SUPREMUM OF REPRESENTATION FUNCTIONS

G. Grekos
Université Jean Monnet, St-Etienne, France
grekosuniv-st-etienne.fr
L. Haddad
120 rue de Charonne, Paris, France
labib.haddadwanadoo.fr
C. Helou ${ }^{1}$
Pennsylvania State University, Media, Pennsylvania
cxh22psu.edu
J. Pihko
Kyläkunnantie 53, Helsinki, Finland
jukka.pihkohelsinki.fi

Received: 7/24/10, Accepted: 2/26/11, Published: 5/18/11

Abstract

For a subset A of $\mathbb{N}=\{0,1,2, \ldots\}$, the representation function of A is defined by $r_{A}(n)=|\{(a, b) \in A \times A: a+b=n\}|$, for $n \in \mathbb{N}$, where $|E|$ denotes the cardinality of a set E. Its supremum is the element $s(A)=\sup \left\{r_{A}(n): n \in \mathbb{N}\right\}$ of $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$. Interested in the question "when is $s(A)=\infty$?", we study some properties of the function $A \mapsto s(A)$, determine its range, and construct some subsets A of \mathbb{N} for which $s(A)$ satisfies certain prescribed conditions.

1. Introduction

Let $A, B \subset \mathbb{N}=\{0,1,2, \ldots\}$. The representation function for $A+B$ and its supremum are defined by

$$
r_{A, B}(n)=|\{(a, b) \in A \times B: a+b=n\}|(\forall n \in \mathbb{N})
$$

and

$$
s(A, B)=\sup _{n \in \mathbb{N}} r_{A, B}(n) \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

where $|E|$ denotes the cardinality of a set E. In particular, for $A=B$, we write

$$
r_{A}(n)=r_{A, A}(n)=|\{(a, b) \in A \times A: a+b=n\}|(\forall n \in \mathbb{N})
$$

[^0]and
$$
s(A)=s(A, A)=\sup _{n \in \mathbb{N}} r_{A}(n) \in \overline{\mathbb{N}}
$$

The power series f_{A} associated with A, and its square g_{A}, which is the generating series of the sequence $\left(r_{A}(n)\right)$, are

$$
f_{A}(X)=\sum_{a \in A} X^{a} \quad, \quad g_{A}(X)=f_{A}(X)^{2}=\sum_{n=0}^{\infty} r_{A}(n) X^{n}
$$

and $s(A)$ is simply the supremum of the coefficients of g_{A}. More generally,

$$
g_{A, B}(X)=f_{A}(X) f_{B}(X)=\sum_{n=0}^{\infty} r_{A, B}(n) X^{n}
$$

Two celebrated conjectures of Erdős and Turán are ([1]):
(ET) If A is an asymptotic additive 2-basis of \mathbb{N}, then $s(A)=\infty$, i.e.,

$$
\left(\exists n_{0} \in \mathbb{N}: r_{A}(n)>0, \forall n \geq n_{0}\right) \Longrightarrow s(A)=\infty
$$

A more general one is
(GET) If $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\} \subset \mathbb{N}$ is an infinite subset satisfying $a_{n} \leq c n^{2}$, for a constant $c>0$ and all integers $n \geq 1$, then $s(A)=\infty$.
(GET) is more general than (ET), because if A is an asymptotic basis of \mathbb{N}, then there is a constant c such that $a_{n} \leq c n^{2}$ for all $n \geq 1$ ([4]).

This raises the more general question of determining the subsets A of \mathbb{N} for which $s(A)=\infty$. This is a more restricted problem than the notoriously difficult and open one of determining all possible representation functions of bases for \mathbb{N}. It is to be noted that the difficulty in such problems seems to arise from the fact that \mathbb{N} is just a semi-group for addition, since the analogue of the latter problem for the additive group of rational integers \mathbb{Z} has been completely solved ([6]). In what follows, we first establish some fundamental properties of the function $A \mapsto s(A)$, for subsets A of \mathbb{N}, we then study its compatibility with a natural order relation on the set of strictly increasing sequences in \mathbb{N}, we establish that the range of the function $A \mapsto s(A)$ is the whole interval $[2, \infty]$ of $\overline{\mathbb{N}}$, and we construct a family of pairs of disjoint subsets A, B of \mathbb{N} such that $s(A)=s(B)=2$ and $s(A \cup B)=\infty$. We then introduce the notion of proximity of two subsets, viewed as strictly increasing sequences, of \mathbb{N} and study its relation with the function $A \mapsto s(A)$; thus, for instance, if two subsets A, B of \mathbb{N} are close, in the sense that their general n-th terms are at a bounded distance, then $s(A)=\infty$ if and only if $s(B)=\infty$. We also study the relations of the function $A \mapsto s(A)$ with the counting function $A(x)=\mid\{a \in$ $A: a \leq x\} \mid$, where x is a real number, and the caliber $\operatorname{cal}(A)=\liminf _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}$
of a subset $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ of \mathbb{N}, thus showing, for instance, that $s(A) \geq \sup _{x \geq 0} \frac{A(x)^{2}}{2 x+1}$, and that $s(A) \geq \frac{1}{2 \operatorname{cal}(A)}$. Some of these results are contained in previous papers $([2,3])$ considered from a different perspective, but they are included here to make the study of the function $A \mapsto s(A)$ as complete and self-contained as possible.

2. Some Properties

2.1. Notations and Definitions

Let \mathcal{I} denote the set of infinite subsets $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ of \mathbb{N}. Such a subset A is often identified with the strictly increasing sequence $\left(a_{n}\right)_{n \geq 1}$ of its elements. A (partial) order relation \ll is defined on \mathcal{I} by setting, for $A=\left\{a_{1}<\right.$ $\left.a_{2}<\cdots<a_{n}<\ldots\right\}$ and $B=\left\{b_{1}<b_{2}<\cdots<b_{n}<\ldots\right\}$ in \mathcal{I},

$$
A \ll B \Longleftrightarrow a_{n} \leq b_{n}, \forall n \in \mathbb{N}^{*}
$$

where $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$.
For any subset A of \mathbb{N} and any $t \in \mathbb{N}$, we set $t+A=\{t+a: a \in A\}$ (translation of A), and $t \cdot A=\{t a: a \in A\}$ (dilation of A).

Thus, if we denote by $\mathbb{S}=\left\{n^{2}: n \in \mathbb{N}^{*}\right\}$ the set of squares in \mathbb{N}^{*}, the conjecture (GET) amounts to:
(GET) For any $A \in \mathcal{I}$,

$$
\left(\exists c \in \mathbb{N}^{*}: A \ll c \cdot \mathbb{S}\right) \Longrightarrow s(A)=\infty
$$

Remark 1. For any $A, B \in \mathcal{I}$, we clearly have

$$
B \subset A \Longrightarrow s(B) \leq s(A) \text { and } A \ll B
$$

This leads to the natural question of whether $A \ll B$ implies that $s(B) \leq s(A)$. Moreover, it is known that $s(\mathbb{S})=\infty$ (e.g., this follows from [5], Theorem 278), and (GET) says that $A \ll \mathbb{S}$ implies $s(A)=\infty$. So another question is whether the double condition $A \ll B$ and $s(B)=\infty$ implies that $s(A)=\infty$.

However, as shown in Theorem 7 below, the answer to both questions is negative, and the relation $A \ll B$ is compatible with any choice of values of $s(A)$ and $s(B)$. Furthermore, the range of the function $s(A)$ is the whole interval $[2, \infty]$ of $\overline{\mathbb{N}}$. But first, we need some technical results.

Remark 2. For any subsets A, B of \mathbb{N}, finite or infinite, we have:
(1) $s(A, B)=s(B, A) \leq \min (|A|,|B|)$.

Indeed, $r_{A, B}(n)=|\{(a, n-a): a \in A, n-a \in B\}| \leq|\{(a, n-a): a \in A\}|=$ $|A|$, and by symmetry, $r_{A, B}(n)=r_{B, A}(n) \leq|B|$, for any $n \in \mathbb{N}$.
(2) If $A \cap B=\emptyset$, then
(i) $r_{A \cup B}(n)=r_{A}(n)+r_{B}(n)+2 r_{A, B}(n), \quad$ for all $n \in \mathbb{N}$,
(ii) $r_{A \cup B, B}(n)=r_{A, B}(n)+r_{B}(n)$, for all $n \in \mathbb{N}$,
(iii) $\max (s(A), s(B), 2 s(A, B)) \leq s(A \cup B) \leq s(A)+s(B)+2 s(A, B)$,
(iv) $s(A \cup B) \leq s(A)+2|B|$.

The proofs of these are as follows:
(i) Indeed, as A and B are disjoint, $f_{A \cup B}=f_{A}+f_{B}$, and therefore $g_{A \cup B}=$ $f_{A \cup B}^{2}=g_{A}+g_{B}+2 g_{A, B}$. By identification of the coefficients, the equation holds.
(ii) As in the proof of (i), $g_{A \cup B, B}=\left(f_{A}+f_{B}\right) f_{B}=g_{A, B}+g_{B}$.
(iii) It follows from (i) that $\max \left(r_{A}(n), r_{B}(n), 2 r_{A, B}(n)\right) \leq r_{A \cup B}(n)=r_{A}(n)+$ $r_{B}(n)+2 r_{A, B}(n)$, for all $n \in \mathbb{N}$. Taking the supremum of the three terms yields the desired inequalities.
(iv) It follows from (i) and (ii) that $r_{A \cup B}(n)=r_{A}(n)+r_{B}(n)+2 r_{A, B}(n)=$ $r_{A}(n)+r_{A \cup B, B}(n)+r_{A, B}(n) \leq s(A)+s(A \cup B, B)+s(A, B)$, for all $n \in \mathbb{N}$, so that $s(A \cup B) \leq s(A)+s(A \cup B, B)+s(A, B)$. And by (1) above, $s(A, B) \leq|B|$ and $s(A \cup B, B) \leq|B|$. Hence the inequality holds.
(3) In general, when A and B are not necessarily disjoint,

$$
\begin{aligned}
& \max (s(A), s(B), s(A, B)) \leq s(A \cup B) \leq s(A)+s(B \backslash A)+2 s(A, B \backslash A) \\
& \leq s(A)+s(B)+2 s(A, B) \\
& s(A \cup B) \leq s(A)+2|B \backslash A| \leq s(A)+2|B|
\end{aligned}
$$

and by symmetry

$$
s(A \cup B) \leq s(B)+2|A \backslash B| \leq s(B)+2|A|
$$

Indeed, letting $C=B \backslash A$, as $A \cup B=A \cup C$, with A and C disjoint and $C \subset B$, by (2), we have $s(A \cup B)=s(A \cup C) \leq s(A)+s(C)+2 s(A, C) \leq$ $s(A)+s(B)+2 s(A, B)$, and $s(A \cup B)=s(A \cup C) \leq s(A)+2|C| \leq s(A)+2|B|$. This proves all inequalities except the first one, which follows from the fact that A and B are subsets of $A \cup B$.
(4) In particular, if B is finite, then $s(A)=\infty$ if and only if $s(A \cup B)=\infty$.

Indeed, by (3), we have $s(A) \leq s(A \cup B) \leq s(A)+2|B|$.
(5) The last two inequalities in (3) are optimal, as seen from the following family of examples, where A and B are finite and disjoint, and satisfy $s(A \cup B)=s(A)+$ $2|B|$. Indeed, let $h, t \in \mathbb{N}$ such that $0<2 h<t$, consider the integer intervals $U=[1, h]$ and $V=[2 h+1,2 h+t]$, and set $A=U \cup V$ and $B=[h+1,2 h] \subset \mathbb{N}$. Then $|B|=h$, and $A \cup B=[1,2 h+t]$. Therefore $s(A \cup B)=2 h+t=t+2|B|$, and we claim that $s(A)=t$, thus implying the desired equality.

Proof of claim. First note that if $I=[0, m]$ and $J=[0, n]$ are intervals in \mathbb{N}, with $0 \leq m \leq n$, then $g_{I, J}(X)=\left(\sum_{i=0}^{m} X^{i}\right)\left(\sum_{j=0}^{n} X^{j}\right)=\sum_{k=0}^{m+n} r_{I, J}(k) X^{k}$, where

$$
r_{I, J}(k)= \begin{cases}k+1 & \text { if } 0 \leq k \leq m \\ m+1 & \text { if } m \leq k \leq n \\ m+n-k+1 & \text { if } n \leq k \leq m+n\end{cases}
$$

So the monomials with largest coefficient in $g_{I, J}$ are $(m+1) X^{k}$ for $m \leq k \leq n$, and thus $s(I, J)=m+1$.

Since $A=U \cup V$, with U and V disjoint, as in (2)(i), we have $g_{A}=g_{U}+g_{V}+2 g_{U, V}$, where $g_{U}(X)=X^{2}\left(\sum_{i=0}^{h-1} X^{i}\right)^{2}=X^{2} g_{I}(X)$, with $I=[0, h-1]$, and $g_{V}(X)=$ $X^{4 h+2}\left(\sum_{j=0}^{t-1} X^{j}\right)^{2}=X^{4 h+2} g_{J}(X)$, with $J=[0, t-1]$, and

$$
2 g_{U, V}(X)=2 X^{2 h+2}\left(\sum_{i=0}^{h-1} X^{i}\right)\left(\sum_{j=0}^{t-1} X^{j}\right)=2 X^{2 h+2} g_{I, J}(X)
$$

So, applying what precedes with $m=h-1$ and $n=t-1$, we see that the only monomial with largest coefficient in g_{U} is $h X^{h+1}$ (resp., in g_{V}, is $t X^{4 h+t+1}$), and the monomials with largest coefficient in $2 g_{U, V}$ are $2 h X^{k}$ for $3 h+1 \leq k \leq 2 h+t+1$. Moreover, the degree of g_{U} is $2 h$, while the least degree of a monomial in $g_{V}+2 g_{U, V}$ is $2 h+2>2 h$, so that g_{U} and $g_{V}+2 g_{U, V}$ have no common monomial. On the other hand, the sum of the common monomials in g_{V} and $2 g_{U, V}$ is

$$
\sum_{j=4 h+2}^{2 h+t+1}(j-2 h-1) X^{j}+\sum_{j=2 h+t+2}^{3 h+t}(2 h+2 t-j+1) X^{j}
$$

in which the largest coefficient is t, as for g_{V}. We thus conclude that the largest coefficient in $g_{A}=g_{U}+g_{V}+2 g_{U, V}$ is t, i.e., $s(A)=t$.
Definition 3. A subset A of \mathbb{N} (finite or infinite) is called sparse whenever the relation $a<b$ between two elements of A implies $2 a<b$.

Notation 4. For two subsets X, Y of \mathbb{N}, we write $X<Y$ whenever for each $x \in X$ and each $y \in Y$ we have $x<y$. In this case, X is finite, possibly empty. When both $X, Y \neq \emptyset$, the relation $X<Y$ amounts to $\max (X)<\min (Y)$. When $X=\{x\}$ is a singleton, we simply write $x<Y$ instead of $\{x\}<Y$. Similarly, when $Y=\{y\}$, we write $X<y$ for $X<\{y\}$.

We similarly define $X \leq Y$, and $x \leq Y$ or $X \leq y$.

Lemma 5. Let A, F be two subsets of \mathbb{N}, with A sparse, nonempty, and F finite, possibly empty, such that $2 \cdot F<A$. Then $s(F) \leq s(F \cup A) \leq \max (s(F), 2)$. If in addition $|F \cup A| \geq 2$, then $s(F \cup A)=\max (s(F), 2)$.

Proof. Let $B=F \cup A$ and $T=\{(b, a) \in B \times A: b \leq a\}$, and define a function $\sigma: T \rightarrow \mathbb{N}$ by $\sigma(b, a)=b+a$. We first show that σ is injective. Indeed, for any $(b, a),(d, c) \in T$, if $(b, a) \neq(d, c)$, then either $a \lessgtr c$ or $(a=c$ and $b \neq d)$. If $a<c$, then $c>2 a$ (since a, c lie in A which is sparse) and $d+c>2 a \geq b+a$. Similarly, if $a>c$, then $b+a>d+c$. If $a=c$ and $b \neq d$, then $b+a=b+c \neq d+c$. Thus, in all cases, $(b, a) \neq(d, c)$ implies $\sigma(b, a) \neq \sigma(d, c)$.

Now, for any $n \in \mathbb{N}$, if $n<A$, then $r_{B}(n)=r_{F}(n) \leq s(F)$. Otherwise, $2 \cdot F<$ $a \leq n$ for some $a \in A$, so that $n \notin F+F$, and therefore $r_{B}(n)=\mid\{(x, y) \in$ $(B \times A) \cup(A \times B): x+y=n\}|\leq 2|\{(b, a) \in T: b+a=n\} \mid \leq 2$, since σ is injective. Thus $s(B) \leq \max (s(F), 2)$. Moreover, $s(F) \leq s(B)$, since $F \subset B$.

If, in addition, $|B| \geq 2$, then $s(B) \geq 2$, and therefore $s(B)=\max (s(F), 2)$.
The following is the special case $F=\emptyset$ of Lemma 5 .
Corollary 6. If A is sparse, then $s(A) \leq 2$. If in addition $|A| \geq 2$, then $s(A)=2$.
Theorem 7. For any A in \mathcal{I} and any q in the interval $[2, \infty]$ of $\overline{\mathbb{N}}$, there exists B in \mathcal{I} such that $A \ll B$ and $s(B)=q$.

Proof. The proof is divided into two parts, according as $q \in[2, \infty) \subset \mathbb{N}$ or $q=\infty$.
i). Let q be an integer greater than or equal to 2 . First note that there exists a sparse subset C of \mathbb{N} such that $A \ll C$. Indeed, if $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$, define $C=\left\{c_{1}<c_{2}<\cdots<c_{n}<\ldots\right\}$ by $c_{1}=a_{1}$, and $c_{n+1}=\max \left(a_{n+1}, 2 c_{n}+1\right)$ for $n \geq 1$. So, replacing A by C, we may assume A sparse, and therefore $s(A)=2$.

Let $h \in \mathbb{N}^{*}$ such that $h>a_{q}$, and $F=\{n h: 1 \leq n \leq q\}$. Also, let $p \in \mathbb{N}^{*}$ such that $a_{p}>2 q h$, and define $B=\left\{b_{1}<b_{2}<\cdots<b_{n}<\ldots\right\}$ by

$$
b_{n}= \begin{cases}n h & \text { if } 1 \leq n \leq q \\ a_{p+n} & \text { if } n>q\end{cases}
$$

Then $a_{n} \leq a_{q}<n h=b_{n}$ for $1 \leq n \leq q$, and $a_{n}<a_{p+n}=b_{n}$ for $n>q$, so that $A \ll B$. Also, $B=F \cup G$, where $G=\left\{a_{p+n}: n \geq q+1\right\} \subset A$, so that G is sparse like A, and $2 \cdot F<a_{p}<G$. Therefore, by Lemma $5, s(B)=\max (s(F), 2)=s(F)=$ q, since F is an arithmetic progression of length q.
ii). If $q=\infty$, we define a sequence $\left(F_{n}\right)_{n \in \mathbb{N}^{*}}$ of subsets of \mathbb{N} such that $F_{1}<$ $F_{2}<\cdots<F_{n}<\ldots$, and each F_{n} is an arithmetic progression of length n, say $F_{n}=\left\{k f_{n}: 1 \leq k \leq n\right\}$ with $f_{n} \in \mathbb{N}$, by setting $F_{1}=\left\{a_{1}\right\}$, and inductively choosing an integer $f_{n+1}>\max \left(n f_{n}, a_{\frac{(n+1)(n+2)}{2}}\right)$ and setting $F_{n+1}=\left\{k f_{n+1}: 1 \leq k \leq n+1\right\}$. We then let $B=\bigcup_{n=1}^{\infty} F_{n}$, so that $b_{1}=a_{1}$, and for an index $m \geq 2$, if n is the unique integer such that $\frac{n(n+1)}{2}<m \leq \frac{(n+1)(n+2)}{2}$, and $1 \leq k:=m-\frac{n(n+1)}{2} \leq n+1$, then
$b_{m}=k f_{n+1} \geq f_{n+1}>a_{\frac{(n+1)(n+2)}{2}} \geq a_{m}$. Therefore $A \ll B$, and $s(B) \geq s\left(F_{n}\right)=n$ for all $n \in \mathbb{N}^{*}$, i.e., $s(B)=\infty$.

Remark 8. For any subset A of \mathbb{N} and any $t \in \mathbb{N}$, we have $s(t+A)=s(A)$, and if if $t \neq 0$, then we have $s(t \cdot A)=s(A)$.

The proofs present no difficulty, and are left to the reader.
Remark 9. In view of Remark 2 (3), if $s(A \cup B)=\infty$, then at least one of $s(A)$ or $s(B)$ or $s(A, B)$ is infinite. This naturally leads to the following question:
(Q1) If $s(A \cup B)=\infty$, does it follow that $s(A)$ or $s(B)$ is equal to ∞ ?
This question is also equivalent to the following one:
(Q2) Do the conditions $s(A)<\infty$ and $s(B)<\infty$ imply that $s(A, B)<\infty$?
In what follows (Theorem 12), we give examples of subsets A, B of \mathbb{N} such that $s(A)=s(B)=2$ and $s(A \cup B)=\infty$, thus showing that the answers to questions (Q1) and (Q2) are negative. To that end, we first introduce a useful technical tool in the next section.

3. Complementary Sets

Two finite subsets A, B of \mathbb{N} are called complementary if there exists an integer $m \geq \max (A)$ such that $B=m-A=\{m-a: a \in A\}$; more specifically, A and B are then called m-complementary. In this case, $A=m-B$, and $|A|=|B|$. Moreover, we clearly have

$$
f_{B}(X)=X^{m} f_{A}\left(\frac{1}{X}\right)
$$

so that $s(B)=s(A)$. Similarly,

$$
g_{A, B}(X)=X^{m} f_{A}(X) f_{A}\left(\frac{1}{X}\right)
$$

and therefore $s(A, B)=|A|=|B|$.
Moreover, if (A, B) and (C, D) are two pairs of complementary subsets of \mathbb{N}, with $B=m-A$ and $D=n-C$, then

$$
g_{B, D}(X)=X^{m+n} g_{A, C}\left(\frac{1}{X}\right)
$$

so that $s(B, D)=s(A, C)$.
Whence the following result

Lemma 10. For any pair (A, B) of finite complementary subsets A, B of \mathbb{N}, we have

- $s(A)=s(B)$
- $s(A, B)=|A|=|B|$
- If (C, D) is any other pair of complementary subsets of \mathbb{N}, then $s(A, C)=$ $s(B, D)$.

Remark 11. For a subset A of \mathbb{N} and two integers $n, r \in \mathbb{N}$, with $r>0$, the condition $r_{A}(n) \geq r$ is equivalent to the existence of two n-complementary subsets U and $V=n-U$ of A of common cardinality r. Indeed, $r_{A}(n) \geq r$ if and only if there exist r distinct pairs $\left(a_{i}, n-a_{i}\right) \in A \times A(1 \leq i \leq r)$, i.e., there exists a subset $U=\left\{a_{1}, \ldots, a_{r}\right\}$ of r elements of A such that $n-U$ is a subset V of A.

Therefore $r_{A}(n)$ is the maximal common cardinality of n-complementary subsets of A. Thus $s(A)$ is the supremum of the common cardinalities $|U|=|V|$ of all pairs (U, V) of complementary subsets of A. In particular, $s(A)=\infty$ if and only if A has pairs of complementary subsets of arbitrarily large cardinalities.

4. An Example

Theorem 12. There exist two infinite, disjoint subsets A and B of \mathbb{N} such that $s(A)=s(B)=2$ and $s(A \cup B)=\infty$.

Proof. The proof is carried out in three stages.
i) Construction. We define inductively a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of finite sparse subsets of \mathbb{N} and a sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of integers, starting with $A_{0}=\emptyset$ and $m_{0}=0$, and satisfying the following conditions for all $n \in \mathbb{N}$:

$$
\left|A_{n}\right|=n \quad, \quad 2 m_{n}<A_{n+1} \quad, \quad 2 \cdot\left(m_{n}+A_{n+1}\right)<m_{n+1}
$$

For $n \geq 1$, we clearly have $A_{n}<m_{n}$, and we let $B_{n}=m_{n}-A_{n}$ to get a pair $\left(A_{n}, B_{n}\right)$ of m_{n}-complementary subsets of \mathbb{N}. We then set

$$
A=\bigcup_{n=1}^{\infty} A_{n} \quad, \quad B=\bigcup_{n=1}^{\infty} B_{n} .
$$

We undertake to show that $s(A)=s(B)=2, s(A, B)=s(A \cup B)=\infty$, and A and B are disjoint.

ii) Steps in Proof.

(1) A is sparse, and therefore $s(A)=2$, since, for $n \geq 1$, we have $2 \cdot A_{n}<m_{n}<$ A_{n+1}, and the sets A_{n} are sparse.
(2) By the defining conditions, for $n \geq 1$, we have $2 \cdot\left(m_{n}-A_{n}\right)<2 m_{n}<$ $m_{n+1}-A_{n+1}$, so that $2 \cdot B_{n}<B_{n+1}$. Therefore the sets B_{n} are pairwise disjoint.
(3) Similarly, for $n \geq 1$, that $m_{n}+2 \cdot A_{n+1}-A_{n}-A_{n+1}<2 m_{n}+2 \max \left(A_{n+1}\right)<$ m_{n+1}, and therefore $m_{n}-A_{n}+m_{n+1}-A_{n+1}<2 m_{n+1}-2 \cdot A_{n+1}$, so that

$$
B_{n}+B_{n+1}<2 \cdot B_{n+1}
$$

(4) We claim (and prove below) that, for any $m, n, p, q \in \mathbb{N}^{*}$ such that $m \leq p, n \leq$ q and $(m, p) \neq(n, q)$, the sumsets $B_{m}+B_{p}$ and $B_{n}+B_{q}$ are disjoint.
(5) For $n \geq 1$, let $h_{n}(X)=f_{B_{n}}(X)$. As the sets B_{n} are pairwise disjoint, $f_{B}(X)=$ $\sum_{n=1}^{\infty} h_{n}(X)$, and therefore the generating series of $\left(r_{B}(n)\right)$ is

$$
f_{B}(X)^{2}=\sum_{n=1}^{\infty} h_{n}(X)^{2}+2 \sum_{0<n<p} h_{n}(X) h_{p}(X)
$$

By the claim (4), no two polynomials in these sums have a common monomial.
(6) We have $s(B)=2$, even though B need not be sparse.

Indeed, the pairs A_{n}, B_{n} are complementary, so, by $3.1, s\left(B_{n}\right)=s\left(A_{n}\right)=2$ for $n \geq 2$, and $s\left(B_{n}, B_{p}\right)=s\left(A_{n}, A_{p}\right)=1$ for $0<n<p$, since $s(A)=2$. Hence, in view of (5), all the coefficients of f_{B}^{2} are ≤ 2, with equality attained, i.e., $s(B)=2$.
(7) The subsets A and B are disjoint.

Indeed, otherwise, for some $n, p \in \mathbb{N}^{*}$, there is an $x \in A_{n} \cap B_{p}$, i.e., there exist $x \in A_{n}$ and $y \in A_{p}$ such that $m_{p}=x+y$, which implies that $m_{p} \in A_{n}+A_{p}$. But this is impossible, since if $p<n$ then $2 m_{p} \leq 2 m_{n-1}<A_{n}$, and if $p \geq n$ then $A_{n}+A_{p} \leq 2 \max \left(A_{p}\right)<m_{p}$.
(8) We have $s(A, B)=\infty$, since $s(A, B) \geq s\left(A_{n}, B_{n}\right)=\left|A_{n}\right|=n$ for all $n \geq 1$ (by 3.1). Note that, in view of $2.3,(2)$, iii) $s(A, B)=\infty$ is equivalent to $s(A \cup B)=\infty$.
iii) Proof of Claim (4). Let $m, n, p, q \in \mathbb{N}^{*}$ such that $m \leq p, n \leq q$ and $(m, p) \neq(n, q)$. We examine all essentially distinct cases: $p<q, \quad m<n=p=$ $q, \quad m<n<p=q$. The remaining cases, where $q<p$ or $n<m$, follow similarly by exchange of p, q or of m, n.
(9) If $p<q$, then, by (2), $B_{m}+B_{p} \leq 2 \max \left(B_{p}\right)<\min \left(B_{q}\right)<B_{n}+B_{q}$, so that $B_{m}+B_{p}$ and $B_{n}+B_{q}$ are disjoint.
(10) If $m<n=p=q$, then, by (3), $B_{m}+B_{p} \leq \max \left(B_{p-1}+B_{p}\right)<2 \min \left(B_{p}\right) \leq$ $B_{n}+B_{q}$, so that $B_{m}+B_{p}$ and $B_{n}+B_{q}$ are disjoint.
(11) If $m<n<p=q$, then $B_{m}+B_{p}$ and $B_{n}+B_{q}$ are also disjoint.

Indeed, otherwise there exist $x \in B_{m}, y \in B_{n} u, v \in B_{p}$ such that $x+u=y+v$. As $m<n$, we have $x<y$ and therefore $v<u$, so that $m_{p}-u<m_{p}-v$ in the sparse set A_{p}. Hence $2\left(m_{p}-u\right)<m_{p}-v$, i.e. $m_{p}-u<u-v=y-x$. As $m_{p}-u \in A_{p}$, this implies that $y>y-x \geq \min \left(A_{p}\right)$. As $n<p$, it follows that $2 \cdot B_{n}<2 m_{n}<\min \left(A_{p}\right)<y$, which is impossible since $y \in B_{n}$.

Example 13. The construction above yields, as a special case starting with $m_{n}=$ $3^{\frac{n(n+3)}{2}-1}$ and $A_{n}=\left\{3^{\frac{(n-1)(n+2)}{2}+k-1}: 1 \leq k \leq n\right\}$, the pair

$$
\begin{aligned}
& A=\left\{3^{n}: n \in \mathbb{N} \text { and } n \neq \frac{k(k+3)}{2}-1, \text { for every } k \in \mathbb{N}^{*}\right\} \\
& B=\left\{3^{\frac{n(n+1)}{2}-1}\left(3^{n}-3^{k-1}\right): k, n \in \mathbb{N}^{*}, \text { with } 1 \leq k \leq n\right\}
\end{aligned}
$$

Next, we introduce a relation between infinite subsets of \mathbb{N} which preserves the property of having unbounded corresponding representation functions.

5. Proximity

Definition 14. For $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ and $B=\left\{b_{1}<b_{2}<\cdots<\right.$ $\left.b_{n}<\ldots\right\}$ in \mathcal{I}, let

$$
\delta(A, B)=\sup \left\{\left|a_{n}-b_{n}\right|: n \in \mathbb{N}^{*}\right\} \in \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}
$$

This defines a function $\delta: \mathcal{I} \times \mathcal{I} \longrightarrow \overline{\mathbb{N}}$. It is a pseudo-distance on \mathcal{I}, i.e., it has the properties of a distance, but it can be infinite:
i) $\delta(A, B)=0$ if and only if $A=B$
ii) $\delta(A, B)=\delta(B, A)$
iii) $\delta(A, C) \leq \delta(A, B)+\delta(B, C)$, for any $A, B, C \in \mathcal{I}$.

Furthermore, we have:

- For any $A \in \mathcal{I}$, the proximity of A is, by definition, $\{B \in \mathcal{I}: \delta(A, B)<\infty\}$.
- If B is in the proximity of A, we say that A and B are close. More precisely, if $\delta(A, B) \leq d$, i.e., $\left|a_{n}-b_{n}\right| \leq d$ for $n \in \mathbb{N}^{*}$, with $d \in \mathbb{N}, A$ and B are called d-close.
- The relation " A is close to B " is an equivalence relation on \mathcal{I}.
- The proximity of A is the union of all the open balls of finite radius centered at A.
- δ induces the discrete topology on \mathcal{I}, as the open ball $\{B \in \mathcal{I}: \delta(A, B)<$ $1\}=\{A\}$.

Lemma 15. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ and $B=\left\{b_{1}<b_{2}<\cdots<b_{n}<\right.$ $\ldots\}$, in \mathcal{I}, be d-close, with $d \in \mathbb{N}$. Then for all $m \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that

$$
\begin{equation*}
r_{B}(n) \geq \frac{r_{A}(m)}{4 d+1} \tag{1}
\end{equation*}
$$

Proof. Let $m \in \mathbb{N}$ and $E(A, m)=\left\{(i, j) \in \mathbb{N}^{*} \times \mathbb{N}^{*}: a_{i}+a_{j}=m\right\}$. So $r_{A}(m)=$ $|E(A, m)|$. If $r_{A}(m)=0$, the property holds trivially. So we assume $r_{A}(m)>0$, i.e., $E(A, m) \neq \emptyset$.

Let $\sigma: E(A, m) \longrightarrow \mathbb{N}$ be the map defined by $\sigma(i, j)=b_{i}+b_{j}$. For any $n \in$ $\sigma(E(A, m))$, there exists $(i, j) \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ such that $a_{i}+a_{j}=m$ and $b_{i}+b_{j}=n$. Since $\delta(A, B) \leq d$, we have $\left|a_{i}-b_{i}\right| \leq d$ and $\left|a_{j}-b_{j}\right| \leq d$, so that $a_{i}+a_{j}-2 d \leq b_{i}+b_{j} \leq$ $a_{i}+a_{j}+2 d$, i.e., $m-2 d \leq n \leq m+2 d$. Hence $\sigma(E(A, m)) \subset I=[m-2 d, m+2 d] \cap \mathbb{N}$.

Therefore $E(A, m)=\bigcup_{n \in I} \sigma^{-1}(n)$ is a finite union of pairwise disjoint sets $\sigma^{-1}(n)=\left\{(i, j) \in \mathbb{N}^{*} \times \mathbb{N}^{*}: a_{i}+a_{j}=m\right.$ and $\left.b_{i}+b_{j}=n\right\} \subset\left\{(i, j) \in \mathbb{N}^{*} \times \mathbb{N}^{*}:\right.$ $\left.b_{i}+b_{j}=n\right\}$, satisfying $\left|\sigma^{-1}(n)\right| \leq r_{B}(n)$. Thus

$$
\begin{aligned}
r_{A}(m)=|E(A, m)|=\sum_{n \in I}\left|\sigma^{-1}(n)\right| \leq \sum_{n \in I} r_{B}(n) & \leq|I| \cdot \max \left\{r_{B}(n): n \in I\right\} \\
& \leq(4 d+1) r_{B}\left(n_{0}\right)
\end{aligned}
$$

where $n_{0} \in I$ such that $r_{B}\left(n_{0}\right)=\max _{n \in I} r_{B}(n)$, and $|I| \leq 4 d+1$.
Hence we have the existence of $n=n_{0} \in \mathbb{N}$ such that $r_{B}(n) \geq \frac{r_{A}(m)}{4 d+1}$.
Corollary 16. Let $A, B \in \mathcal{I}$ and $d \in \mathbb{N}$. If $\delta(A, B) \leq d$, then

$$
\frac{s(A)}{4 d+1} \leq s(B) \leq(4 d+1) s(A)
$$

Proof. By Inequality $(1), r_{A}(m) \leq(4 d+1) s(B)$ for all $m \in \mathbb{N}$. Thus $s(A) \leq$ $(4 d+1) s(B)$. Hence the first inequality. Exchanging A and B yields the second inequality.

The following corollary follows immediately from Lemma 15 since A and B are d-close for some $d \in \mathbb{N}$.

Corollary 17. Let $A, B \in \mathcal{I}$. If A and B are close, then $s(A)=\infty$ if and only if $s(B)=\infty$.

Corollary 18. Let $A \in \mathcal{I}$, and $\mathbb{S}=\left\{n^{2}: n \in \mathbb{N}^{*}\right\}$. If there exists a constant $c \in \mathbb{N}^{*}$ such that A is close to $c \cdot \mathbb{S}$, then $s(A)=\infty$.

Proof. By a classical result on the number of representations of a positive integer as a sum of two squares ([5], Theorem 278), this number is unbounded, i.e., $s(\mathbb{S})=\infty$. Therefore, in view of $2.9, s(c \cdot \mathbb{S})=\infty$, and as A is close to $c \cdot \mathbb{S}$, by 5.4 , we also have $s(A)=\infty$.

Remark 19. The result in Corollary 18 may be considered as a weak variant of the conjecture (GET).

Corollary 20. Let $A, B \in \mathcal{I}$ and $d \in \mathbb{N}$. If $\delta(A, B) \leq d$ and $s(A)+s(B)<\infty$, then

$$
|s(A)-s(B)| \leq 4 d \cdot \min (s(A), s(B))
$$

Proof. Assume that $s(A) \leq s(B)$. Then, by Corollary 16, we have $s(B) \leq(4 d+$ 1) $s(A)$, i.e., $s(B)-s(A) \leq 4 d \cdot s(A)$. Hence the result.

Remark 21. The inequalities established in Corollaries 16 and 20 hold with $d=$ $\delta(A, B)$, and they even hold trivially when $\delta(A, B)=\infty$. Hence

- for all $A, B \in \mathcal{I}, s(B) \leq(4 \delta(A, B)+1) s(A)$ and $s(A) \leq(4 \delta(A, B)+1) s(B)$.
- for all $A, B \in \mathcal{I}, s(A)+s(B)<\infty$ implies $|s(A)-s(B)| \leq 4 \min (s(A), s(B))$. $\delta(A, B)$.

6. Relations With the Counting Function and the Caliber

Definition 22. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ be a subset of \mathbb{N}. For a real number $x \in \mathbb{R}$, setting $A[x]=\{a \in A: a \leq x\}$, the counting function of A is defined by $A(x)=|A[x]|$.

For $x \in \mathbb{R}$ and $n \in \mathbb{N}^{*}$, the condition $A(x) \geq n$ is equivalent to $a_{n} \leq x$, while the condition $A(x)=n$ is equivalent to $a_{n} \leq x<a_{n+1}$. In particular $A\left(a_{n}\right)=n$.

When A is infinite, we define its caliber by

$$
\operatorname{cal}(A)=\liminf _{n \rightarrow \infty} \frac{a_{n}}{n^{2}} .
$$

Lemma 23. For any subset A of \mathbb{N} and any real number $x \geq 0$, we have

$$
\sum_{n \leq x} r_{A}(n) \leq A(x)^{2} \leq \sum_{n \leq 2 x} r_{A}(n)
$$

and therefore

$$
s(A) \geq \sup _{x \geq 0} \frac{A(x)^{2}}{2 x+1} .
$$

Proof. Note that

$$
\begin{aligned}
\sum_{n \leq x} r_{A}(n) & =\left|\bigcup_{n \leq x}\{(a, b) \in A \times A: a+b=n\}\right|=|\{(a, b) \in A \times A: a+b \leq x\}| \\
& \leq|A[x] \times A[x]|=A(x)^{2}
\end{aligned}
$$

Similarly,

$$
A(x)^{2}=|A[x] \times A[x]| \leq|\{(a, b) \in A \times A: a+b \leq 2 x\}|=\sum_{n \leq 2 x} r_{A}(n) .
$$

This proves the first double inequality. Moreover, we have

$$
A(x)^{2} \leq \sum_{n \leq 2 x} r_{A}(n) \leq \sum_{n \leq 2 x} s(A) \leq(2 x+1) s(A)
$$

which yields the last inequality.
Theorem 24. For any infinite subset A of \mathbb{N}, we have

$$
s(A) \geq \frac{1}{2 \operatorname{cal}(A)}
$$

Thus, if $\operatorname{cal}(A)=0$, then $s(A)=\infty$.
Proof. Letting $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ and taking $x=a_{n}$ in the last inequality of Lemma 6.2, we get

$$
s(A) \geq \sup _{n \geq 1} \frac{A\left(a_{n}\right)^{2}}{2 a_{n}+1} \geq \limsup _{n \rightarrow \infty} \frac{n^{2}}{2 a_{n}+1}=\frac{1}{2} \limsup _{n \rightarrow \infty} \frac{n^{2}}{a_{n}}=\frac{1}{2} \frac{1}{\liminf _{n \rightarrow \infty} \frac{a_{n}}{n^{2}}},
$$

which yields the result.
Remark 25. If there exist real constants $c>0$ and $0<t<2$ such that

$$
a_{n} \leq c n^{2-t}
$$

for large enough n, then $\operatorname{cal}(A)=0$, and therefore $s(A)=\infty$. This represents a weak variant of the conjecture (GET).

Acknowledgments We thank the referee for a careful reading of the paper and for pertinent suggestions.

References

[1] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems J. London Math. Soc. 16 (1941),212-215.
[2] G. Grekos, L. Haddad, C. Helou, J. Pihko, The class of Erdős-Turán sets, Acta Arith. 117 (2005), 81-105.
[3] , G. Grekos, L. Haddad, C. Helou, J. Pihko, Variations on a theme of Cassels for additive bases, Int. J. Number Theory 2 (2006), 249-265.
[4] , H. Halberstam and K. F. Roth, Sequences, Clarendon Press, Oxford, 1966.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University Press, 1979.
[6] M. B. Nathanson, Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), 55-72.

[^0]: ${ }^{1}$ Corresponding author.

