figure 1. In Figure 2, we show
the values of the first six rows. We show the terms of the first six rows of P and
their values in Figure 1. We also label the columns of Pascal’s triangle starting with
labeling the central column 0. These column numbers are indicated in the figure.

P(0, 0)
P(1, 0) P(1, 1)

P(2, 0) P(2, 1) P(2, 2)
P(3, 0) P(3, 1) P(3, 2) P(3, 3)

P(4, 0) P(4, 1) P(4, 2) P(4, 3) P(4, 4)
P(5, 0) P(5, 1) P(5, 2) P(5, 3) P(5, 4) P(5, 5)

0 1 2 3 4 5

Figure 1: Pascal’s Triangle with columns labeled

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Figure 2: P
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P0 1
1 0

1 1 0
1 2 0 0

1 3 2 0 0
1 4 5 0 0 0

1 5 9 5 0 0 0

P1 1
1 1

1 2 0
1 3 2 0

1 4 5 0 0
1 5 9 5 0 0

1 6 14 14 0 0 0

Figure 3: P0 and P1

We use this recursive definition to build a collection of new triangles, each similar
to Pascal’s Triangle.

Definition 19. For any k ∈ Z≥0, the kth truncated Pascal’s Triangle, denoted Pk,
is defined by the following:

Pk(n, r) =






0 if n < 0 or r > %n
2 &+ k,

1 if n = r = 0,
Pk(n− 1, r) + Pk(n− 1, r − 1) otherwise.

From a procedural point of view, we have replaced elements of Pascal’s Triangle
with zeros after column k and have recalculated the remaining entries of the triangle
using Pascal’s Identity. Figure 3 shows P0 and P1.

In [10], Young, Taylor, and Zwicker showed that the nth term of column 1 (start-
ing with n = 0), in P1 is cn+1 = c(n, 1). In fact

Theorem 20. Let k ∈ Z≥0, the nth term (starting with n = 0) of column k in Pk

is c(n, k).

Proof. In Pascal’s Triangle, P(n, r) counts the number of paths from the point (0, 0)
to the point (n, r) consisting only of moves going either southeast or southwest.
Similarly, Pk(n, r) counts the number of paths starting at (0, 0) to (n, r) consisting
of moves going either southeast or southwest which do not go past column k. Since
the nth term of column k in Pk occurs at position (m, %m

2 &+k), where m = k +2n,
such a path will consist of n moves southwest and n + k moves to the southeast.
Furthermore, since this path does not pass column k, the number of southeast moves
never exceeds the number of southwest moves plus k. Thus, the nth term of column
k (n starting at 0) in Pk is |W(n, k)|. By Corollary 13, this is c(n, k). !

Figure 4 shows the first rows of triangle P2, with the last column highlighted, to
further show this result.



INTEGERS: 11 (2011) 9

1
1 1

1 2 1
1 3 3 0

1 4 6 3 0
1 5 10 9 0 0

1 6 15 19 9 0 0

Figure 4: P2

6. Summary

A generating function proof has been presented of a known result relating convolu-
tions of the Catalan numbers to a combinatorial interpretation regarding words in
two letters. With this proof, additional interpretations of these convolutions have
become accessible. Finally, we have shown a new way to find the Catalan numbers
and their convolutions in Pascal-like triangles.

Although explicit formulas for the Catalan numbers and their convolutions are
known [8], an explicit formula for the other terms of Pk have not been determined
for general k.
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