

SUPREMUM OF REPRESENTATION FUNCTIONS

G. Grekos Université Jean Monnet, St-Etienne, France grekosuniv-st-etienne.fr

L. Haddad 120 rue de Charonne, Paris, France labib.haddadwanadoo.fr

C. Helou¹ Pennsylvania State University, Media, Pennsylvania cxh22psu.edu

J. Pihko

Kyläkunnantie 53, Helsinki, Finland jukka.pihkohelsinki.fi

Received: 7/24/10, Accepted: 2/26/11, Published: 5/18/11

Abstract

For a subset A of $\mathbb{N} = \{0, 1, 2, ...\}$, the representation function of A is defined by $r_A(n) = |\{(a, b) \in A \times A : a + b = n\}|$, for $n \in \mathbb{N}$, where |E| denotes the cardinality of a set E. Its supremum is the element $s(A) = \sup\{r_A(n) : n \in \mathbb{N}\}$ of $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$. Interested in the question "when is $s(A) = \infty$?", we study some properties of the function $A \mapsto s(A)$, determine its range, and construct some subsets A of \mathbb{N} for which s(A) satisfies certain prescribed conditions.

1. Introduction

Let $A, B \subset \mathbb{N} = \{0, 1, 2, ...\}$. The representation function for A + B and its supremum are defined by

$$r_{A,B}(n) = |\{(a,b) \in A \times B : a+b=n\}| \ (\forall n \in \mathbb{N})$$

and

$$s(A,B) = \sup_{n \in \mathbb{N}} r_{A,B}(n) \in \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\},\$$

where |E| denotes the cardinality of a set E. In particular, for A = B, we write

$$r_A(n) = r_{A,A}(n) = |\{(a,b) \in A \times A : a+b = n\}| \ (\forall n \in \mathbb{N})$$

¹Corresponding author.

and

$$s(A) = s(A, A) = \sup_{n \in \mathbb{N}} r_A(n) \in \overline{\mathbb{N}}.$$

The power series f_A associated with A, and its square g_A , which is the generating series of the sequence $(r_A(n))$, are

$$f_A(X) = \sum_{a \in A} X^a$$
, $g_A(X) = f_A(X)^2 = \sum_{n=0}^{\infty} r_A(n) X^n$,

and s(A) is simply the supremum of the coefficients of g_A . More generally,

$$g_{A,B}(X) = f_A(X)f_B(X) = \sum_{n=0}^{\infty} r_{A,B}(n)X^n.$$

Two celebrated conjectures of Erdős and Turán are ([1]):

(ET) If A is an asymptotic additive 2-basis of \mathbb{N} , then $s(A) = \infty$, i.e.,

$$(\exists n_0 \in \mathbb{N}: r_A(n) > 0, \forall n \ge n_0) \implies s(A) = \infty.$$

A more general one is

(GET) If $A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{N}$ is an infinite subset satisfying $a_n \leq cn^2$, for a constant c > 0 and all integers $n \geq 1$, then $s(A) = \infty$.

(GET) is more general than (ET), because if A is an asymptotic basis of \mathbb{N} , then there is a constant c such that $a_n \leq cn^2$ for all $n \geq 1$ ([4]).

This raises the more general question of determining the subsets A of \mathbb{N} for which $s(A) = \infty$. This is a more restricted problem than the notoriously difficult and open one of determining all possible representation functions of bases for \mathbb{N} . It is to be noted that the difficulty in such problems seems to arise from the fact that \mathbb{N} is just a semi-group for addition, since the analogue of the latter problem for the additive group of rational integers \mathbb{Z} has been completely solved ([6]). In what follows, we first establish some fundamental properties of the function $A \mapsto s(A)$, for subsets A of \mathbb{N} , we then study its compatibility with a natural order relation on the set of strictly increasing sequences in \mathbb{N} , we establish that the range of the function $A \mapsto s(A)$ is the whole interval $[2,\infty]$ of $\overline{\mathbb{N}}$, and we construct a family of pairs of disjoint subsets A, B of N such that s(A) = s(B) = 2 and $s(A \cup B) = \infty$. We then introduce the notion of proximity of two subsets, viewed as strictly increasing sequences, of \mathbb{N} and study its relation with the function $A \mapsto s(A)$; thus, for instance, if two subsets A, B of \mathbb{N} are close, in the sense that their general n-th terms are at a bounded distance, then $s(A) = \infty$ if and only if $s(B) = \infty$. We also study the relations of the function $A \mapsto s(A)$ with the counting function $A(x) = |\{a \in A\}|$ $A: a \leq x$, where x is a real number, and the caliber $cal(A) = \liminf_{n \to \infty} \frac{a_n}{n^2}$

of a subset $A = \{a_1 < a_2 < \cdots < a_n < \ldots\}$ of \mathbb{N} , thus showing, for instance, that $s(A) \geq \sup_{x \geq 0} \frac{A(x)^2}{2x+1}$, and that $s(A) \geq \frac{1}{2 \operatorname{cal}(A)}$. Some of these results are contained in previous papers ([2, 3]) considered from a different perspective, but they are included here to make the study of the function $A \mapsto s(A)$ as complete and self-contained as possible.

2. Some Properties

2.1. Notations and Definitions

Let \mathcal{I} denote the set of infinite subsets $A = \{a_1 < a_2 < \cdots < a_n < \ldots\}$ of \mathbb{N} . Such a subset A is often identified with the strictly increasing sequence $(a_n)_{n\geq 1}$ of its elements. A (partial) order relation << is defined on \mathcal{I} by setting, for $A = \{a_1 < a_2 < \cdots < a_n < \ldots\}$ and $B = \{b_1 < b_2 < \cdots < b_n < \ldots\}$ in \mathcal{I} ,

$$A \ll B \iff a_n \leq b_n, \ \forall n \in \mathbb{N}^*,$$

where $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\}.$

For any subset A of \mathbb{N} and any $t \in \mathbb{N}$, we set $t + A = \{t + a : a \in A\}$ (translation of A), and $t \cdot A = \{ta : a \in A\}$ (dilation of A).

Thus, if we denote by $\mathbb{S} = \{n^2 : n \in \mathbb{N}^*\}$ the set of squares in \mathbb{N}^* , the conjecture (GET) amounts to:

(GET) For any $A \in \mathcal{I}$,

$$(\exists c \in \mathbb{N}^* : A \ll c \cdot \mathbb{S}) \implies s(A) = \infty.$$

Remark 1. For any $A, B \in \mathcal{I}$, we clearly have

$$B \subset A \implies s(B) \le s(A) \text{ and } A \ll B.$$

This leads to the natural question of whether $A \ll B$ implies that $s(B) \leq s(A)$. Moreover, it is known that $s(\mathbb{S}) = \infty$ (e.g., this follows from [5], Theorem 278), and (GET) says that $A \ll \mathbb{S}$ implies $s(A) = \infty$. So another question is whether the double condition $A \ll B$ and $s(B) = \infty$ implies that $s(A) = \infty$.

However, as shown in Theorem 7 below, the answer to both questions is negative, and the relation $A \ll B$ is compatible with any choice of values of s(A) and s(B). Furthermore, the range of the function s(A) is the whole interval $[2, \infty]$ of $\overline{\mathbb{N}}$. But first, we need some technical results.

Remark 2. For any subsets A, B of \mathbb{N} , finite or infinite, we have:

(1) $s(A, B) = s(B, A) \le \min(|A|, |B|).$

Indeed, $r_{A,B}(n) = |\{(a, n - a) : a \in A, n - a \in B\}| \le |\{(a, n - a) : a \in A\}| = |A|$, and by symmetry, $r_{A,B}(n) = r_{B,A}(n) \le |B|$, for any $n \in \mathbb{N}$.

- (2) If $A \cap B = \emptyset$, then
 - (i) $r_{A\cup B}(n) = r_A(n) + r_B(n) + 2r_{A,B}(n)$, for all $n \in \mathbb{N}$,
 - (ii) $r_{A\cup B,B}(n) = r_{A,B}(n) + r_B(n)$, for all $n \in \mathbb{N}$,
 - (iii) $\max(s(A), s(B), 2s(A, B)) \le s(A \cup B) \le s(A) + s(B) + 2s(A, B),$
 - (iv) $s(A \cup B) \le s(A) + 2|B|$.

The proofs of these are as follows:

(i) Indeed, as A and B are disjoint, $f_{A\cup B} = f_A + f_B$, and therefore $g_{A\cup B} = f_{A\cup B}^2 = g_A + g_B + 2g_{A,B}$. By identification of the coefficients, the equation holds.

(ii) As in the proof of (i), $g_{A\cup B,B} = (f_A + f_B)f_B = g_{A,B} + g_B$.

(iii) It follows from (i) that $\max(r_A(n), r_B(n), 2r_{A,B}(n)) \leq r_{A\cup B}(n) = r_A(n) + r_B(n) + 2r_{A,B}(n)$, for all $n \in \mathbb{N}$. Taking the supremum of the three terms yields the desired inequalities.

(iv) It follows from (i) and (ii) that $r_{A\cup B}(n) = r_A(n) + r_B(n) + 2r_{A,B}(n) = r_A(n) + r_{A\cup B,B}(n) + r_{A,B}(n) \leq s(A) + s(A\cup B, B) + s(A, B)$, for all $n \in \mathbb{N}$, so that $s(A\cup B) \leq s(A) + s(A\cup B, B) + s(A, B)$. And by (1) above, $s(A, B) \leq |B|$ and $s(A\cup B, B) \leq |B|$. Hence the inequality holds.

(3) In general, when A and B are not necessarily disjoint,

$$\max(s(A), s(B), s(A, B)) \le s(A \cup B) \le s(A) + s(B \setminus A) + 2s(A, B \setminus A)$$
$$\le s(A) + s(B) + 2s(A, B),$$

$$s(A \cup B) \le s(A) + 2|B \setminus A| \le s(A) + 2|B|,$$

and by symmetry

$$s(A \cup B) \le s(B) + 2|A \setminus B| \le s(B) + 2|A|.$$

Indeed, letting $C = B \setminus A$, as $A \cup B = A \cup C$, with A and C disjoint and $C \subset B$, by (2), we have $s(A \cup B) = s(A \cup C) \leq s(A) + s(C) + 2s(A, C) \leq s(A) + s(B) + 2s(A, B)$, and $s(A \cup B) = s(A \cup C) \leq s(A) + 2|C| \leq s(A) + 2|B|$. This proves all inequalities except the first one, which follows from the fact that A and B are subsets of $A \cup B$.

(4) In particular, if B is finite, then $s(A) = \infty$ if and only if $s(A \cup B) = \infty$. Indeed, by (3), we have $s(A) \le s(A \cup B) \le s(A) + 2|B|$.

(5) The last two inequalities in (3) are optimal, as seen from the following family of examples, where A and B are finite and disjoint, and satisfy $s(A \cup B) = s(A) + 2|B|$. Indeed, let $h, t \in \mathbb{N}$ such that 0 < 2h < t, consider the integer intervals U = [1, h] and V = [2h+1, 2h+t], and set $A = U \cup V$ and $B = [h+1, 2h] \subset \mathbb{N}$. Then |B| = h, and $A \cup B = [1, 2h+t]$. Therefore $s(A \cup B) = 2h+t = t+2|B|$, and we claim that s(A) = t, thus implying the desired equality.

Proof of claim. First note that if I = [0, m] and J = [0, n] are intervals in \mathbb{N} , with $0 \le m \le n$, then $g_{I,J}(X) = (\sum_{i=0}^{m} X^i)(\sum_{j=0}^{n} X^j) = \sum_{k=0}^{m+n} r_{I,J}(k)X^k$, where

$$r_{I,J}(k) = \begin{cases} k+1 & \text{if } 0 \le k \le m \\ m+1 & \text{if } m \le k \le n \\ m+n-k+1 & \text{if } n \le k \le m+n. \end{cases}$$

So the monomials with largest coefficient in $g_{I,J}$ are $(m+1)X^k$ for $m \le k \le n$, and thus s(I,J) = m+1.

Since $A = U \cup V$, with U and V disjoint, as in (2)(i), we have $g_A = g_U + g_V + 2g_{U,V}$, where $g_U(X) = X^2 (\sum_{i=0}^{h-1} X^i)^2 = X^2 g_I(X)$, with I = [0, h-1], and $g_V(X) = X^{4h+2} (\sum_{j=0}^{t-1} X^j)^2 = X^{4h+2} g_J(X)$, with J = [0, t-1], and

$$2g_{U,V}(X) = 2X^{2h+2} (\sum_{i=0}^{h-1} X^i) (\sum_{j=0}^{t-1} X^j) = 2X^{2h+2}g_{I,J}(X).$$

So, applying what precedes with m = h - 1 and n = t - 1, we see that the only monomial with largest coefficient in g_U is hX^{h+1} (resp., in g_V , is tX^{4h+t+1}), and the monomials with largest coefficient in $2g_{U,V}$ are $2hX^k$ for $3h+1 \le k \le 2h+t+1$. Moreover, the degree of g_U is 2h, while the least degree of a monomial in $g_V + 2g_{U,V}$ is 2h+2 > 2h, so that g_U and $g_V + 2g_{U,V}$ have no common monomial. On the other hand, the sum of the common monomials in g_V and $2g_{U,V}$ is

$$\sum_{j=4h+2}^{2h+t+1} (j-2h-1)X^j + \sum_{j=2h+t+2}^{3h+t} (2h+2t-j+1)X^j,$$

in which the largest coefficient is t, as for g_V . We thus conclude that the largest coefficient in $g_A = g_U + g_V + 2g_{U,V}$ is t, i.e., s(A) = t.

Definition 3. A subset A of \mathbb{N} (finite or infinite) is called *sparse* whenever the relation a < b between two elements of A implies 2a < b.

Notation 4. For two subsets X, Y of \mathbb{N} , we write X < Y whenever for each $x \in X$ and each $y \in Y$ we have x < y. In this case, X is finite, possibly empty. When both $X, Y \neq \emptyset$, the relation X < Y amounts to $\max(X) < \min(Y)$. When $X = \{x\}$ is a singleton, we simply write x < Y instead of $\{x\} < Y$. Similarly, when $Y = \{y\}$, we write X < y for $X < \{y\}$.

We similarly define $X \leq Y$, and $x \leq Y$ or $X \leq y$.

Lemma 5. Let A, F be two subsets of \mathbb{N} , with A sparse, nonempty, and F finite, possibly empty, such that $2 \cdot F < A$. Then $s(F) \leq s(F \cup A) \leq \max(s(F), 2)$. If in addition $|F \cup A| \geq 2$, then $s(F \cup A) = \max(s(F), 2)$.

Proof. Let $B = F \cup A$ and $T = \{(b, a) \in B \times A : b \leq a\}$, and define a function $\sigma : T \to \mathbb{N}$ by $\sigma(b, a) = b + a$. We first show that σ is injective. Indeed, for any $(b, a), (d, c) \in T$, if $(b, a) \neq (d, c)$, then either $a \leq c$ or $(a = c \text{ and } b \neq d)$. If a < c, then c > 2a (since a, c lie in A which is sparse) and $d + c > 2a \geq b + a$. Similarly, if a > c, then b + a > d + c. If a = c and $b \neq d$, then $b + a = b + c \neq d + c$. Thus, in all cases, $(b, a) \neq (d, c)$ implies $\sigma(b, a) \neq \sigma(d, c)$.

Now, for any $n \in \mathbb{N}$, if n < A, then $r_B(n) = r_F(n) \leq s(F)$. Otherwise, $2 \cdot F < a \leq n$ for some $a \in A$, so that $n \notin F + F$, and therefore $r_B(n) = |\{(x,y) \in (B \times A) \cup (A \times B) : x + y = n\}| \leq 2|\{(b,a) \in T : b + a = n\}| \leq 2$, since σ is injective. Thus $s(B) \leq \max(s(F), 2)$. Moreover, $s(F) \leq s(B)$, since $F \subset B$.

If, in addition, $|B| \ge 2$, then $s(B) \ge 2$, and therefore $s(B) = \max(s(F), 2)$.

The following is the special case $F = \emptyset$ of Lemma 5.

Corollary 6. If A is sparse, then $s(A) \leq 2$. If in addition $|A| \geq 2$, then s(A) = 2.

Theorem 7. For any A in \mathcal{I} and any q in the interval $[2,\infty]$ of $\overline{\mathbb{N}}$, there exists B in \mathcal{I} such that $A \ll B$ and s(B) = q.

Proof. The proof is divided into two parts, according as $q \in [2, \infty) \subset \mathbb{N}$ or $q = \infty$.

i). Let q be an integer greater than or equal to 2. First note that there exists a sparse subset C of \mathbb{N} such that $A \ll C$. Indeed, if $A = \{a_1 < a_2 < \cdots < a_n < \ldots\}$, define $C = \{c_1 < c_2 < \cdots < c_n < \ldots\}$ by $c_1 = a_1$, and $c_{n+1} = \max(a_{n+1}, 2c_n + 1)$ for $n \geq 1$. So, replacing A by C, we may assume A sparse, and therefore s(A) = 2.

Let $h \in \mathbb{N}^*$ such that $h > a_q$, and $F = \{nh : 1 \le n \le q\}$. Also, let $p \in \mathbb{N}^*$ such that $a_p > 2qh$, and define $B = \{b_1 < b_2 < \cdots < b_n < \dots\}$ by

$$b_n = \begin{cases} nh & \text{if } 1 \le n \le q\\ a_{p+n} & \text{if } n > q. \end{cases}$$

Then $a_n \leq a_q < nh = b_n$ for $1 \leq n \leq q$, and $a_n < a_{p+n} = b_n$ for n > q, so that $A \ll B$. Also, $B = F \cup G$, where $G = \{a_{p+n} : n \geq q+1\} \subset A$, so that G is sparse like A, and $2 \cdot F < a_p < G$. Therefore, by Lemma 5, $s(B) = \max(s(F), 2) = s(F) = q$, since F is an arithmetic progression of length q.

ii). If $q = \infty$, we define a sequence $(F_n)_{n \in \mathbb{N}^*}$ of subsets of \mathbb{N} such that $F_1 < F_2 < \cdots < F_n < \ldots$, and each F_n is an arithmetic progression of length n, say $F_n = \{kf_n : 1 \le k \le n\}$ with $f_n \in \mathbb{N}$, by setting $F_1 = \{a_1\}$, and inductively choosing an integer $f_{n+1} > \max(nf_n, a_{\frac{(n+1)(n+2)}{2}})$ and setting $F_{n+1} = \{kf_{n+1} : 1 \le k \le n+1\}$. We then let $B = \bigcup_{n=1}^{\infty} F_n$, so that $b_1 = a_1$, and for an index $m \ge 2$, if n is the unique integer such that $\frac{n(n+1)}{2} < m \le \frac{(n+1)(n+2)}{2}$, and $1 \le k := m - \frac{n(n+1)}{2} \le n+1$, then

 $b_m = kf_{n+1} \ge f_{n+1} > a_{\frac{(n+1)(n+2)}{2}} \ge a_m$. Therefore $A \ll B$, and $s(B) \ge s(F_n) = n$ for all $n \in \mathbb{N}^*$, i.e., $s(B) = \infty$.

Remark 8. For any subset A of \mathbb{N} and any $t \in \mathbb{N}$, we have s(t + A) = s(A), and if if $t \neq 0$, then we have $s(t \cdot A) = s(A)$.

The proofs present no difficulty, and are left to the reader.

Remark 9. In view of Remark 2 (3), if $s(A \cup B) = \infty$, then at least one of s(A) or s(B) or s(A, B) is infinite. This naturally leads to the following question:

(Q1) If $s(A \cup B) = \infty$, does it follow that s(A) or s(B) is equal to ∞ ?

This question is also equivalent to the following one:

(Q2) Do the conditions $s(A) < \infty$ and $s(B) < \infty$ imply that $s(A, B) < \infty$?

In what follows (Theorem 12), we give examples of subsets A, B of \mathbb{N} such that s(A) = s(B) = 2 and $s(A \cup B) = \infty$, thus showing that the answers to questions (Q1) and (Q2) are negative. To that end, we first introduce a useful technical tool in the next section.

3. Complementary Sets

Two finite subsets A, B of \mathbb{N} are called *complementary* if there exists an integer $m \ge \max(A)$ such that $B = m - A = \{m - a : a \in A\}$; more specifically, A and B are then called *m*-complementary. In this case, A = m - B, and |A| = |B|. Moreover, we clearly have

$$f_B(X) = X^m f_A\left(\frac{1}{X}\right),$$

so that s(B) = s(A). Similarly,

$$g_{A,B}(X) = X^m f_A(X) f_A\left(\frac{1}{X}\right),$$

and therefore s(A, B) = |A| = |B|.

Moreover, if (A, B) and (C, D) are two pairs of complementary subsets of \mathbb{N} , with B = m - A and D = n - C, then

$$g_{B,D}(X) = X^{m+n}g_{A,C}\left(\frac{1}{X}\right),$$

so that s(B, D) = s(A, C).

Whence the following result

Lemma 10. For any pair (A, B) of finite complementary subsets A, B of \mathbb{N} , we have

- s(A) = s(B)
- s(A, B) = |A| = |B|
- If (C, D) is any other pair of complementary subsets of \mathbb{N} , then s(A, C) = s(B, D).

Remark 11. For a subset A of \mathbb{N} and two integers $n, r \in \mathbb{N}$, with r > 0, the condition $r_A(n) \ge r$ is equivalent to the existence of two *n*-complementary subsets U and V = n - U of A of common cardinality r. Indeed, $r_A(n) \ge r$ if and only if there exist r distinct pairs $(a_i, n - a_i) \in A \times A$ $(1 \le i \le r)$, i.e., there exists a subset $U = \{a_1, \ldots, a_r\}$ of r elements of A such that n - U is a subset V of A.

Therefore $r_A(n)$ is the maximal common cardinality of *n*-complementary subsets of *A*. Thus s(A) is the supremum of the common cardinalities |U| = |V| of all pairs (U, V) of complementary subsets of *A*. In particular, $s(A) = \infty$ if and only if *A* has pairs of complementary subsets of arbitrarily large cardinalities.

4. An Example

Theorem 12. There exist two infinite, disjoint subsets A and B of \mathbb{N} such that s(A) = s(B) = 2 and $s(A \cup B) = \infty$.

Proof. The proof is carried out in three stages.

i) Construction. We define inductively a sequence $(A_n)_{n \in \mathbb{N}}$ of finite sparse subsets of \mathbb{N} and a sequence $(m_n)_{n \in \mathbb{N}}$ of integers, starting with $A_0 = \emptyset$ and $m_0 = 0$, and satisfying the following conditions for all $n \in \mathbb{N}$:

$$|A_n| = n$$
 , $2m_n < A_{n+1}$, $2 \cdot (m_n + A_{n+1}) < m_{n+1}$.

For $n \ge 1$, we clearly have $A_n < m_n$, and we let $B_n = m_n - A_n$ to get a pair (A_n, B_n) of m_n -complementary subsets of \mathbb{N} . We then set

$$A = \bigcup_{n=1}^{\infty} A_n \qquad , \qquad B = \bigcup_{n=1}^{\infty} B_n.$$

We undertake to show that s(A) = s(B) = 2, $s(A, B) = s(A \cup B) = \infty$, and A and B are disjoint.

ii) Steps in Proof.

- (1) A is sparse, and therefore s(A) = 2, since, for $n \ge 1$, we have $2 \cdot A_n < m_n < A_{n+1}$, and the sets A_n are sparse.
- (2) By the defining conditions, for $n \ge 1$, we have $2 \cdot (m_n A_n) < 2m_n < m_{n+1} A_{n+1}$, so that $2 \cdot B_n < B_{n+1}$. Therefore the sets B_n are pairwise disjoint.
- (3) Similarly, for $n \ge 1$, that $m_n + 2 \cdot A_{n+1} A_n A_{n+1} < 2m_n + 2\max(A_{n+1}) < m_{n+1}$, and therefore $m_n A_n + m_{n+1} A_{n+1} < 2m_{n+1} 2 \cdot A_{n+1}$, so that

$$B_n + B_{n+1} < 2 \cdot B_{n+1}.$$

- (4) We claim (and prove below) that, for any $m, n, p, q \in \mathbb{N}^*$ such that $m \leq p, n \leq q$ and $(m, p) \neq (n, q)$, the sumsets $B_m + B_p$ and $B_n + B_q$ are disjoint.
- (5) For $n \ge 1$, let $h_n(X) = f_{B_n}(X)$. As the sets B_n are pairwise disjoint, $f_B(X) = \sum_{n=1}^{\infty} h_n(X)$, and therefore the generating series of $(r_B(n))$ is

$$f_B(X)^2 = \sum_{n=1}^{\infty} h_n(X)^2 + 2\sum_{0 < n < p} h_n(X)h_p(X).$$

By the claim (4), no two polynomials in these sums have a common monomial.

(6) We have s(B) = 2, even though B need not be sparse.

Indeed, the pairs A_n, B_n are complementary, so, by 3.1, $s(B_n) = s(A_n) = 2$ for $n \ge 2$, and $s(B_n, B_p) = s(A_n, A_p) = 1$ for 0 < n < p, since s(A) = 2. Hence, in view of (5), all the coefficients of f_B^2 are ≤ 2 , with equality attained, i.e., s(B) = 2.

(7) The subsets A and B are disjoint.

Indeed, otherwise, for some $n, p \in \mathbb{N}^*$, there is an $x \in A_n \cap B_p$, i.e., there exist $x \in A_n$ and $y \in A_p$ such that $m_p = x + y$, which implies that $m_p \in A_n + A_p$. But this is impossible, since if p < n then $2m_p \leq 2m_{n-1} < A_n$, and if $p \geq n$ then $A_n + A_p \leq 2\max(A_p) < m_p$.

(8) We have $s(A, B) = \infty$, since $s(A, B) \ge s(A_n, B_n) = |A_n| = n$ for all $n \ge 1$ (by 3.1). Note that, in view of 2.3, (2), iii), $s(A, B) = \infty$ is equivalent to $s(A \cup B) = \infty$.

iii) Proof of Claim (4). Let $m, n, p, q \in \mathbb{N}^*$ such that $m \leq p, n \leq q$ and $(m, p) \neq (n, q)$. We examine all essentially distinct cases: p < q, m < n = p = q, m < n < p = q. The remaining cases, where q < p or n < m, follow similarly by exchange of p, q or of m, n.

- (9) If p < q, then, by (2), $B_m + B_p \le 2 \max(B_p) < \min(B_q) < B_n + B_q$, so that $B_m + B_p$ and $B_n + B_q$ are disjoint.
- (10) If m < n = p = q, then, by (3), $B_m + B_p \le \max(B_{p-1} + B_p) < 2\min(B_p) \le B_n + B_q$, so that $B_m + B_p$ and $B_n + B_q$ are disjoint.
- (11) If m < n < p = q, then $B_m + B_p$ and $B_n + B_q$ are also disjoint. Indeed, otherwise there exist $x \in B_m$, $y \in B_n$ $u, v \in B_p$ such that x+u = y+v. As m < n, we have x < y and therefore v < u, so that $m_p - u < m_p - v$ in the sparse set A_p . Hence $2(m_p - u) < m_p - v$, i.e. $m_p - u < u - v = y - x$. As $m_p - u \in A_p$, this implies that $y > y - x \ge \min(A_p)$. As n < p, it follows that $2 \cdot B_n < 2m_n < \min(A_p) < y$, which is impossible since $y \in B_n$.

Example 13. The construction above yields, as a special case starting with $m_n = 3^{\frac{n(n+3)}{2}-1}$ and $A_n = \{3^{\frac{(n-1)(n+2)}{2}+k-1} : 1 \le k \le n\}$, the pair

$$A = \{3^n : n \in \mathbb{N} \text{ and } n \neq \frac{k(k+3)}{2} - 1, \text{ for every } k \in \mathbb{N}^*\},\$$
$$B = \{3^{\frac{n(n+1)}{2} - 1}(3^n - 3^{k-1}) : k, n \in \mathbb{N}^*, \text{ with } 1 \leq k \leq n\}.$$

Next, we introduce a relation between infinite subsets of \mathbb{N} which preserves the property of having unbounded corresponding representation functions.

5. Proximity

Definition 14. For $A = \{a_1 < a_2 < \dots < a_n < \dots\}$ and $B = \{b_1 < b_2 < \dots < b_n < \dots\}$ in \mathcal{I} , let

$$\delta(A, B) = \sup\{|a_n - b_n| : n \in \mathbb{N}^*\} \in \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}.$$

This defines a function $\delta : \mathcal{I} \times \mathcal{I} \longrightarrow \overline{\mathbb{N}}$. It is a pseudo-distance on \mathcal{I} , i.e., it has the properties of a distance, but it can be infinite:

i) $\delta(A, B) = 0$ if and only if A = B

- ii) $\delta(A, B) = \delta(B, A)$
- iii) $\delta(A, C) \leq \delta(A, B) + \delta(B, C)$, for any $A, B, C \in \mathcal{I}$.

Furthermore, we have:

- For any $A \in \mathcal{I}$, the *proximity* of A is, by definition, $\{B \in \mathcal{I} : \delta(A, B) < \infty\}$.
- If B is in the proximity of A, we say that A and B are *close*. More precisely, if $\delta(A, B) \leq d$, i.e., $|a_n b_n| \leq d$ for $n \in \mathbb{N}^*$, with $d \in \mathbb{N}$, A and B are called *d*-close.

- The relation "A is close to B" is an equivalence relation on \mathcal{I} .
- The proximity of A is the union of all the open balls of finite radius centered at A.
- δ induces the discrete topology on \mathcal{I} , as the open ball $\{B \in \mathcal{I} : \delta(A, B) < 1\} = \{A\}.$

Lemma 15. Let $A = \{a_1 < a_2 < \cdots < a_n < \dots\}$ and $B = \{b_1 < b_2 < \cdots < b_n < \dots\}$, in \mathcal{I} , be d-close, with $d \in \mathbb{N}$. Then for all $m \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$r_B(n) \ge \frac{r_A(m)}{4d+1}.\tag{1}$$

Proof. Let $m \in \mathbb{N}$ and $E(A, m) = \{(i, j) \in \mathbb{N}^* \times \mathbb{N}^* : a_i + a_j = m\}$. So $r_A(m) = |E(A, m)|$. If $r_A(m) = 0$, the property holds trivially. So we assume $r_A(m) > 0$, i.e., $E(A, m) \neq \emptyset$.

Let $\sigma : E(A,m) \longrightarrow \mathbb{N}$ be the map defined by $\sigma(i,j) = b_i + b_j$. For any $n \in \sigma(E(A,m))$, there exists $(i,j) \in \mathbb{N}^* \times \mathbb{N}^*$ such that $a_i + a_j = m$ and $b_i + b_j = n$. Since $\delta(A,B) \leq d$, we have $|a_i - b_i| \leq d$ and $|a_j - b_j| \leq d$, so that $a_i + a_j - 2d \leq b_i + b_j \leq a_i + a_j + 2d$, i.e., $m - 2d \leq n \leq m + 2d$. Hence $\sigma(E(A,m)) \subset I = [m - 2d, m + 2d] \cap \mathbb{N}$.

Therefore $E(A,m) = \bigcup_{n \in I} \sigma^{-1}(n)$ is a finite union of pairwise disjoint sets $\sigma^{-1}(n) = \{(i,j) \in \mathbb{N}^* \times \mathbb{N}^* : a_i + a_j = m \text{ and } b_i + b_j = n\} \subset \{(i,j) \in \mathbb{N}^* \times \mathbb{N}^* : b_i + b_j = n\}$, satisfying $|\sigma^{-1}(n)| \leq r_B(n)$. Thus

$$r_A(m) = |E(A,m)| = \sum_{n \in I} |\sigma^{-1}(n)| \le \sum_{n \in I} r_B(n) \le |I| \cdot \max\{r_B(n) : n \in I\}$$

$$\le (4d+1)r_B(n_0),$$

where $n_0 \in I$ such that $r_B(n_0) = \max_{n \in I} r_B(n)$, and $|I| \le 4d + 1$.

Hence we have the existence of $n = n_0 \in \mathbb{N}$ such that $r_B(n) \geq \frac{r_A(m)}{4d+1}$.

Corollary 16. Let $A, B \in \mathcal{I}$ and $d \in \mathbb{N}$. If $\delta(A, B) \leq d$, then

$$\frac{s(A)}{4d+1} \le s(B) \le (4d+1)s(A).$$

Proof. By Inequality (1), $r_A(m) \leq (4d+1)s(B)$ for all $m \in \mathbb{N}$. Thus $s(A) \leq (4d+1)s(B)$. Hence the first inequality. Exchanging A and B yields the second inequality.

The following corollary follows immediately from Lemma 15 since A and B are d-close for some $d \in \mathbb{N}$.

Corollary 17. Let $A, B \in \mathcal{I}$. If A and B are close, then $s(A) = \infty$ if and only if $s(B) = \infty$.

Corollary 18. Let $A \in \mathcal{I}$, and $\mathbb{S} = \{n^2 : n \in \mathbb{N}^*\}$. If there exists a constant $c \in \mathbb{N}^*$ such that A is close to $c \cdot \mathbb{S}$, then $s(A) = \infty$.

Proof. By a classical result on the number of representations of a positive integer as a sum of two squares ([5], Theorem 278), this number is unbounded, i.e., $s(\mathbb{S}) = \infty$. Therefore, in view of 2.9, $s(c \cdot \mathbb{S}) = \infty$, and as A is close to $c \cdot \mathbb{S}$, by 5.4, we also have $s(A) = \infty$.

Remark 19. The result in Corollary 18 may be considered as a weak variant of the conjecture (GET).

Corollary 20. Let $A, B \in \mathcal{I}$ and $d \in \mathbb{N}$. If $\delta(A, B) \leq d$ and $s(A) + s(B) < \infty$, then

 $|s(A) - s(B)| \le 4d \cdot \min(s(A), s(B)).$

Proof. Assume that $s(A) \leq s(B)$. Then, by Corollary 16, we have $s(B) \leq (4d + 1)s(A)$, i.e., $s(B) - s(A) \leq 4d \cdot s(A)$. Hence the result.

Remark 21. The inequalities established in Corollaries 16 and 20 hold with $d = \delta(A, B)$, and they even hold trivially when $\delta(A, B) = \infty$. Hence

- for all $A, B \in \mathcal{I}$, $s(B) \leq (4\delta(A, B) + 1)s(A)$ and $s(A) \leq (4\delta(A, B) + 1)s(B)$.
- for all $A, B \in \mathcal{I}$, $s(A) + s(B) < \infty$ implies $|s(A) s(B)| \le 4 \min(s(A), s(B)) \cdot \delta(A, B)$.

6. Relations With the Counting Function and the Caliber

Definition 22. Let $A = \{a_1 < a_2 < \cdots < a_n < \dots\}$ be a subset of \mathbb{N} . For a real number $x \in \mathbb{R}$, setting $A[x] = \{a \in A : a \leq x\}$, the *counting function* of A is defined by A(x) = |A[x]|.

For $x \in \mathbb{R}$ and $n \in \mathbb{N}^*$, the condition $A(x) \ge n$ is equivalent to $a_n \le x$, while the condition A(x) = n is equivalent to $a_n \le x < a_{n+1}$. In particular $A(a_n) = n$.

When A is infinite, we define its *caliber* by

$$cal(A) = \liminf_{n \to \infty} \frac{a_n}{n^2}.$$

Lemma 23. For any subset A of \mathbb{N} and any real number $x \ge 0$, we have

$$\sum_{n \le x} r_A(n) \le A(x)^2 \le \sum_{n \le 2x} r_A(n),$$

and therefore

$$s(A) \ge \sup_{x\ge 0} \frac{A(x)^2}{2x+1}$$

Proof. Note that

$$\sum_{n \le x} r_A(n) = |\bigcup_{n \le x} \{(a, b) \in A \times A : a + b = n\}| = |\{(a, b) \in A \times A : a + b \le x\}$$

$$\leq |A[x] \times A[x]| = A(x)^2.$$

Similarly,

$$A(x)^{2} = |A[x] \times A[x]| \le |\{(a,b) \in A \times A : a+b \le 2x\}| = \sum_{n \le 2x} r_{A}(n).$$

This proves the first double inequality. Moreover, we have

$$A(x)^2 \le \sum_{n \le 2x} r_A(n) \le \sum_{n \le 2x} s(A) \le (2x+1)s(A),$$

which yields the last inequality.

Theorem 24. For any infinite subset A of \mathbb{N} , we have

$$s(A) \ge \frac{1}{2 \ cal(A)}.$$

Thus, if cal(A) = 0, then $s(A) = \infty$.

Proof. Letting $A = \{a_1 < a_2 < \cdots < a_n < \dots\}$ and taking $x = a_n$ in the last inequality of Lemma 6.2, we get

$$s(A) \ge \sup_{n\ge 1} \frac{A(a_n)^2}{2a_n+1} \ge \limsup_{n\to\infty} \frac{n^2}{2a_n+1} = \frac{1}{2}\limsup_{n\to\infty} \frac{n^2}{a_n} = \frac{1}{2} \frac{1}{\liminf_{n\to\infty} \frac{a_n}{n^2}},$$

which yields the result.

Remark 25. If there exist real constants c > 0 and 0 < t < 2 such that

$$a_n \le c n^{2-t},$$

for large enough n, then cal(A) = 0, and therefore $s(A) = \infty$. This represents a weak variant of the conjecture (GET).

Acknowledgments We thank the referee for a careful reading of the paper and for pertinent suggestions.

References

- [1] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems J. London Math. Soc. 16 (1941),212-215.
- [2] G. Grekos, L. Haddad, C. Helou, J. Pihko, The class of Erdős-Turán sets, Acta Arith. 117 (2005), 81–105.
- [3], G. Grekos, L. Haddad, C. Helou, J. Pihko, Variations on a theme of Cassels for additive bases, Int. J. Number Theory 2 (2006), 249–265.
- [4], H. Halberstam and K. F. Roth, Sequences, Clarendon Press, Oxford, 1966.
- [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University Press, 1979.
- [6] M. B. Nathanson, Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), 55–72.