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Abstract

We show that a completely multiplicative automatic function, which does not
have 0 as a value, is almost periodic.

1. Introduction and Results

A finite automaton consists of a finite set of states with a specified starting state
s0, an input alphabet A, an output alphabet B, and two functions f : A× S → S,
g : S → B. Given a word w over A, the output of the automaton is determined as
follows. At first, the automaton is in s0. Then the first letter a of w is read, and
the new state of the automaton is changed to s1 = f(a, s0). Then the next letter
b of w is read, and the state of the automaton is changed to s2 = f(b, s1). This
is repeated untill all letters of w are read, and the procedure terminates. If the
automaton ends in the state s, it returns the value g(s).

Fix some integer q ≥ 2. In our context, the alphabet A consists of the integers
0, 1, . . . , q − 1, and B consists of complex numbers. Every integer n ≥ 1 can be
written in the form n =

�
ei(n)qi with ei(n) ∈ {0, 1, . . . , q − 1}, hence n can be

viewed as a word over A, and the automaton can be applied to this word. More
precisely, write n =

�k
i=0 eiqi with ei ∈ {0, 1, . . . , q − 1} and ek �= 0, and identify

the integer n with the string ekek−1 . . . e1e0. In this way, every automaton defines
a sequence (an)n≥0. A sequence is called automatic if there exists an integer q and
a finite automaton, which defines this sequence.

Apart from its relation to computer science, the importance of automatic se-
quences stems from their natural interactions with many fields of mathematics,
including algebra, dynamical systems, and in particular with number theory. For
an overview of applications we refer the reader to [1].

A function f : N → C is called completely multiplicative if f(nm) = f(n)f(m)
holds true for all n,m ∈ N. The question of which multiplicative functions are
automatic has been dealt with by several authors, both for concrete examples (see,
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e.g., [6], [5], [2]) and for classes of functions (see, e.g., [10] and [4]).
In the last two articles mentioned the set of integers n with f(n) = 0 played a cru-

cial role, and therefore the condition that there are sufficiently many prime powers
q for which f(q) = 0 comes in naturally. If f does not vanish, these approaches fail.
The local behavior of multiplicative functions that do not vanish; that is, the ques-
tion of how, for a fixed k, the set of patterns {(f(n), f(n+1), . . . , f(n+k) : n ∈ N}
looks, appears to be completely mysterious. However, Ramsey theory implies that
there is no total chaos; that is, no matter how difficult something looks, there is
always a small region of order. It is the strategy of the present paper to exploit
these small regions. We will prove the following.

Proposition 1 Let q ≥ 2 be an integer, and f be a completely multiplicative q-
automatic function, which does not vanish. Then there exists an integer k, such
that if n1, n2, � are integers such that (n1, q�+1)|q�, and n1 ≡ n2 (mod qk+�), then
f(n1) = f(n2).

Theorem 2 Let f be a completely multiplicative automatic function, which does
not vanish. Then f is almost periodic.

Here a function is called almost periodic if there exists a sequence of periodic func-
tions (fi), such that the upper density of the set {n : f(n) �= fi(n)} tends to 0 as i
tends to ∞.

2. Some Lemmas

For the proof of the theorem we need the following two famous statements. The
first is van der Waerden’s theorem (see [8] for van der Waerden’s proof or, for a
more accessible proof, see [7]), the second the Wirsing-Halasz-Theorem (see [9], [3]).

Theorem 3 Let N be an integer, S a finite set, χ : N→ S a coloring. Then there
exist a monochromatic arithmetic progression of length N , that is, there are integers
a,D, such that χ(a) = χ(a + D) = χ(a + 2D) = · · · = χ(a + DN).

For a function f : N→ C we say that it has mean value M(f), if the limit

lim
x→∞

1
x

�

n≤x

f(n) = M(f)

exists.

Theorem 4 Let f be a complex-valued multiplicative function such that |f(n)| ≤ 1
for all n. Then there exists a real number t such that n �→ nitf(n) has a mean
value. If for all t ∈ R the series

�
p
�(1−pitf(p))

p diverges, then the mean value of
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nitf(n) is 0 for all real t. If this series converges for some t, than for this t the
mean value exists and is not zero.

The following simple observation is quite useful.

Lemma 5 Let f be a completely multiplicative function, which takes only finitely
many different values. Then each value of f is either 0 or a root of unity.

Proof. Consider the sequence f(n), f(n2), f(n3), . . .. Since f takes only finitely
many different values, there must be indices i �= j with f(ni) = f(nj). By complete
multiplicativity this means f(n)i = f(n)j ; hence, either f(n) = 0, or f(n)j−i = 1.
In both cases our claim follows. ✷

Lemma 6 Let f be a completely multiplicative function which takes only finitely
many different values. Then the restriction of f to any residue class has a mean
value, that is, for each m and a the limit

M(m,a) := lim
x→∞

m

x

�

n≤x
n≡a (mod m)

f(n)

exists. If there exist integers m,a, such that |M(m,a) = 1|, then we have f(n) = 1
for all n ≡ 1 (mod m).

Proof. If f is completely multiplicative and takes only finitely many values, then
all values of f are 0 or roots of unity. Hence, |f(n)| ≤ 1 for all n, and we can apply
the Wirsing-Halász theorem (Theorem 4) to find that there exists some t such that
nitf(n) has a mean value. We claim that f itself has a mean value. To prove the
claim, it suffices to show that

�
p
�(1−pitf(p))

p diverges for every t �= 0. Let t �= 0
be fixed, R ⊆ C be the range of f , and let � > 0 be small enough that

�
z∈R B�(z)

covers at most half of the boundary of the unit circle. Then from the prime number
theorem it follows that 1− pitf(p) > � for a set of primes of positive relative lower
density. Since |f(p)| ∈ {0, 1}, this implies that �(1 − pitf(p)) > �2

3 , and hence,
�

p
�(1−pitf(p))

p diverges. Replacing f by χf for a Dirichlet-character χ, and taking
linear combinations, we find that M(m,a) exists whenever m and a are coprime.
If (a,m) = d, we can use complete multiplicativity to see that M(m,a) exists and
equals f(d)M(m/d, ad−1). Hence, in any case M(m,a) exists.

Now suppose that |M(m,a)| = 1 for some integers m,a. Since f takes only
finitely many values, and all values are in the unit circle, this implies that f(n) =
M(m,a) holds true for all n ≡ a (mod m) with the possible exception of a set
of density 0. Now let n1 be an integer congruent to 1 modulo m, and suppose
that f(n1) �= 1. Then for every integer n ≡ a (mod m) we have that one of f(n),
f(nn1) is different from M(m,a), while both n and nn1 are congruent to 1 modulo
m. Hence, the number of integers n ≤ x in the arithmetic progression a (mod m)
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which do not satisfy f(n) = M(m,a) is at least x
m(n1+1) , contradicting the fact that

f(n) = M(m,a) holds true for almost all n congruent to a modulo m. Hence, no
such n1 exists, and we conclude that f(n) = 1 for all n ≡ 1 (mod m). ✷

The following is probably folklore.

Lemma 7 Let �1 ≤ · · · ≤ �m ∈ N be positive integers, and G ⊆ N be the additive
semigroup generated by these integers. If n ≥ �1 · �m, then y ∈ G if and only if the
greatest common divisor of �1, . . . , �m divides n.

Proof. Necessity is clear. Let Rk be the set of residue classes modulo �1, which can
be represented as x2�2 + · · ·+ xm�m with xi ≥ 0, x2 + · · ·+ xm ≤ k. The sequence
R1 ⊆ R2 ⊆ . . . is strictly increasing until at some point it becomes stable. Since
there are only �1 residue classes, this sequence has to stabilize after at most �1 steps,
and we obtain R�1 + �i = R�i for i = 2, . . . ,m. Choose r1, r2 ∈ R�1 . Then we can
write r1 =

�m
i=2 xi�i, and obtain

r1 + r2 = r2 + �2 + · · · + �2� �� �
x2

+ · · · + �m + · · · + �m� �� �
xm

∈ (. . . (R�1 +�2) + · · · + �2)� �� �
x2

+ . . .+�m) + · · · + �m)� �� �
xm

= R�1 .

Hence, R�1 is the subgroup of the additive group of Z/�1Z generated by �2, �3, . . . ,
�m, which coincides with the subgroup generated by the greatest common
divisor of �1, . . . , �m. Hence, if n > �1�m is an integer divisible by (�1, . . . , �m),
then we can represent an integer n� ≡ n (mod �1), n� ≤ n, as a non-negative lin-
ear combination using at most �1 summands, and obtain a representation of n as
n = n� + n−n�

�1
�1. ✷

3. Proof of the Theorem

Once we have proven Proposition 1, the theorem can be deduced as follows. Define
fi(n) = f(n mod qk+i), where k is as in the proposition. Clearly, fi is periodic,
and fi(n) = f(n) unless (n, qi) � qi. The upper density of integers n with the latter
property tends to 0 as i tends to infinity. Hence, f is approximated by the periodic
functions fi, and therefore almost periodic.

The remainder of this section is devoted to the proof of Proposition 1.

Proof of Proposition 1. Let S be the state space of the automaton. Define a function
χ : N → S by setting χ(n) to be the state the automaton is in after reading n. By
van der Waerden’s theorem there exist arbitrarily long χ-monochromatic arithmetic
progressions. Set N = 2q|S|!, and let a, D be integers, such that a, a + D, a +
2D, . . . , a + ND is a χ-monochromatic arithmetic progression. Then for every k
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and every integer b ∈ [0, qk − 1] each element of the set {aqk + b, (a + D)qk +
b, . . . , (a + ND)qk + b} is mapped by f to the same element. We now choose k
such that qk > D, and b such that aqk + b ≡ 0 (mod D). Then all elements of the
progression are divisible by D, and since f is completely multiplicative and does not
vanish, we obtain that {aqk+b

D , aqk+b
D +qk, . . . , aqk+b

D +Nqk} is an f -monochromatic
progression with difference qk. We write a� := aqk+b

D = uqk+|S|! + vqk + w where
u, v, w are integers satisfying 0 ≤ v < q|S|!, 0 ≤ w < qk. By deleting an initial part
of the arithmetic progression we may assume that v = 0, and in this way the length
of the progression is reduced by less than q|S|!.

Let s be the state the automaton is in after reading u, and let X ⊆ S be the set
of states which can be reached from s for some input string of length |S|!. S run of
the automaton after reading some string can be described by a path in a directed
graph with |S| vertices. If there is a path of length |S|! from s to s�, then this path
can be written as the union of a simple path of length �0, and disjoint minimal
loops of length �1, . . . , �m, which occur with multiplicity x1, . . . , xm in the path,
such that x1�1 + · · · + xm�m = |S|! − �0 is solvable with non-negative integers xi,
and �0 + · · ·+ �m ≤ |S|. Since |S|! is divisible by every integer ≤ |S|, and therefore
by the greatest common divisor d of �1, . . . , �m, we find that �0 is divisible by d.
Moreover, we have �1 · · · �m ≤ |S|! − �0. Hence, from Lemma 7 we conclude that
the equation x1�1 + · · · + xm�m = y|S|!− �0 is solvable in non-negative integers xi

for every integer y ≥ 1. Hence, every state which can be reached from s with |S|!
steps, can be reached with y(|S|!) steps for every y ≥ 1. Conversely, if a state can
be reached with y(|S|!) steps for some y ≥ 1, then it can already be reached with
|S|! steps. Hence, for each y we have that the set X is equal to the set of all states
reachable from s within y(|S|!) steps.

For each s� ∈ X we have that starting in s� and reading w, the automaton ends
in a state which produces the value f(a�), since {a�, a� + qk, . . . , a� + Nqk} is an
f -monochromatic progression. Hence, we conclude that for every y ≥ 1 and every
integer v with ≤ y(|S|!) digits we have f(uqk+y|S|! + vqk +w) = f(a�). This implies
for all y ≥ 1 that

�

uqk+y|S|!≤n<(u+1)qk+y|S|!

n≡w (mod qk)

f(n) = qy|S|!f(a�).

On each fixed arithmetic progression a modulo m the function f has a mean value
M(m,a); in particular, we have

�

uqk+y|S|!≤n<(u+1)qk+y|S|!

n≡w (mod qk)

f(n) = qy|S|!M(qk, w) + o(uqk+y|S|!).

Since u and k are fixed, while y may tend to ∞, we can delete u and k in the error
term. Hence, comparing the two expressions we conclude M(qk, w) = f(a�). Since
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Figure 1: An automaton defining a completely multiplicative, non-vanishing func-
tion, which is not periodic. The upper number is the value returned by the automa-
ton, the lower string describes strings leading to this state.

f takes only finitely many values, this implies that for all n ≡ w (mod qk) we have
f(n) = f(a�) with the exception of a set of density 0.

Assume there exists an integer n� ≡ 1 (mod qk) satisying f(n�) �= 1. If n is
an integer satisfying n ≡ w (mod qk), then one of f(n), f(nn�) is different from
f(a�). Hence, in the interval [1, x] there are at least x

qkn� integers n ≡ w (mod qk)
which do not satisfy f(n) = f(a�). But this means that the upper density of the
set of integers n with f(n) �= f(a�) and n ≡ w (mod qk) is at least 1

n�qk , which is
impossible. Hence, we conclude that f(n�) = 1 holds true for all n� ≡ 1 (mod qk).

Let n1, n2 be integers, coprime to q, and assume that n1 ≡ n2 (mod qk). Then
n1 is invertible modulo qk, let n1 be a modular inverse. Then n1n1 ≡ n2n2 ≡ 1
(mod qk), hence, f(n1)f(n1) = f(n2)f(n1) = 1, and therefore f(n1) = f(n2).

Let n1, n2 be integers, and assume that n1 ≡ n2 (mod qk+�), where � is chosen in
such a way that (n1, q�+1)|q�. Write ni = diti, where di = (ni, q�+1). Then d1 = d2,
and t1, t2 are coprime to q and congruent modulo qk, and we obtain f(t1) = f(t2),
and therefore f(n1) = f(n2). Hence, our claim follows in every case. ✷

4. An Example

Here we describe an example which shows that the parameter � in Theorem 1
is really necessary. Consider an automaton over {0, 1} that reads an integer n,
deletes the last consecutive block of 0’s to obtain a new integer n�, and returns 1
if n� = 1 or the second to last digit of n� is 0, and returns −1 if the second to
last digit of n� is 1. To compute this function we only have to remember whether
the digit last read was 0 or 1, and, if we run through a streak of 0’s, whether the
two digits before were 01 or 11. Hence, one can easily construct an automaton
computing this function (see Figure 1). The function computed by this automaton
can be described arithmetically as dividing an integer by 2 as often as possible, and
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Figure 2: An automaton for which the set of states reachable within n steps deter-
mines n mod 210.

checking whether the remaining integer is 1 or 3 modulo 4. Hence, the automaton
defines the completely multiplicative function f , which for a prime number p is
defined as

f(p) =

�
1, p ≡ 1, 2 (mod 4)
−1, p ≡ 3 (mod 4).

To determine f(n) we have to know the digit before the last 1 in the binary expansion
of n, that is, the statement of theorem 1 is optimal with k = q = 2. Similarly, if we
put fi(n) = f(n mod 2i), then fi(n) = f(n) unless n is divisible by 2i−2. Hence, f
is almost periodic, but it is easily seen that f is not periodic.

We next describe an automaton which shows that the set of states reachable
within n steps can distinguish between many different values of n, that is, the
choice of |S|! is not exaggerated. We could have used the least common multiple of
all integers up to n, which is e(1+o(1))|S|, but the following example shows that we
have to expect somewhat exponential behaviour. An example with 20 nodes, for
which the set of states reachable within n steps determines n mod 210, is given in
Figure 2.

The first part of the automaton consists of a binary tree of height k and with 2k

leaves and 2k+1 − 1 nodes. Then to the �-th leaf we attach a loop of length �. If
n ≥ k, then a state reachable in n steps cannot be contained in the tree. In each
loop there is precisely one reachable state, and the reachable state in the �-th loop
determines n (mod �). Hence, the sets of states reachable within n1 and n2 steps
coincide if and only if n1 ≡ n2 (mod �) holds true for all � ≤ 2k, that is, we have
to work with the least common multiple of all integers ≤ 2k, which is e(1+o(1))2k

.
Since the whole automaton has less than 22k states, we see that we cannot replace
|S|! by something smaller than e(1+o(1))

√
|S|.
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