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Kyläkunnantie 53, Helsinki, Finland

jukka.pihkohelsinki.fi

Received: 7/24/10, Accepted: 2/26/11, Published: 5/18/11

Abstract
For a subset A of N = {0, 1, 2, . . . }, the representation function of A is defined by
rA(n) = |{(a, b) ∈ A×A : a + b = n}|, for n ∈ N, where |E| denotes the cardinality
of a set E. Its supremum is the element s(A) = sup{rA(n) : n ∈ N} of N = N∪{∞}.
Interested in the question “when is s(A) = ∞? ”, we study some properties of the
function A �→ s(A), determine its range, and construct some subsets A of N for
which s(A) satisfies certain prescribed conditions.

1. Introduction

Let A,B ⊂ N = {0, 1, 2, . . . }. The representation function for A + B and its
supremum are defined by

rA,B(n) = |{(a, b) ∈ A×B : a + b = n}| (∀n ∈ N)

and
s(A,B) = sup

n∈N
rA,B(n) ∈ N = N ∪ {∞},

where |E| denotes the cardinality of a set E. In particular, for A = B, we write

rA(n) = rA,A(n) = |{(a, b) ∈ A×A : a + b = n}| (∀n ∈ N)
1Corresponding author.
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and
s(A) = s(A,A) = sup

n∈N
rA(n) ∈ N.

The power series fA associated with A, and its square gA, which is the generating
series of the sequence (rA(n)), are

fA(X) =
�

a∈A

Xa , gA(X) = fA(X)2 =
∞�

n=0

rA(n)Xn,

and s(A) is simply the supremum of the coefficients of gA. More generally,

gA,B(X) = fA(X)fB(X) =
∞�

n=0

rA,B(n)Xn.

Two celebrated conjectures of Erdős and Turán are ([1]):

(ET) If A is an asymptotic additive 2-basis of N, then s(A) = ∞, i.e.,

(∃n0 ∈ N : rA(n) > 0, ∀n ≥ n0) =⇒ s(A) = ∞.

A more general one is

(GET) If A = {a1 < a2 < · · · < an < . . . } ⊂ N is an infinite subset satisfying
an ≤ cn2, for a constant c > 0 and all integers n ≥ 1, then s(A) = ∞.

(GET) is more general than (ET), because if A is an asymptotic basis of N, then
there is a constant c such that an ≤ cn2 for all n ≥ 1 ([4]).

This raises the more general question of determining the subsets A of N for which
s(A) = ∞. This is a more restricted problem than the notoriously difficult and open
one of determining all possible representation functions of bases for N. It is to be
noted that the difficulty in such problems seems to arise from the fact that N is just
a semi-group for addition, since the analogue of the latter problem for the additive
group of rational integers Z has been completely solved ([6]). In what follows, we
first establish some fundamental properties of the function A �→ s(A), for subsets
A of N, we then study its compatibility with a natural order relation on the set
of strictly increasing sequences in N, we establish that the range of the function
A �→ s(A) is the whole interval [2,∞] of N, and we construct a family of pairs of
disjoint subsets A,B of N such that s(A) = s(B) = 2 and s(A ∪ B) = ∞. We
then introduce the notion of proximity of two subsets, viewed as strictly increasing
sequences, of N and study its relation with the function A �→ s(A); thus, for instance,
if two subsets A,B of N are close, in the sense that their general n-th terms are
at a bounded distance, then s(A) = ∞ if and only if s(B) = ∞. We also study
the relations of the function A �→ s(A) with the counting function A(x) = |{a ∈
A : a ≤ x}|, where x is a real number, and the caliber cal(A) = lim infn→∞

an
n2
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of a subset A = {a1 < a2 < · · · < an < . . . } of N, thus showing, for instance,
that s(A) ≥ supx≥0

A(x)2

2x+1 , and that s(A) ≥ 1
2 cal(A) . Some of these results are

contained in previous papers ([2, 3]) considered from a different perspective, but
they are included here to make the study of the function A �→ s(A) as complete
and self-contained as possible.

2. Some Properties

2.1. Notations and Definitions

Let I denote the set of infinite subsets A = {a1 < a2 < · · · < an < . . . } of N. Such
a subset A is often identified with the strictly increasing sequence (an)n≥1 of its
elements. A (partial) order relation << is defined on I by setting, for A = {a1 <
a2 < · · · < an < . . . } and B = {b1 < b2 < · · · < bn < . . . } in I,

A << B ⇐⇒ an ≤ bn, ∀n ∈ N∗,
where N∗ = N \ {0} = {1, 2, 3, . . . }.

For any subset A of N and any t ∈ N, we set t + A = {t + a : a ∈ A} (translation
of A), and t · A = {ta : a ∈ A} (dilation of A).

Thus, if we denote by S = {n2 : n ∈ N∗} the set of squares in N∗, the conjecture
(GET) amounts to:

(GET) For any A ∈ I,

(∃c ∈ N∗ : A << c · S) =⇒ s(A) = ∞.

Remark 1. For any A,B ∈ I, we clearly have

B ⊂ A =⇒ s(B) ≤ s(A) and A << B.

This leads to the natural question of whether A << B implies that s(B) ≤ s(A).
Moreover, it is known that s(S) = ∞ (e.g., this follows from [5], Theorem 278), and
(GET) says that A << S implies s(A) = ∞. So another question is whether the
double condition A << B and s(B) = ∞ implies that s(A) = ∞.

However, as shown in Theorem 7 below, the answer to both questions is negative,
and the relation A << B is compatible with any choice of values of s(A) and s(B).
Furthermore, the range of the function s(A) is the whole interval [2,∞] of N. But
first, we need some technical results.

Remark 2. For any subsets A,B of N, finite or infinite, we have:

(1) s(A,B) = s(B,A) ≤ min(|A|, |B|).
Indeed, rA,B(n) = |{(a, n− a) : a ∈ A, n− a ∈ B}| ≤ |{(a, n− a) : a ∈ A}| =
|A|, and by symmetry, rA,B(n) = rB,A(n) ≤ |B|, for any n ∈ N.
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(2) If A ∩B = ∅, then

(i) rA∪B(n) = rA(n) + rB(n) + 2rA,B(n), for all n ∈ N,

(ii) rA∪B,B(n) = rA,B(n) + rB(n), for all n ∈ N,

(iii) max(s(A), s(B), 2s(A,B)) ≤ s(A ∪B) ≤ s(A) + s(B) + 2s(A,B),

(iv) s(A ∪B) ≤ s(A) + 2|B|.

The proofs of these are as follows:

(i) Indeed, as A and B are disjoint, fA∪B = fA + fB, and therefore gA∪B =
f2

A∪B = gA + gB + 2gA,B. By identification of the coefficients, the equation
holds.

(ii) As in the proof of (i), gA∪B,B = (fA + fB)fB = gA,B + gB.

(iii) It follows from (i) that max(rA(n), rB(n), 2rA,B(n)) ≤ rA∪B(n) = rA(n)+
rB(n)+2rA,B(n), for all n ∈ N. Taking the supremum of the three terms yields
the desired inequalities.

(iv) It follows from (i) and (ii) that rA∪B(n) = rA(n) + rB(n) + 2rA,B(n) =
rA(n)+ rA∪B,B(n)+ rA,B(n) ≤ s(A)+s(A∪B,B)+s(A,B), for all n ∈ N, so
that s(A∪B) ≤ s(A)+s(A∪B,B)+s(A,B). And by (1) above, s(A,B) ≤ |B|
and s(A ∪B,B) ≤ |B|. Hence the inequality holds.

(3) In general, when A and B are not necessarily disjoint,

max(s(A), s(B), s(A,B)) ≤ s(A ∪B) ≤ s(A) + s(B \ A) + 2s(A,B \ A)

≤ s(A) + s(B) + 2s(A,B),

s(A ∪B) ≤ s(A) + 2|B \ A| ≤ s(A) + 2|B|,

and by symmetry

s(A ∪B) ≤ s(B) + 2|A \ B| ≤ s(B) + 2|A|.

Indeed, letting C = B \ A, as A ∪ B = A ∪ C, with A and C disjoint and
C ⊂ B, by (2), we have s(A ∪ B) = s(A ∪ C) ≤ s(A) + s(C) + 2s(A,C) ≤
s(A)+s(B)+2s(A,B), and s(A∪B) = s(A∪C) ≤ s(A)+2|C| ≤ s(A)+2|B|.
This proves all inequalities except the first one, which follows from the fact
that A and B are subsets of A ∪B.

(4) In particular, if B is finite, then s(A) = ∞ if and only if s(A ∪B) = ∞.

Indeed, by (3), we have s(A) ≤ s(A ∪B) ≤ s(A) + 2|B|.
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(5) The last two inequalities in (3) are optimal, as seen from the following family of
examples, where A and B are finite and disjoint, and satisfy s(A∪B) = s(A)+
2|B|. Indeed, let h, t ∈ N such that 0 < 2h < t, consider the integer intervals
U = [1, h] and V = [2h+1, 2h+t], and set A = U∪V and B = [h+1, 2h] ⊂ N.
Then |B| = h, and A∪B = [1, 2h+ t]. Therefore s(A∪B) = 2h+ t = t+2|B|,
and we claim that s(A) = t, thus implying the desired equality.

Proof of claim. First note that if I = [0,m] and J = [0, n] are intervals in N, with
0 ≤ m ≤ n, then gI,J(X) = (

�m
i=0 Xi)(

�n
j=0 Xj) =

�m+n
k=0 rI,J(k)Xk, where

rI,J(k) =






k + 1 if 0 ≤ k ≤ m
m + 1 if m ≤ k ≤ n
m + n− k + 1 if n ≤ k ≤ m + n.

So the monomials with largest coefficient in gI,J are (m + 1)Xk for m ≤ k ≤ n,
and thus s(I, J) = m + 1.

Since A = U∪V , with U and V disjoint, as in (2)(i), we have gA = gU+gV +2gU,V ,
where gU (X) = X2(

�h−1
i=0 Xi)2 = X2gI(X), with I = [0, h − 1], and gV (X) =

X4h+2(
�t−1

j=0 Xj)2 = X4h+2gJ(X), with J = [0, t− 1], and

2gU,V (X) = 2X2h+2(
h−1�

i=0

Xi)(
t−1�

j=0

Xj) = 2X2h+2gI,J(X).

So, applying what precedes with m = h − 1 and n = t − 1, we see that the only
monomial with largest coefficient in gU is hXh+1 (resp., in gV , is tX4h+t+1), and
the monomials with largest coefficient in 2gU,V are 2hXk for 3h+1 ≤ k ≤ 2h+t+1.
Moreover, the degree of gU is 2h, while the least degree of a monomial in gV +2gU,V

is 2h+2 > 2h, so that gU and gV +2gU,V have no common monomial. On the other
hand, the sum of the common monomials in gV and 2gU,V is

2h+t+1�

j=4h+2

(j − 2h− 1)Xj +
3h+t�

j=2h+t+2

(2h + 2t− j + 1)Xj ,

in which the largest coefficient is t, as for gV . We thus conclude that the largest
coefficient in gA = gU + gV + 2gU,V is t, i.e., s(A) = t. �

Definition 3. A subset A of N (finite or infinite) is called sparse whenever the
relation a < b between two elements of A implies 2a < b.

Notation 4. For two subsets X,Y of N, we write X < Y whenever for each x ∈ X
and each y ∈ Y we have x < y. In this case, X is finite, possibly empty. When both
X,Y �= ∅, the relation X < Y amounts to max(X) < min(Y ). When X = {x} is a
singleton, we simply write x < Y instead of {x} < Y . Similarly, when Y = {y}, we
write X < y for X < {y}.

We similarly define X ≤ Y , and x ≤ Y or X ≤ y.
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Lemma 5. Let A,F be two subsets of N, with A sparse, nonempty, and F finite,

possibly empty, such that 2 · F < A. Then s(F ) ≤ s(F ∪ A) ≤ max(s(F ), 2). If in

addition |F ∪A| ≥ 2, then s(F ∪A) = max(s(F ), 2).

Proof. Let B = F ∪ A and T = {(b, a) ∈ B × A : b ≤ a}, and define a function
σ : T → N by σ(b, a) = b + a. We first show that σ is injective. Indeed, for any
(b, a), (d, c) ∈ T , if (b, a) �= (d, c), then either a ≶ c or (a = c and b �= d). If a < c,
then c > 2a (since a, c lie in A which is sparse) and d + c > 2a ≥ b + a. Similarly,
if a > c, then b + a > d + c. If a = c and b �= d, then b + a = b + c �= d + c. Thus,
in all cases, (b, a) �= (d, c) implies σ(b, a) �= σ(d, c).

Now, for any n ∈ N, if n < A, then rB(n) = rF (n) ≤ s(F ). Otherwise, 2 · F <
a ≤ n for some a ∈ A, so that n �∈ F + F , and therefore rB(n) = |{(x, y) ∈
(B×A)∪ (A×B) : x+y = n}| ≤ 2|{(b, a) ∈ T : b+a = n}| ≤ 2, since σ is injective.
Thus s(B) ≤ max(s(F ), 2). Moreover, s(F ) ≤ s(B), since F ⊂ B.

If, in addition, |B| ≥ 2, then s(B) ≥ 2, and therefore s(B) = max(s(F ), 2).

The following is the special case F = ∅ of Lemma 5.

Corollary 6. If A is sparse, then s(A) ≤ 2. If in addition |A| ≥ 2, then s(A) = 2.

Theorem 7. For any A in I and any q in the interval [2,∞] of N, there exists B
in I such that A << B and s(B) = q.

Proof. The proof is divided into two parts, according as q ∈ [2,∞) ⊂ N or q = ∞.
i). Let q be an integer greater than or equal to 2. First note that there exists a

sparse subset C of N such that A << C. Indeed, if A = {a1 < a2 < · · · < an < . . . },
define C = {c1 < c2 < · · · < cn < . . . } by c1 = a1, and cn+1 = max(an+1, 2cn + 1)
for n ≥ 1. So, replacing A by C, we may assume A sparse, and therefore s(A) = 2.

Let h ∈ N∗ such that h > aq, and F = {nh : 1 ≤ n ≤ q}. Also, let p ∈ N∗ such
that ap > 2qh, and define B = {b1 < b2 < · · · < bn < . . . } by

bn =
�

nh if 1 ≤ n ≤ q
ap+n if n > q.

Then an ≤ aq < nh = bn for 1 ≤ n ≤ q, and an < ap+n = bn for n > q, so that
A << B. Also, B = F ∪G, where G = {ap+n : n ≥ q + 1} ⊂ A, so that G is sparse
like A, and 2 ·F < ap < G. Therefore, by Lemma 5, s(B) = max(s(F ), 2) = s(F ) =
q, since F is an arithmetic progression of length q.

ii). If q = ∞, we define a sequence (Fn)n∈N∗ of subsets of N such that F1 <
F2 < · · · < Fn < . . . , and each Fn is an arithmetic progression of length n, say
Fn = {kfn : 1 ≤ k ≤ n} with fn ∈ N, by setting F1 = {a1}, and inductively choosing
an integer fn+1 > max(nfn, a (n+1)(n+2)

2
) and setting Fn+1 = {kfn+1 : 1 ≤ k ≤ n+1}.

We then let B =
�∞

n=1 Fn, so that b1 = a1, and for an index m ≥ 2, if n is the unique
integer such that n(n+1)

2 < m ≤ (n+1)(n+2)
2 , and 1 ≤ k := m− n(n+1)

2 ≤ n + 1, then
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bm = kfn+1 ≥ fn+1 > a (n+1)(n+2)
2

≥ am. Therefore A << B, and s(B) ≥ s(Fn) = n

for all n ∈ N∗, i.e., s(B) = ∞.

Remark 8. For any subset A of N and any t ∈ N, we have s(t + A) = s(A), and if
if t �= 0, then we have s(t · A) = s(A).

The proofs present no difficulty, and are left to the reader.

Remark 9. In view of Remark 2 (3), if s(A ∪ B) = ∞, then at least one of s(A)
or s(B) or s(A,B) is infinite. This naturally leads to the following question:

(Q1) If s(A ∪B) = ∞, does it follow that s(A) or s(B) is equal to ∞?

This question is also equivalent to the following one:

(Q2) Do the conditions s(A) < ∞ and s(B) < ∞ imply that s(A,B) < ∞?

In what follows (Theorem 12), we give examples of subsets A,B of N such that
s(A) = s(B) = 2 and s(A ∪ B) = ∞, thus showing that the answers to questions
(Q1) and (Q2) are negative. To that end, we first introduce a useful technical tool
in the next section.

3. Complementary Sets

Two finite subsets A,B of N are called complementary if there exists an integer
m ≥ max(A) such that B = m − A = {m − a : a ∈ A}; more specifically, A and
B are then called m-complementary. In this case, A = m − B, and |A| = |B|.
Moreover, we clearly have

fB(X) = XmfA

�
1
X

�
,

so that s(B) = s(A). Similarly,

gA,B(X) = XmfA(X)fA

�
1
X

�
,

and therefore s(A,B) = |A| = |B|.
Moreover, if (A,B) and (C,D) are two pairs of complementary subsets of N, with

B = m−A and D = n− C, then

gB,D(X) = Xm+ngA,C

�
1
X

�
,

so that s(B,D) = s(A,C).
Whence the following result
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Lemma 10. For any pair (A,B) of finite complementary subsets A,B of N, we

have

• s(A) = s(B)

• s(A,B) = |A| = |B|

• If (C,D) is any other pair of complementary subsets of N, then s(A,C) =
s(B,D).

Remark 11. For a subset A of N and two integers n, r ∈ N, with r > 0, the
condition rA(n) ≥ r is equivalent to the existence of two n-complementary subsets
U and V = n − U of A of common cardinality r. Indeed, rA(n) ≥ r if and only if
there exist r distinct pairs (ai, n−ai) ∈ A×A (1 ≤ i ≤ r), i.e., there exists a subset
U = {a1, . . . , ar} of r elements of A such that n− U is a subset V of A.

Therefore rA(n) is the maximal common cardinality of n-complementary subsets
of A. Thus s(A) is the supremum of the common cardinalities |U | = |V | of all pairs
(U, V ) of complementary subsets of A. In particular, s(A) = ∞ if and only if A has
pairs of complementary subsets of arbitrarily large cardinalities.

4. An Example

Theorem 12. There exist two infinite, disjoint subsets A and B of N such that

s(A) = s(B) = 2 and s(A ∪B) = ∞.

Proof. The proof is carried out in three stages.

i) Construction. We define inductively a sequence (An)n∈N of finite sparse
subsets of N and a sequence (mn)n∈N of integers, starting with A0 = ∅ and m0 = 0,
and satisfying the following conditions for all n ∈ N:

|An| = n , 2mn < An+1 , 2 · (mn + An+1) < mn+1.

For n ≥ 1, we clearly have An < mn, and we let Bn = mn − An to get a pair
(An, Bn) of mn-complementary subsets of N. We then set

A =
∞�

n=1

An , B =
∞�

n=1

Bn.

We undertake to show that s(A) = s(B) = 2, s(A,B) = s(A ∪B) = ∞, and A and
B are disjoint.

ii) Steps in Proof.
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(1) A is sparse, and therefore s(A) = 2, since, for n ≥ 1, we have 2 · An < mn <
An+1, and the sets An are sparse.

(2) By the defining conditions, for n ≥ 1, we have 2 · (mn − An) < 2mn <
mn+1 − An+1, so that 2 · Bn < Bn+1. Therefore the sets Bn are pairwise
disjoint.

(3) Similarly, for n ≥ 1, that mn +2 ·An+1−An−An+1 < 2mn +2max(An+1) <
mn+1, and therefore mn −An + mn+1 −An+1 < 2mn+1 − 2 · An+1, so that

Bn + Bn+1 < 2 · Bn+1.

(4) We claim (and prove below) that, for any m,n, p, q ∈ N∗ such that m ≤ p, n ≤
q and (m,p) �= (n, q), the sumsets Bm + Bp and Bn + Bq are disjoint.

(5) For n ≥ 1, let hn(X) = fBn(X). As the sets Bn are pairwise disjoint, fB(X) =�∞
n=1 hn(X), and therefore the generating series of (rB(n)) is

fB(X)2 =
∞�

n=1

hn(X)2 + 2
�

0<n<p

hn(X)hp(X).

By the claim (4), no two polynomials in these sums have a common monomial.

(6) We have s(B) = 2, even though B need not be sparse.

Indeed, the pairs An, Bn are complementary, so, by 3.1, s(Bn) = s(An) = 2
for n ≥ 2, and s(Bn, Bp) = s(An, Ap) = 1 for 0 < n < p, since s(A) = 2.
Hence, in view of (5), all the coefficients of f2

B are ≤ 2, with equality attained,
i.e., s(B) = 2.

(7) The subsets A and B are disjoint.

Indeed, otherwise, for some n, p ∈ N∗, there is an x ∈ An∩Bp, i.e., there exist
x ∈ An and y ∈ Ap such that mp = x + y, which implies that mp ∈ An + Ap.
But this is impossible, since if p < n then 2mp ≤ 2mn−1 < An, and if p ≥ n
then An + Ap ≤ 2max(Ap) < mp.

(8) We have s(A,B) = ∞, since s(A,B) ≥ s(An, Bn) = |An| = n for all n ≥ 1
(by 3.1). Note that, in view of 2.3, (2), iii), s(A,B) = ∞ is equivalent to
s(A ∪B) = ∞.

iii) Proof of Claim (4). Let m,n, p, q ∈ N∗ such that m ≤ p, n ≤ q and
(m,p) �= (n, q). We examine all essentially distinct cases: p < q, m < n = p =
q, m < n < p = q. The remaining cases, where q < p or n < m, follow similarly
by exchange of p, q or of m,n. �
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(9) If p < q, then, by (2), Bm + Bp ≤ 2max(Bp) < min(Bq) < Bn + Bq, so that
Bm + Bp and Bn + Bq are disjoint.

(10) If m < n = p = q, then, by (3), Bm + Bp ≤ max(Bp−1 + Bp) < 2min(Bp) ≤
Bn + Bq, so that Bm + Bp and Bn + Bq are disjoint.

(11) If m < n < p = q, then Bm + Bp and Bn + Bq are also disjoint.

Indeed, otherwise there exist x ∈ Bm, y ∈ Bn u, v ∈ Bp such that x+u = y+v.
As m < n, we have x < y and therefore v < u, so that mp − u < mp − v in
the sparse set Ap. Hence 2(mp − u) < mp − v, i.e. mp − u < u− v = y − x.
As mp − u ∈ Ap, this implies that y > y − x ≥ min(Ap). As n < p, it follows
that 2 · Bn < 2mn < min(Ap) < y, which is impossible since y ∈ Bn.

Example 13. The construction above yields, as a special case starting with mn =
3

n(n+3)
2 −1 and An = {3

(n−1)(n+2)
2 +k−1 : 1 ≤ k ≤ n}, the pair

A = {3n : n ∈ N and n �= k(k + 3)
2

− 1, for every k ∈ N∗},

B = {3
n(n+1)

2 −1(3n − 3k−1) : k, n ∈ N∗, with 1 ≤ k ≤ n}.

Next, we introduce a relation between infinite subsets of N which preserves the
property of having unbounded corresponding representation functions.

5. Proximity

Definition 14. For A = {a1 < a2 < · · · < an < . . . } and B = {b1 < b2 < · · · <
bn < . . . } in I, let

δ(A,B) = sup{|an − bn| : n ∈ N∗} ∈ N = N ∪ {∞}.

This defines a function δ : I × I −→ N. It is a pseudo-distance on I, i.e., it has
the properties of a distance, but it can be infinite:

i) δ(A,B) = 0 if and only if A = B

ii) δ(A,B) = δ(B,A)
iii) δ(A,C) ≤ δ(A,B) + δ(B,C), for any A,B,C ∈ I.

Furthermore, we have:

• For any A ∈ I, the proximity of A is, by definition, {B ∈ I : δ(A,B) < ∞}.

• If B is in the proximity of A, we say that A and B are close. More precisely,
if δ(A,B) ≤ d, i.e., |an − bn| ≤ d for n ∈ N∗, with d ∈ N, A and B are called
d-close.



INTEGERS 11 (2011) 11

• The relation “A is close to B” is an equivalence relation on I.

• The proximity of A is the union of all the open balls of finite radius centered
at A.

• δ induces the discrete topology on I, as the open ball {B ∈ I : δ(A,B) <
1} = {A}.

Lemma 15. Let A = {a1 < a2 < · · · < an < . . . } and B = {b1 < b2 < · · · < bn <
. . . }, in I, be d-close, with d ∈ N. Then for all m ∈ N there exists n ∈ N such that

rB(n) ≥ rA(m)
4d + 1

. (1)

Proof. Let m ∈ N and E(A,m) = {(i, j) ∈ N∗ × N∗ : ai + aj = m}. So rA(m) =
|E(A,m)|. If rA(m) = 0, the property holds trivially. So we assume rA(m) > 0,
i.e., E(A,m) �= ∅.

Let σ : E(A,m) −→ N be the map defined by σ(i, j) = bi + bj . For any n ∈
σ(E(A,m)), there exists (i, j) ∈ N∗×N∗ such that ai+aj = m and bi+bj = n. Since
δ(A,B) ≤ d, we have |ai− bi| ≤ d and |aj − bj | ≤ d, so that ai +aj − 2d ≤ bi + bj ≤
ai+aj +2d, i.e., m−2d ≤ n ≤ m+2d. Hence σ(E(A,m)) ⊂ I = [m−2d,m+2d]∩N.

Therefore E(A,m) =
�

n∈I σ−1(n) is a finite union of pairwise disjoint sets
σ−1(n) = {(i, j) ∈ N∗ × N∗ : ai + aj = m and bi + bj = n} ⊂ {(i, j) ∈ N∗ × N∗ :
bi + bj = n}, satisfying |σ−1(n)| ≤ rB(n). Thus

rA(m) = |E(A,m)| =
�

n∈I

|σ−1(n)| ≤
�

n∈I

rB(n) ≤ |I| · max{rB(n) : n ∈ I}

≤ (4d + 1)rB(n0),

where n0 ∈ I such that rB(n0) = max
n∈I

rB(n), and |I| ≤ 4d + 1.

Hence we have the existence of n = n0 ∈ N such that rB(n) ≥ rA(m)
4d+1 .

Corollary 16. Let A,B ∈ I and d ∈ N. If δ(A,B) ≤ d, then

s(A)
4d + 1

≤ s(B) ≤ (4d + 1)s(A).

Proof. By Inequality (1), rA(m) ≤ (4d + 1)s(B) for all m ∈ N. Thus s(A) ≤
(4d + 1)s(B). Hence the first inequality. Exchanging A and B yields the second
inequality.

The following corollary follows immediately from Lemma 15 since A and B are
d-close for some d ∈ N.

Corollary 17. Let A,B ∈ I. If A and B are close, then s(A) = ∞ if and only if

s(B) = ∞.
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Corollary 18. Let A ∈ I, and S = {n2 : n ∈ N∗}. If there exists a constant c ∈ N∗
such that A is close to c · S, then s(A) = ∞.

Proof. By a classical result on the number of representations of a positive integer as
a sum of two squares ([5], Theorem 278), this number is unbounded, i.e., s(S) = ∞.
Therefore, in view of 2.9, s(c · S) = ∞, and as A is close to c · S, by 5.4, we also
have s(A) = ∞.

Remark 19. The result in Corollary 18 may be considered as a weak variant of

the conjecture (GET).

Corollary 20. Let A,B ∈ I and d ∈ N. If δ(A,B) ≤ d and s(A) + s(B) < ∞,

then

|s(A)− s(B)| ≤ 4d · min(s(A), s(B)).

Proof. Assume that s(A) ≤ s(B). Then, by Corollary 16, we have s(B) ≤ (4d +
1)s(A), i.e., s(B)− s(A) ≤ 4d · s(A). Hence the result.

Remark 21. The inequalities established in Corollaries 16 and 20 hold with d =
δ(A,B), and they even hold trivially when δ(A,B) = ∞. Hence

• for all A,B ∈ I, s(B) ≤ (4δ(A,B)+1)s(A) and s(A) ≤ (4δ(A,B)+1)s(B).

• for all A,B ∈ I, s(A)+s(B) < ∞ implies |s(A)−s(B)| ≤ 4min(s(A), s(B))·
δ(A,B).

6. Relations With the Counting Function and the Caliber

Definition 22. Let A = {a1 < a2 < · · · < an < . . . } be a subset of N. For a real
number x ∈ R, setting A[x] = {a ∈ A : a ≤ x}, the counting function of A is defined
by A(x) = |A[x]|.

For x ∈ R and n ∈ N∗, the condition A(x) ≥ n is equivalent to an ≤ x, while the
condition A(x) = n is equivalent to an ≤ x < an+1. In particular A(an) = n.

When A is infinite, we define its caliber by

cal(A) = lim inf
n→∞

an

n2
.

Lemma 23. For any subset A of N and any real number x ≥ 0, we have

�

n≤x

rA(n) ≤ A(x)2 ≤
�

n≤2x

rA(n),

and therefore

s(A) ≥ sup
x≥0

A(x)2

2x + 1
.
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Proof. Note that
�

n≤x rA(n) = |
�

n≤x{(a, b) ∈ A×A : a + b = n}| = |{(a, b) ∈ A×A : a + b ≤ x}|
≤ |A[x]×A[x]| = A(x)2.

Similarly,

A(x)2 = |A[x]×A[x]| ≤ |{(a, b) ∈ A×A : a + b ≤ 2x}| =
�

n≤2x

rA(n).

This proves the first double inequality. Moreover, we have

A(x)2 ≤
�

n≤2x

rA(n) ≤
�

n≤2x

s(A) ≤ (2x + 1)s(A),

which yields the last inequality.

Theorem 24. For any infinite subset A of N, we have

s(A) ≥ 1
2 cal(A)

.

Thus, if cal(A) = 0, then s(A) = ∞.

Proof. Letting A = {a1 < a2 < · · · < an < . . . } and taking x = an in the last
inequality of Lemma 6.2, we get

s(A) ≥ sup
n≥1

A(an)2

2an + 1
≥ lim sup

n→∞

n2

2an + 1
=

1
2

lim sup
n→∞

n2

an
=

1
2

1
lim infn→∞

an
n2

,

which yields the result.

Remark 25. If there exist real constants c > 0 and 0 < t < 2 such that

an ≤ cn2−t,

for large enough n, then cal(A) = 0, and therefore s(A) = ∞. This represents a
weak variant of the conjecture (GET).
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