
#A36 INTEGERS 11 (2011)

NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH
WEIGHTS IN {1, −1}

Sukumar Das Adhikari
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India

adhikari@mri.ernet.in

Mohan N. Chintamani
Harish-Chandra Research Institute, Chhatnag Road, Jhusi,Allahabad, India

chintamani@mri.ernet.in

Received: 7/27/10, Revised: 4/14/11, Accepted: 4/24/11, Published: 5/27/11

Abstract
Let G be an abelian group of order n and let it be of the form G ∼= Zn1 ⊕ Zn2 ⊕
· · · ⊕ Znr , where ni | ni+1 for 1 ≤ i < r and n1 > 1. Let A = {1,−1}. Given a
sequence S with elements in G and of length n + k such that the natural number
k satisfies k ≥ 2r

�−1 − 1 + r
�

2 , where r
� = |{i ∈ {1, 2, · · · , r} : 2 | ni}|, if S does not

have an A-weighted zero-sum subsequence of length n, we obtain a lower bound on
the number of A-weighted n-sums of the sequence S. This is a weighted version of
a result of Bollobás and Leader. As a corollary, one obtains a result of Adhikari,
Chen, Friedlander, Konyagin and Pappalardi. A result of Yuan and Zeng on the
existence of zero-smooth subsequences and the DeVos-Goddyn-Mohar Theorem are
some of the main ingredients of our proof.

1. Introduction

Let G be an abelian group of order n, written additively. The Davenport constant

D(G) is defined to be the smallest natural number t such that any sequence of
elements of G of length t has a non-empty subsequence whose sum is zero (the
identity element of the group).

Another interesting constant, E(G), is defined to be the smallest natural number
t such that any sequence of elements of G of length t has a subsequence of length
n whose sum is zero. A classical result of Erdős, Ginzburg and Ziv [8] says that
E(Z/nZ) = 2n− 1.

The constants D(G) and E(G) were being studied independently until Gao [9]
(see also [11], Proposition 5.7.9) established the following result connecting these
two invariants:

E(G) = D(G) + n− 1. (1)
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Generalizations of the constants E(G) and D(G) with weights were considered in
[2] and [4] for finite cyclic groups and generalizations for an arbitrary finite abelian
group G were introduced later [1].

Given an abelian group G of order n, and a finite non-empty subset A of integers,
the Davenport constant of G with weight A, denoted by DA(G), is defined to be the
least positive integer t such that for every sequence (x1, . . . , xt) with xi ∈ G, there
exists a non-empty subsequence (xj1 , . . . , xjl) and ai ∈ A such that

�
l

i=1 aixji =
0. Similarly, EA(G) is defined to be the least positive integer t such that every
sequence of elements of G of length t contains a subsequence (xj1 , . . . , xjn) satisfying�

n

i=1 aixji = 0, for some ai ∈ A. When G is of order n, one may consider A to be
a non-empty subset of {0, 1, . . . , n− 1} and one avoids the trivial case 0 ∈ A.

In several papers (see [2], [15], [12], [3]) the problem of determining the exact
values of EA(Z/nZ) and DA(Z/nZ) has been taken up for various weight sets A.

In the present paper we take up a particular weighted generalization of a result
of Bollobás and Leader [6] (see also [19]).

More precisely, we prove the following theorem. For some terminology used in
the statement of the theorem, one may look into the next section.

Theorem 1. Let G be a finite abelian group of order n and let it be of the form

G ∼= Zn1⊕Zn2⊕· · ·⊕Znr , where 1 < n1 | · · · | nr. Let A = {1,−1} and k be a natural

number satisfying k ≥ 2r
�−1 − 1 + r

�

2 , where r
� = |{i ∈ {1, 2, · · · , r} : ni is even}|.

Then, given a sequence S = (x1, x2, · · · , xn+k), with xi ∈ G, if S has no A-weighted

zero-sum subsequence of length n, there are at least 2k+1− δ distinct A-weighted n-

sums, where δ = 1, if 2 | n and δ = 0, otherwise.

For a finite abelian group G of order n, Gao and Leader [10] obtained some result
on the description of some sequences which do not have 0 as an n sum and at which
the minimum number of n sums is attained.

2. Notations and Preliminaries

Let G be a finite abelian group of order n written additively and let A be a non-
empty subset of {1, . . . , n−1}. Given a sequence S = (s1, s2, · · · , sr) of elements of
G and ā = (a1, a2, · · · , ar) ∈ A

r, we define σ(S) =
�

r

i=1 si and σ
ā(S) =

�
r

i=1 aisi.
If σ(S) = 0 (resp. σ

ā(S) = 0 for some ā ∈ A
r), we say that S is a zero-sum sequence

(resp. an A-weighted zero-sum sequence).
If H is a subgroup of G, then φH : G → G/H will denote the natural homo-

morphism and given a sequence S = (s1, s2, · · · , sr) of elements of G, φH(S) will
denote the sequence (φH(s1),φH(s2), · · · ,φH(sr)) with elements in G/H.

The length of a sequence S will be denoted by |S|; we think that this will not
have any confusion with the usual notation |G| used to denote the order of a finite
group G.
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For a subsequence S
� of a sequence S, we use S \ S

� to denote the sequence
obtained by removing the elements of the subsequence S

� from S.
Generalizing a definition in [20], we call a sequence S with elements in G an

A-weighted zero-smooth sequence if for any 1 ≤ � ≤ |S|, there exists an A-weighted
zero-sum subsequence of S of length �. When A = {1}, S is simply called a zero-

smooth sequence.

Remark. We observe that if U = (u1, u2, · · · , ur) and V = (v1, v2, · · · , vs) are
sequences of elements of G such that U is an A-weighted zero-smooth sequence
and V is an A-weighted zero-sum sequence with |V | ≤ |U | + 1, then the sequence
(u1, u2, · · · , ur, v1, v2, · · · , vs), obtained by appending V to U , is an A-weighted
zero-smooth sequence.

We shall need the following result of Yuan and Zeng [20]:

Theorem A (Yuan, Zeng) Let G be an abelian group of order n and S a sequence

with elements in G such that |S| ≥ n + D(G) − 1. Assume that the element 0 is

repeated maximum number of times in S. Then there exists a subsequence S1 of S

which is zero-smooth and |S1| ≥ |S|−D(G) + 1.

Let A = (A1, A2, · · · , Ar), r ≥ n, be a sequence of finite non-empty subsets of G.
Let Σn(A) denote the set of all group elements representable as a sum of n elements
chosen from distinct terms of A and let H = stab(Σn(A)) = {g ∈ G : g + Σn(A) =
Σn(A)}. The following result of DeVos, Goddyn and Mohar [7] generalizes Kneser’s
addition theorem [14] (one may also look into [16] or [18]).

Theorem B (DeVos, Goddyn, Mohar) With the above notation, we have

|Σn(A)| ≥ |H|



1− n +
�

g∈G/H

min{n, |{j : g ∩Aj �= ∅}|}



 .

3. Proof of Theorem 1

In the case r
� = 0, it is possible to have k = 0. We observe that in this case, |S| = n

and if σ(S) = t �= 0, then −σ(S) = −t �= 0. Again, n being odd, G does not have
any element of order 2 and thus there are at least two distinct A-weighted n-sums.
So, the result is true in this case and we may assume that k ≥ 1.

If possible, suppose that the result is not true and choose a counterexample
(G,S, k) with |G| = n minimal.

Considering the sequence A = (A1, A2, · · · , An+k), where Ai = Axi for each i,
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1 ≤ i ≤ n + k, we have,

0 /∈ Σn(A), (2)
|Σn(A)| < 2k+1 − δ. (3)

Let L = stab(Σn(A)). We claim that L = �0�.
If possible, let L �= �0�, so that |G/L| < n. Writing the identity element

of G/L as 0, if for every subsequence S
� = {xi1 , · · · , xid} of S of length d =

|G/L|+ k, 0 is representable as a sum of |G/L| elements from distinct terms of the
sequence (φL(Axi1),φL(Axi2), · · · ,φL(Axid)), then we get pairwise disjoint subse-
quences S1, S2, · · · , S|L|, each of length |G/L| and ā1, ā2, · · · , ā|L| ∈ A

|G/L| such
that σ

āi(φL(Si)) = 0, for each i ∈ {1, 2, · · · , |L|}.
Therefore, we have

|L|�

i=1

σ
āi(φL(Si)) = 0.

Writing θ = σ
ā1(S1) + σ

ā2(S2) + · · · + σ
ā|L|(S|L|), since −θ also belongs to L =

stab(Σn(A)) and θ ∈ Σn(A), we have 0 ∈ Σn(A), which contradicts (2).
Hence there exists a subsequence S

� of S with length |G/L|+k (observe that a per-
missible value k for G is obviously permissible for G/L) such that 0 /∈ Σ|G/L|(φL(A�)),
where A� is the subsequence of A corresponding to the sequence S

� and hence by
minimality of |G|, we have

|Σ|G/L|(φL(A�))| ≥ 2k+1 − δ
� ≥ 2k+1 − δ,

and hence |Σ|G/L|(A�)| ≥ 2k+1 − δ, where δ
� is the parity of |G/L| and δ is that of

n.
Since the length of the subsequence A \ A� is n + k − (|G/L| + k) = n− |G/L|,

|Σn(A)| ≥ |Σ|G/L|(A�)| ≥ 2k+1 − δ,

– a contradiction to (3).
Therefore, we have L = �0� and hence by Theorem B, we have

|Σn(A)| ≥ 1− n +
�

x∈G

min{n, |{i : 1 ≤ i ≤ n + k, x ∈ Ai}|}.

Since (2) implies that no element of G can be in n distinct Ai’s, we have

|Σn(A)| ≥ 1− n +
�

x∈G

min{n, |{i : 1 ≤ i ≤ n + k, x ∈ Ai}|}

= 1− n +
�

x∈G

|{i : 1 ≤ i ≤ n + k, x ∈ Ai}|

= 1− n +
n+k�

i=1

|Ai|.
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Writing t = |{j : 1 ≤ j ≤ n + k, |Aj | = 1}|, from (2) and the above inequality
we have,

n− 1 ≥ |Σn(A)| ≥ 1− n + 2(n + k − t) + t,

and hence,
t ≥ 2(k + 1).

Rearranging, if needed, we assume that (x1, x2, · · · , xt) is the subsequence of S

such that |Ai| = |Axi| = 1 for each i, 1 ≤ i ≤ t and the element x1 is repeated
maximum number of times in (x1, x2, · · · , xt).

We observe that all the xi’s appearing in (x1, x2, · · · , xt) are either equal to the
zero element of the group or those of order 2, when n is even.

Consider the sequence S
� = (y1, y2, · · · , yn+k), where yi = xi − x1, for each i,

1 ≤ i ≤ n + k. Write B = (B1, B2, · · · , Bn+k), where Bi = Ayi = A(xi − x1), for
each i, 1 ≤ i ≤ n + k.

Observing that |Ax1| = 1, if we consider a typical element �i1yi1 + �i2yi2 + · · ·+
�inyin , of Σn(B), where �j ∈ {1,−1}, then it can be written as:

�i1(xi1 − x1) + �i2(xi2 − x1) + · · · + �in(xin − x1)
= �i1xi1 + �i2xi2 + · · · + �inxin ,

since
�

n

j=1 �ij x1 = nx1 = 0.
Hence, Σn(A) = Σn(B) and from (2) and (3), we have

0 /∈ Σn(B), (4)
|Σn(B)| < 2k+1 − δ. (5)

By our construction, in the subsequence S1 = (y1, y2, · · · , yt) of S
�, all the ele-

ments yi, 1 ≤ i ≤ t, satisfy 2yi = 0 and y1 = 0 is repeated maximum number of
times.

Depending on the parity of n, we consider the following two cases:
Case I (n is odd). We observe that in this case, yi = 0 for all i, 1 ≤ i ≤ t. Now, we
choose a maximal A-weighted zero-sum subsequence S2 of S

� \ S1, possibly empty.
If |(S \ S1) \ S2| ≤ k, then (n + k) − |S1| − |S2| ≤ k ⇒ n − |S2| ≤ |S1| and
hence by appending a subsequence of (zeros) S1 of length n− |S2| to S2 we get an
A-weighted zero-sum subsequence of S

� of length n, which is a contradiction to (4).
Thus, there exists a subsequence S3 = yj1yj2 · · · yjk+1 of (S� \S1)\S2 which does

not have any non-empty A-weighted zero-sum subsequence, by maximality of S2.
Consider the set

X =

�
k+1�

i=1

�iyji : �i ∈ A = {1,−1}
�

.
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If for �i, �
�
i
∈ A = {1,−1}, we have

k+1�

i=1

�iyji =
k+1�

i=1

�
�
i
yji ,

then, writing I = {i : �i �= �
�
i
},

2
�

i∈I

�iyji = 0,

which implies, since n is odd, that
�

i∈I
�iyji = 0, which leads to a contradiction

to the maximality of S2 if I is non-empty.
Thus, we have |X| ≥ 2k+1. Now, considering the sum of a fixed subsequence

of S
� \ S3 of length n − (k + 1), and adding that to various sums in X, we have

|Σn(B)| ≥ 2k+1 – a contradiction to (5).

Case II (n is even). Put H = �y1, y2, · · · , yt�. As we have already observed,
2yi = 0, for all i, 1 ≤ i ≤ t. Hence H is a subgroup of Zr

�

2 .
Thus,

|H| ≤ 2r
�

(6)

and by a result of Olson [17] on the Davenport constant of p-groups,

D(H) ≤ D(Zr
�

2 ) = r
� + 1. (7)

Since, by our assumption, k ≥ 2r
�−1 − 1 + r

�

2 , by (6) we have,

|S1| = t ≥ 2(k + 1) ≥ 2r
�
+ r

� ≥ |H| + D(H)− 1.

Also, 0 is repeated maximum number of times in S1.
So, we can apply Theorem A and it follows that S1 has a zero-smooth subsequence

T1 such that |T1| ≥ |S1|−D(H) + 1.
Therefore, from the fact |S1| = t ≥ 2(k + 1) and (7) we have

|T1| ≥ 2k + 2− r
�
.

Again, since, k ≥ 2r
�−1 − 1 + r

�

2 , we have k − r
� ≥ 2r

�−1 − 1− r
�

2 ≥ −1, we have

|T1| ≥ 2k + 2− r
� = k + 2 + k − r

� ≥ k + 1.

We choose a maximal A-weighted zero-smooth subsequence T of S
�. We have,

|T | ≥ |T1| ≥ k + 1. Further, (4) implies that |T | < n.
Consider the subsequence S

� \T = ys1ys2 · · · ysk+l , say, (since |T | < n, l ≥ 1) and
the set

Y =

�
�

i∈I

ysi : I ⊂ {1, 2, · · · , k + 1}, I �= ∅
�

.
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Now, if for subsets I, J of {1, 2, · · · , k + 1}, with I �= J, I �= ∅, J �= ∅, we have
�

i∈I

ysi =
�

i∈J

ysi ,

then we have �

i∈I�

δiysi = 0, δi ∈ A,

where I
� = (I ∪ J) \ (I ∩ J).

Since it is clear that I
� is non-empty, and 1 ≤ |I �| ≤ k+1 ≤ |T |, by the observation

made in the Remark in Section 2, appending the subsequence corresponding to I
� to

T , we get a contradiction to the maximality of T . Therefore, we have |Y | = 2k+1−1.
Adding ysk+2 + · · ·+ysk+l to each of the distinct sums in Y , we get 2k+1−1 distinct
sums ysk+2 + · · · + ysk+l +

�
i∈I

ysi : I ⊂ {1, 2, · · · , k + 1}, I �= ∅.
Now, for a given I ⊂ {1, 2, · · · , k + 1}, as n − (|I| + l − 1) ≤ n − l = |T |, we

can append an n − (|I| + l − 1) length A-weighted zero-sum subsequence of T to
ysk+2 + · · · + ysk+l +

�
i∈I

ysi to make an A-weighted n-sum without changing the
value of the sum.

Thus, |Σn(B)| ≥ 2k+1 − 1, which is a contradiction to (5), and completes the
proof of Theorem 1.

Remark. It is not difficult to observe that for a finite abelian group
G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr , 1 < n1 | · · · | nr, satisfying |G| > 2(2r�−1−1+ r�

2 ),
where r

� = |{i ∈ {1, 2, · · · , r} : 2 | ni}|, and A = {1,−1}, our theorem along with
some counter examples like those given in [2] (see also [5]), yields

|G| +
r�

i=1

�log2 ni� ≤ EA(G) ≤ |G| + �log2 |G|�. (8)

This gives the exact value of EA(G) when G is cyclic (thus giving another proof
of the main result in [2]) and unconditional bounds in many cases.

However, we mention that when A = {1,−1}, finding the corresponding bounds
for DA(G) for a finite abelian group G and the exact value of DA(G) when G is
cyclic, is not so difficult (see [2], [5]). Therefore, from the relation

EA(G) = DA(G) + n− 1,

which generalizes (1) for an abelian group G with |G| = n and a non-empty subset
A of {1, . . . , n − 1}, established for cyclic groups by Yuan and Zeng [21] and for
general finite abelian groups by Grynkiewicz, Marchan and Ordaz [13], the result
(8) follows.
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