NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH WEIGHTS IN $\{1,-1\}$

Sukumar Das Adhikari
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India
adhikari@mri.ernet.in
Mohan N. Chintamani
Harish-Chandra Research Institute, Chhatnag Road, Jhusi,Allahabad, India
chintamani@mri.ernet.in

Received: 7/27/10, Revised: 4/14/11, Accepted: 4/24/11, Published: 5/27/11

Abstract

Let G be an abelian group of order n and let it be of the form $G \cong \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus$ $\cdots \oplus \mathbb{Z}_{n_{r}}$, where $n_{i} \mid n_{i+1}$ for $1 \leq i<r$ and $n_{1}>1$. Let $A=\{1,-1\}$. Given a sequence S with elements in G and of length $n+k$ such that the natural number k satisfies $k \geq 2^{r^{\prime}-1}-1+\frac{r^{\prime}}{2}$, where $r^{\prime}=\left|\left\{i \in\{1,2, \cdots, r\}: 2 \mid n_{i}\right\}\right|$, if S does not have an A-weighted zero-sum subsequence of length n, we obtain a lower bound on the number of A-weighted n-sums of the sequence S. This is a weighted version of a result of Bollobás and Leader. As a corollary, one obtains a result of Adhikari, Chen, Friedlander, Konyagin and Pappalardi. A result of Yuan and Zeng on the existence of zero-smooth subsequences and the DeVos-Goddyn-Mohar Theorem are some of the main ingredients of our proof.

1. Introduction

Let G be an abelian group of order n, written additively. The Davenport constant $D(G)$ is defined to be the smallest natural number t such that any sequence of elements of G of length t has a non-empty subsequence whose sum is zero (the identity element of the group).

Another interesting constant, $E(G)$, is defined to be the smallest natural number t such that any sequence of elements of G of length t has a subsequence of length n whose sum is zero. A classical result of Erdős, Ginzburg and Ziv [8] says that $E(\mathbb{Z} / n \mathbb{Z})=2 n-1$.

The constants $D(G)$ and $E(G)$ were being studied independently until Gao [9] (see also [11], Proposition 5.7.9) established the following result connecting these two invariants:

$$
\begin{equation*}
E(G)=D(G)+n-1 . \tag{1}
\end{equation*}
$$

Generalizations of the constants $E(G)$ and $D(G)$ with weights were considered in [2] and [4] for finite cyclic groups and generalizations for an arbitrary finite abelian group G were introduced later [1].

Given an abelian group G of order n, and a finite non-empty subset A of integers, the Davenport constant of G with weight A, denoted by $D_{A}(G)$, is defined to be the least positive integer t such that for every sequence $\left(x_{1}, \ldots, x_{t}\right)$ with $x_{i} \in G$, there exists a non-empty subsequence $\left(x_{j_{1}}, \ldots, x_{j_{l}}\right)$ and $a_{i} \in A$ such that $\sum_{i=1}^{l} a_{i} x_{j_{i}}=$ 0 . Similarly, $E_{A}(G)$ is defined to be the least positive integer t such that every sequence of elements of G of length t contains a subsequence $\left(x_{j_{1}}, \ldots, x_{j_{n}}\right)$ satisfying $\sum_{i=1}^{n} a_{i} x_{j_{i}}=0$, for some $a_{i} \in A$. When G is of order n, one may consider A to be a non-empty subset of $\{0,1, \ldots, n-1\}$ and one avoids the trivial case $0 \in A$.

In several papers (see [2], [15], [12], [3]) the problem of determining the exact values of $E_{A}(\mathbb{Z} / n \mathbb{Z})$ and $D_{A}(\mathbb{Z} / n \mathbb{Z})$ has been taken up for various weight sets A.

In the present paper we take up a particular weighted generalization of a result of Bollobás and Leader [6] (see also [19]).

More precisely, we prove the following theorem. For some terminology used in the statement of the theorem, one may look into the next section.

Theorem 1. Let G be a finite abelian group of order n and let it be of the form $G \cong \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}$, where $1<n_{1}|\cdots| n_{r}$. Let $A=\{1,-1\}$ and k be a natural number satisfying $k \geq 2^{r^{\prime}-1}-1+\frac{r^{\prime}}{2}$, where $r^{\prime}=\mid\left\{i \in\{1,2, \cdots, r\}: n_{i}\right.$ is even $\} \mid$. Then, given a sequence $S=\left(x_{1}, x_{2}, \cdots, x_{n+k}\right)$, with $x_{i} \in G$, if S has no A-weighted zero-sum subsequence of length n, there are at least $2^{k+1}-\delta$ distinct A-weighted n sums, where $\delta=1$, if $2 \mid n$ and $\delta=0$, otherwise.

For a finite abelian group G of order n, Gao and Leader [10] obtained some result on the description of some sequences which do not have 0 as an n sum and at which the minimum number of n sums is attained.

2. Notations and Preliminaries

Let G be a finite abelian group of order n written additively and let A be a nonempty subset of $\{1, \ldots, n-1\}$. Given a sequence $S=\left(s_{1}, s_{2}, \cdots, s_{r}\right)$ of elements of G and $\bar{a}=\left(a_{1}, a_{2}, \cdots, a_{r}\right) \in A^{r}$, we define $\sigma(S)=\sum_{i=1}^{r} s_{i}$ and $\sigma^{\bar{a}}(S)=\sum_{i=1}^{r} a_{i} s_{i}$. If $\sigma(S)=0$ (resp. $\sigma^{\bar{a}}(S)=0$ for some $\bar{a} \in A^{r}$), we say that S is a zero-sum sequence (resp. an A-weighted zero-sum sequence).

If H is a subgroup of G, then $\phi_{H}: G \rightarrow G / H$ will denote the natural homomorphism and given a sequence $S=\left(s_{1}, s_{2}, \cdots, s_{r}\right)$ of elements of $G, \phi_{H}(S)$ will denote the sequence $\left(\phi_{H}\left(s_{1}\right), \phi_{H}\left(s_{2}\right), \cdots, \phi_{H}\left(s_{r}\right)\right)$ with elements in G / H.

The length of a sequence S will be denoted by $|S|$; we think that this will not have any confusion with the usual notation $|G|$ used to denote the order of a finite group G.

For a subsequence S^{\prime} of a sequence S, we use $S \backslash S^{\prime}$ to denote the sequence obtained by removing the elements of the subsequence S^{\prime} from S.

Generalizing a definition in [20], we call a sequence S with elements in G an A-weighted zero-smooth sequence if for any $1 \leq \ell \leq|S|$, there exists an A-weighted zero-sum subsequence of S of length ℓ. When $A=\{1\}, S$ is simply called a zerosmooth sequence.
Remark. We observe that if $U=\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ and $V=\left(v_{1}, v_{2}, \cdots, v_{s}\right)$ are sequences of elements of G such that U is an A-weighted zero-smooth sequence and V is an A-weighted zero-sum sequence with $|V| \leq|U|+1$, then the sequence $\left(u_{1}, u_{2}, \cdots, u_{r}, v_{1}, v_{2}, \cdots, v_{s}\right)$, obtained by appending V to U, is an A-weighted zero-smooth sequence.

We shall need the following result of Yuan and Zeng [20]:
Theorem A (Yuan, Zeng) Let G be an abelian group of order n and S a sequence with elements in G such that $|S| \geq n+D(G)-1$. Assume that the element 0 is repeated maximum number of times in S. Then there exists a subsequence S_{1} of S which is zero-smooth and $\left|S_{1}\right| \geq|S|-D(G)+1$.

Let $\mathcal{A}=\left(A_{1}, A_{2}, \cdots, A_{r}\right), r \geq n$, be a sequence of finite non-empty subsets of G. Let $\Sigma_{n}(\mathcal{A})$ denote the set of all group elements representable as a sum of n elements chosen from distinct terms of \mathcal{A} and let $H=\operatorname{stab}\left(\Sigma_{n}(\mathcal{A})\right)=\left\{g \in G: g+\Sigma_{n}(\mathcal{A})=\right.$ $\left.\Sigma_{n}(\mathcal{A})\right\}$. The following result of DeVos, Goddyn and Mohar [7] generalizes Kneser's addition theorem [14] (one may also look into [16] or [18]).

Theorem B (DeVos, Goddyn, Mohar) With the above notation, we have

$$
\left|\Sigma_{n}(\mathcal{A})\right| \geq|H|\left(1-n+\sum_{g \in G / H} \min \left\{n,\left|\left\{j: g \cap A_{j} \neq \emptyset\right\}\right|\right\}\right)
$$

3. Proof of Theorem 1

In the case $r^{\prime}=0$, it is possible to have $k=0$. We observe that in this case, $|S|=n$ and if $\sigma(S)=t \neq 0$, then $-\sigma(S)=-t \neq 0$. Again, n being odd, G does not have any element of order 2 and thus there are at least two distinct A-weighted n-sums. So, the result is true in this case and we may assume that $k \geq 1$.

If possible, suppose that the result is not true and choose a counterexample (G, S, k) with $|G|=n$ minimal.

Considering the sequence $\mathcal{A}=\left(A_{1}, A_{2}, \cdots, A_{n+k}\right)$, where $A_{i}=A x_{i}$ for each i,
$1 \leq i \leq n+k$, we have,

$$
\begin{align*}
0 & \notin \Sigma_{n}(\mathcal{A}) \tag{2}\\
\left|\Sigma_{n}(\mathcal{A})\right| & <2^{k+1}-\delta \tag{3}
\end{align*}
$$

Let $L=\operatorname{stab}\left(\Sigma_{n}(\mathcal{A})\right)$. We claim that $L=\langle 0\rangle$.
If possible, let $L \neq\langle 0\rangle$, so that $|G / L|<n$. Writing the identity element of G / L as $\mathbf{0}$, if for every subsequence $S^{\prime}=\left\{x_{i_{1}}, \cdots, x_{i_{d}}\right\}$ of S of length $d=$ $|G / L|+k, \mathbf{0}$ is representable as a sum of $|G / L|$ elements from distinct terms of the sequence $\left(\phi_{L}\left(A x_{i_{1}}\right), \phi_{L}\left(A x_{i_{2}}\right), \cdots, \phi_{L}\left(A x_{i_{d}}\right)\right)$, then we get pairwise disjoint subsequences $S_{1}, S_{2}, \cdots, S_{|L|}$, each of length $|G / L|$ and $\bar{a}_{1}, \bar{a}_{2}, \cdots, \bar{a}_{|L|} \in A^{|G / L|}$ such that $\sigma^{\bar{a}_{i}}\left(\phi_{L}\left(S_{i}\right)\right)=\mathbf{0}$, for each $i \in\{1,2, \cdots,|L|\}$.

Therefore, we have

$$
\sum_{i=1}^{|L|} \sigma^{\bar{a}_{i}}\left(\phi_{L}\left(S_{i}\right)\right)=\mathbf{0}
$$

Writing $\theta=\sigma^{\bar{a}_{1}}\left(S_{1}\right)+\sigma^{\bar{a}_{2}}\left(S_{2}\right)+\cdots+\sigma^{\bar{a}_{|L|}}\left(S_{|L|}\right)$, since $-\theta$ also belongs to $L=$ $\operatorname{stab}\left(\Sigma_{n}(\mathcal{A})\right)$ and $\theta \in \Sigma_{n}(\mathcal{A})$, we have $0 \in \Sigma_{n}(\mathcal{A})$, which contradicts (2).

Hence there exists a subsequence S^{\prime} of S with length $|G / L|+k$ (observe that a permissible value k for G is obviously permissible for $G / L)$ such that $\mathbf{0} \notin \Sigma_{|G / L|}\left(\phi_{L}\left(\mathcal{A}^{\prime}\right)\right)$, where \mathcal{A}^{\prime} is the subsequence of \mathcal{A} corresponding to the sequence S^{\prime} and hence by minimality of $|G|$, we have

$$
\left|\Sigma_{|G / L|}\left(\phi_{L}\left(\mathcal{A}^{\prime}\right)\right)\right| \geq 2^{k+1}-\delta^{\prime} \geq 2^{k+1}-\delta
$$

and hence $\left|\Sigma_{|G / L|}\left(\mathcal{A}^{\prime}\right)\right| \geq 2^{k+1}-\delta$, where δ^{\prime} is the parity of $|G / L|$ and δ is that of n.

Since the length of the subsequence $\mathcal{A} \backslash \mathcal{A}^{\prime}$ is $n+k-(|G / L|+k)=n-|G / L|$,

$$
\left|\Sigma_{n}(\mathcal{A})\right| \geq\left|\Sigma_{|G / L|}\left(\mathcal{A}^{\prime}\right)\right| \geq 2^{k+1}-\delta
$$

- a contradiction to (3).

Therefore, we have $L=\langle 0\rangle$ and hence by Theorem B, we have

$$
\left|\Sigma_{n}(\mathcal{A})\right| \geq 1-n+\sum_{x \in G} \min \left\{n,\left|\left\{i: 1 \leq i \leq n+k, x \in A_{i}\right\}\right|\right\}
$$

Since (2) implies that no element of G can be in n distinct A_{i} 's, we have

$$
\begin{aligned}
\left|\Sigma_{n}(\mathcal{A})\right| & \geq 1-n+\sum_{x \in G} \min \left\{n,\left|\left\{i: 1 \leq i \leq n+k, x \in A_{i}\right\}\right|\right\} \\
& =1-n+\sum_{x \in G}\left|\left\{i: 1 \leq i \leq n+k, x \in A_{i}\right\}\right| \\
& =1-n+\sum_{i=1}^{n+k}\left|A_{i}\right|
\end{aligned}
$$

Writing $t=\left|\left\{j: 1 \leq j \leq n+k,\left|A_{j}\right|=1\right\}\right|$, from (2) and the above inequality we have,

$$
n-1 \geq\left|\Sigma_{n}(\mathcal{A})\right| \geq 1-n+2(n+k-t)+t
$$

and hence,

$$
t \geq 2(k+1)
$$

Rearranging, if needed, we assume that $\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ is the subsequence of S such that $\left|A_{i}\right|=\left|A x_{i}\right|=1$ for each $i, 1 \leq i \leq t$ and the element x_{1} is repeated maximum number of times in $\left(x_{1}, x_{2}, \cdots, x_{t}\right)$.

We observe that all the x_{i} 's appearing in $\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ are either equal to the zero element of the group or those of order 2 , when n is even.

Consider the sequence $S^{\prime}=\left(y_{1}, y_{2}, \cdots, y_{n+k}\right)$, where $y_{i}=x_{i}-x_{1}$, for each i, $1 \leq i \leq n+k$. Write $\mathcal{B}=\left(B_{1}, B_{2}, \cdots, B_{n+k}\right)$, where $B_{i}=A y_{i}=A\left(x_{i}-x_{1}\right)$, for each $i, 1 \leq i \leq n+k$.

Observing that $\left|A x_{1}\right|=1$, if we consider a typical element $\epsilon_{i_{1}} y_{i_{1}}+\epsilon_{i_{2}} y_{i_{2}}+\cdots+$ $\epsilon_{i_{n}} y_{i_{n}}$, of $\Sigma_{n}(\mathcal{B})$, where $\epsilon_{j} \in\{1,-1\}$, then it can be written as:

$$
\begin{aligned}
& \epsilon_{i_{1}}\left(x_{i_{1}}-x_{1}\right)+\epsilon_{i_{2}}\left(x_{i_{2}}-x_{1}\right)+\cdots+\epsilon_{i_{n}}\left(x_{i_{n}}-x_{1}\right) \\
= & \epsilon_{i_{1}} x_{i_{1}}+\epsilon_{i_{2}} x_{i_{2}}+\cdots+\epsilon_{i_{n}} x_{i_{n}}
\end{aligned}
$$

since $\sum_{j=1}^{n} \epsilon_{i_{j}} x_{1}=n x_{1}=0$.
Hence, $\Sigma_{n}(\mathcal{A})=\Sigma_{n}(\mathcal{B})$ and from (2) and (3), we have

$$
\begin{align*}
0 & \notin \Sigma_{n}(\mathcal{B}) \tag{4}\\
\left|\Sigma_{n}(\mathcal{B})\right| & <2^{k+1}-\delta \tag{5}
\end{align*}
$$

By our construction, in the subsequence $S_{1}=\left(y_{1}, y_{2}, \cdots, y_{t}\right)$ of S^{\prime}, all the elements $y_{i}, 1 \leq i \leq t$, satisfy $2 y_{i}=0$ and $y_{1}=0$ is repeated maximum number of times.

Depending on the parity of n, we consider the following two cases:
Case I (n is odd). We observe that in this case, $y_{i}=0$ for all $i, 1 \leq i \leq t$. Now, we choose a maximal A-weighted zero-sum subsequence S_{2} of $S^{\prime} \backslash S_{1}$, possibly empty. If $\left|\left(S \backslash S_{1}\right) \backslash S_{2}\right| \leq k$, then $(n+k)-\left|S_{1}\right|-\left|S_{2}\right| \leq k \quad \Rightarrow \quad n-\left|S_{2}\right| \leq\left|S_{1}\right|$ and hence by appending a subsequence of (zeros) S_{1} of length $n-\left|S_{2}\right|$ to S_{2} we get an A-weighted zero-sum subsequence of S^{\prime} of length n, which is a contradiction to (4).

Thus, there exists a subsequence $S_{3}=y_{j_{1}} y_{j_{2}} \cdots y_{j_{k+1}}$ of $\left(S^{\prime} \backslash S_{1}\right) \backslash S_{2}$ which does not have any non-empty A-weighted zero-sum subsequence, by maximality of S_{2}.

Consider the set

$$
X=\left\{\sum_{i=1}^{k+1} \epsilon_{i} y_{j_{i}}: \epsilon_{i} \in A=\{1,-1\}\right\}
$$

If for $\epsilon_{i}, \epsilon_{i}^{\prime} \in A=\{1,-1\}$, we have

$$
\sum_{i=1}^{k+1} \epsilon_{i} y_{j_{i}}=\sum_{i=1}^{k+1} \epsilon_{i}^{\prime} y_{j_{i}}
$$

then, writing $I=\left\{i: \epsilon_{i} \neq \epsilon_{i}^{\prime}\right\}$,

$$
2 \sum_{i \in I} \epsilon_{i} y_{j_{i}}=0
$$

which implies, since n is odd, that $\sum_{i \in I} \epsilon_{i} y_{j_{i}}=0$, which leads to a contradiction to the maximality of S_{2} if I is non-empty.

Thus, we have $|X| \geq 2^{k+1}$. Now, considering the sum of a fixed subsequence of $S^{\prime} \backslash S_{3}$ of length $n-(k+1)$, and adding that to various sums in X, we have $\left|\Sigma_{n}(\mathcal{B})\right| \geq 2^{k+1}-$ a contradiction to (5).
Case II (n is even). Put $H=\left\langle y_{1}, y_{2}, \cdots, y_{t}\right\rangle$. As we have already observed, $2 y_{i}=0$, for all $i, 1 \leq i \leq t$. Hence H is a subgroup of $\mathbb{Z}_{2}^{r^{\prime}}$.

Thus,

$$
\begin{equation*}
|H| \leq 2^{r^{\prime}} \tag{6}
\end{equation*}
$$

and by a result of Olson [17] on the Davenport constant of p-groups,

$$
\begin{equation*}
D(H) \leq D\left(\mathbb{Z}_{2}^{r^{\prime}}\right)=r^{\prime}+1 \tag{7}
\end{equation*}
$$

Since, by our assumption, $k \geq 2^{r^{\prime}-1}-1+\frac{r^{\prime}}{2}$, by (6) we have,

$$
\left|S_{1}\right|=t \geq 2(k+1) \geq 2^{r^{\prime}}+r^{\prime} \geq|H|+D(H)-1
$$

Also, 0 is repeated maximum number of times in S_{1}.
So, we can apply Theorem A and it follows that S_{1} has a zero-smooth subsequence T_{1} such that $\left|T_{1}\right| \geq\left|S_{1}\right|-D(H)+1$.

Therefore, from the fact $\left|S_{1}\right|=t \geq 2(k+1)$ and (7) we have

$$
\left|T_{1}\right| \geq 2 k+2-r^{\prime}
$$

Again, since, $k \geq 2^{r^{\prime}-1}-1+\frac{r^{\prime}}{2}$, we have $k-r^{\prime} \geq 2^{r^{\prime}-1}-1-\frac{r^{\prime}}{2} \geq-1$, we have

$$
\left|T_{1}\right| \geq 2 k+2-r^{\prime}=k+2+k-r^{\prime} \geq k+1
$$

We choose a maximal A-weighted zero-smooth subsequence T of S^{\prime}. We have, $|T| \geq\left|T_{1}\right| \geq k+1$. Further, (4) implies that $|T|<n$.

Consider the subsequence $S^{\prime} \backslash T=y_{s_{1}} y_{s_{2}} \cdots y_{s_{k+l}}$, say, (since $|T|<n, l \geq 1$) and the set

$$
Y=\left\{\sum_{i \in I} y_{s_{i}}: I \subset\{1,2, \cdots, k+1\}, I \neq \emptyset\right\}
$$

Now, if for subsets I, J of $\{1,2, \cdots, k+1\}$, with $I \neq J, I \neq \emptyset, J \neq \emptyset$, we have

$$
\sum_{i \in I} y_{s_{i}}=\sum_{i \in J} y_{s_{i}},
$$

then we have

$$
\sum_{i \in I^{\prime}} \delta_{i} y_{s_{i}}=0, \quad \delta_{i} \in A
$$

where $I^{\prime}=(I \cup J) \backslash(I \cap J)$.
Since it is clear that I^{\prime} is non-empty, and $1 \leq\left|I^{\prime}\right| \leq k+1 \leq|T|$, by the observation made in the Remark in Section 2, appending the subsequence corresponding to I^{\prime} to T, we get a contradiction to the maximality of T. Therefore, we have $|Y|=2^{k+1}-1$. Adding $y_{s_{k+2}}+\cdots+y_{s_{k+l}}$ to each of the distinct sums in Y, we get $2^{k+1}-1$ distinct sums $y_{s_{k+2}}+\cdots+y_{s_{k+l}}+\sum_{i \in I} y_{s_{i}}: I \subset\{1,2, \cdots, k+1\}, I \neq \emptyset$.

Now, for a given $I \subset\{1,2, \cdots, k+1\}$, as $n-(|I|+l-1) \leq n-l=|T|$, we can append an $n-(|I|+l-1)$ length A-weighted zero-sum subsequence of T to $y_{s_{k+2}}+\cdots+y_{s_{k+l}}+\sum_{i \in I} y_{s_{i}}$ to make an A-weighted n-sum without changing the value of the sum.

Thus, $\left|\Sigma_{n}(\mathcal{B})\right| \geq 2^{k+1}-1$, which is a contradiction to (5), and completes the proof of Theorem 1.

Remark. It is not difficult to observe that for a finite abelian group $G \cong \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}, 1<n_{1}|\cdots| n_{r}$, satisfying $|G|>2^{\left(2^{r^{\prime}-1}-1+\frac{r^{\prime}}{2}\right)}$, where $r^{\prime}=\left|\left\{i \in\{1,2, \cdots, r\}: 2 \mid n_{i}\right\}\right|$, and $A=\{1,-1\}$, our theorem along with some counter examples like those given in [2] (see also [5]), yields

$$
\begin{equation*}
|G|+\sum_{i=1}^{r}\left\lfloor\log _{2} n_{i}\right\rfloor \leq E_{A}(G) \leq|G|+\left\lfloor\log _{2}|G|\right\rfloor \tag{8}
\end{equation*}
$$

This gives the exact value of $E_{A}(G)$ when G is cyclic (thus giving another proof of the main result in [2]) and unconditional bounds in many cases.

However, we mention that when $A=\{1,-1\}$, finding the corresponding bounds for $D_{A}(G)$ for a finite abelian group G and the exact value of $D_{A}(G)$ when G is cyclic, is not so difficult (see [2], [5]). Therefore, from the relation

$$
E_{A}(G)=D_{A}(G)+n-1
$$

which generalizes (1) for an abelian group G with $|G|=n$ and a non-empty subset A of $\{1, \ldots, n-1\}$, established for cyclic groups by Yuan and Zeng [21] and for general finite abelian groups by Grynkiewicz, Marchan and Ordaz [13], the result (8) follows.

Acknowledgements. We thank the referee whose suggestions were helpful in improving the presentation of the paper.

References

[1] S. D. Adhikari, Y. G. Chen, Davenport Constant with weights and some related questions II, Journal of Combinatorial Theory, Series A 115 (2008), 178-184.
[2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.
[3] Sukumar Das Adhikari, Chantal David and Jorge Jiménez Urroz, Generalizations of some zero-sum theorems, Integers 8 (2008), Article A52.
[4] S. D. Adhikari, P. Rath, Davenport Constant with weights and some related questions, Integers 6 (2006), Article A30.
[5] Sukumar Das Adhikari, David J. Grynkiewicz and Zhi-Wei Sun, On Weighted Zero-Sum Sequences, preprint.
[6] B. Bollobás, I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), no. 1, 27-35.
[7] M. DeVos, L. Goddyn, B. Mohar, A Generalization of Kneser's Addition Theorem, Adv. Math. 220 (2009), 1531-1548.
[8] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10(F) (1961), 41-43.
[9] W. D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58, (1996), 100-103.
[10] W. D. Gao, I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006), no. 1, 26-32.
[11] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman \& Hall, CRC, 2006.
[12] Simon Griffiths, The Erdös-Ginzburg-Ziv theorem with units, Discrete Math. 308 (2008), no. 23, 5473-5484.
[13] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, A weighted generalization of two theorems of Gao, preprint.
[14] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484.
[15] Florian Luca, A generalization of a classical zero-sum problem, Discrete Math. 307 (2007), no. 13, 1672-1678.
[16] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996.
[17] J. E. Olson, A combinatorial problem in finite abelian groups, I, J. Number Theory 1 (1969), 8-10.
[18] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 Cambridge University Press, Cambridge, 2006.
[19] Hong Bing Yu, A simple proof of a theorem of Bollobás and Leader, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2639-2640.
[20] P. Yuan, X. Zeng, A new result on Davenport Constant, J. Number Theory 129 (2009), 3026-3028.
[21] P. Yuan, X. Zeng, Davenport constant with weights, European Journal of Combinatorics 31 (2010), 677-680.

