

NUMBER OF WEIGHTED SUBSEQUENCE SUMS WITH WEIGHTS IN $\{1, -1\}$

Sukumar Das Adhikari

Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India adhikari@mri.ernet.in

Mohan N. Chintamani

Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, India chintamani@mri.ernet.in

Received: 7/27/10, Revised: 4/14/11, Accepted: 4/24/11, Published: 5/27/11

Abstract

Let G be an abelian group of order n and let it be of the form $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_r}$, where $n_i \mid n_{i+1}$ for $1 \leq i < r$ and $n_1 > 1$. Let $A = \{1, -1\}$. Given a sequence S with elements in G and of length n + k such that the natural number k satisfies $k \geq 2^{r'-1} - 1 + \frac{r'}{2}$, where $r' = |\{i \in \{1, 2, \cdots, r\} : 2 \mid n_i\}|$, if S does not have an A-weighted zero-sum subsequence of length n, we obtain a lower bound on the number of A-weighted n-sums of the sequence S. This is a weighted version of a result of Bollobás and Leader. As a corollary, one obtains a result of Adhikari, Chen, Friedlander, Konyagin and Pappalardi. A result of Yuan and Zeng on the existence of zero-smooth subsequences and the DeVos-Goddyn-Mohar Theorem are some of the main ingredients of our proof.

1. Introduction

Let G be an abelian group of order n, written additively. The Davenport constant D(G) is defined to be the smallest natural number t such that any sequence of elements of G of length t has a non-empty subsequence whose sum is zero (the identity element of the group).

Another interesting constant, E(G), is defined to be the smallest natural number t such that any sequence of elements of G of length t has a subsequence of length n whose sum is zero. A classical result of Erdős, Ginzburg and Ziv [8] says that $E(\mathbb{Z}/n\mathbb{Z}) = 2n - 1$.

The constants D(G) and E(G) were being studied independently until Gao [9] (see also [11], Proposition 5.7.9) established the following result connecting these two invariants:

$$E(G) = D(G) + n - 1.$$
 (1)

Generalizations of the constants E(G) and D(G) with weights were considered in [2] and [4] for finite cyclic groups and generalizations for an arbitrary finite abelian group G were introduced later [1].

Given an abelian group G of order n, and a finite non-empty subset A of integers, the *Davenport constant of* G with weight A, denoted by $D_A(G)$, is defined to be the least positive integer t such that for every sequence (x_1, \ldots, x_t) with $x_i \in G$, there exists a non-empty subsequence $(x_{j_1}, \ldots, x_{j_l})$ and $a_i \in A$ such that $\sum_{i=1}^l a_i x_{j_i} =$ 0. Similarly, $E_A(G)$ is defined to be the least positive integer t such that every sequence of elements of G of length t contains a subsequence $(x_{j_1}, \ldots, x_{j_n})$ satisfying $\sum_{i=1}^n a_i x_{j_i} = 0$, for some $a_i \in A$. When G is of order n, one may consider A to be a non-empty subset of $\{0, 1, \ldots, n-1\}$ and one avoids the trivial case $0 \in A$.

In several papers (see [2], [15], [12], [3]) the problem of determining the exact values of $E_A(\mathbb{Z}/n\mathbb{Z})$ and $D_A(\mathbb{Z}/n\mathbb{Z})$ has been taken up for various weight sets A.

In the present paper we take up a particular weighted generalization of a result of Bollobás and Leader [6] (see also [19]).

More precisely, we prove the following theorem. For some terminology used in the statement of the theorem, one may look into the next section.

Theorem 1. Let G be a finite abelian group of order n and let it be of the form $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_r}$, where $1 < n_1 \mid \cdots \mid n_r$. Let $A = \{1, -1\}$ and k be a natural number satisfying $k \ge 2^{r'-1} - 1 + \frac{r'}{2}$, where $r' = |\{i \in \{1, 2, \cdots, r\} : n_i \text{ is even}\}|$. Then, given a sequence $S = (x_1, x_2, \cdots, x_{n+k})$, with $x_i \in G$, if S has no A-weighted zero-sum subsequence of length n, there are at least $2^{k+1} - \delta$ distinct A-weighted n-sums, where $\delta = 1$, if $2 \mid n$ and $\delta = 0$, otherwise.

For a finite abelian group G of order n, Gao and Leader [10] obtained some result on the description of some sequences which do not have 0 as an n sum and at which the minimum number of n sums is attained.

2. Notations and Preliminaries

Let G be a finite abelian group of order n written additively and let A be a nonempty subset of $\{1, \ldots, n-1\}$. Given a sequence $S = (s_1, s_2, \cdots, s_r)$ of elements of G and $\bar{a} = (a_1, a_2, \cdots, a_r) \in A^r$, we define $\sigma(S) = \sum_{i=1}^r s_i$ and $\sigma^{\bar{a}}(S) = \sum_{i=1}^r a_i s_i$. If $\sigma(S) = 0$ (resp. $\sigma^{\bar{a}}(S) = 0$ for some $\bar{a} \in A^r$), we say that S is a zero-sum sequence (resp. an A-weighted zero-sum sequence).

If H is a subgroup of G, then $\phi_H : G \to G/H$ will denote the natural homomorphism and given a sequence $S = (s_1, s_2, \dots, s_r)$ of elements of G, $\phi_H(S)$ will denote the sequence $(\phi_H(s_1), \phi_H(s_2), \dots, \phi_H(s_r))$ with elements in G/H.

The length of a sequence S will be denoted by |S|; we think that this will not have any confusion with the usual notation |G| used to denote the order of a finite group G.

INTEGERS 11 (2011)

For a subsequence S' of a sequence S, we use $S \setminus S'$ to denote the sequence obtained by removing the elements of the subsequence S' from S.

Generalizing a definition in [20], we call a sequence S with elements in G an A-weighted zero-smooth sequence if for any $1 \le \ell \le |S|$, there exists an A-weighted zero-sum subsequence of S of length ℓ . When $A = \{1\}$, S is simply called a zero-smooth sequence.

Remark. We observe that if $U = (u_1, u_2, \dots, u_r)$ and $V = (v_1, v_2, \dots, v_s)$ are sequences of elements of G such that U is an A-weighted zero-smooth sequence and V is an A-weighted zero-sum sequence with $|V| \leq |U| + 1$, then the sequence $(u_1, u_2, \dots, u_r, v_1, v_2, \dots, v_s)$, obtained by appending V to U, is an A-weighted zero-smooth sequence.

We shall need the following result of Yuan and Zeng [20]:

Theorem A (Yuan, Zeng) Let G be an abelian group of order n and S a sequence with elements in G such that $|S| \ge n + D(G) - 1$. Assume that the element 0 is repeated maximum number of times in S. Then there exists a subsequence S_1 of S which is zero-smooth and $|S_1| \ge |S| - D(G) + 1$.

Let $\mathcal{A} = (A_1, A_2, \dots, A_r), r \geq n$, be a sequence of finite non-empty subsets of G. Let $\Sigma_n(\mathcal{A})$ denote the set of all group elements representable as a sum of n elements chosen from distinct terms of \mathcal{A} and let $H = stab(\Sigma_n(\mathcal{A})) = \{g \in G : g + \Sigma_n(\mathcal{A}) = \Sigma_n(\mathcal{A})\}$. The following result of DeVos, Goddyn and Mohar [7] generalizes Kneser's addition theorem [14] (one may also look into [16] or [18]).

Theorem B (DeVos, Goddyn, Mohar) With the above notation, we have

$$|\Sigma_n(\mathcal{A})| \ge |H| \left(1 - n + \sum_{g \in G/H} \min\{n, |\{j : g \cap A_j \neq \emptyset\}|\} \right).$$

3. Proof of Theorem 1

In the case r' = 0, it is possible to have k = 0. We observe that in this case, |S| = nand if $\sigma(S) = t \neq 0$, then $-\sigma(S) = -t \neq 0$. Again, *n* being odd, *G* does not have any element of order 2 and thus there are at least two distinct *A*-weighted *n*-sums. So, the result is true in this case and we may assume that $k \geq 1$.

If possible, suppose that the result is not true and choose a counterexample (G, S, k) with |G| = n minimal.

Considering the sequence $\mathcal{A} = (A_1, A_2, \cdots, A_{n+k})$, where $A_i = Ax_i$ for each i,

 $1 \leq i \leq n+k$, we have,

$$0 \notin \Sigma_n(\mathcal{A}), \tag{2}$$

$$|\Sigma_n(\mathcal{A})| < 2^{k+1} - \delta.$$
(3)

Let $L = stab(\Sigma_n(\mathcal{A}))$. We claim that $L = \langle 0 \rangle$.

If possible, let $L \neq \langle 0 \rangle$, so that |G/L| < n. Writing the identity element of G/L as **0**, if for every subsequence $S' = \{x_{i_1}, \dots, x_{i_d}\}$ of S of length d = |G/L| + k, **0** is representable as a sum of |G/L| elements from distinct terms of the sequence $(\phi_L(Ax_{i_1}), \phi_L(Ax_{i_2}), \dots, \phi_L(Ax_{i_d}))$, then we get pairwise disjoint subsequences $S_1, S_2, \dots, S_{|L|}$, each of length |G/L| and $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_{|L|} \in A^{|G/L|}$ such that $\sigma^{\bar{a}_i}(\phi_L(S_i)) = \mathbf{0}$, for each $i \in \{1, 2, \dots, |L|\}$.

Therefore, we have

$$\sum_{i=1}^{|L|} \sigma^{\bar{a}_i}(\phi_L(S_i)) = \mathbf{0}$$

Writing $\theta = \sigma^{\bar{a}_1}(S_1) + \sigma^{\bar{a}_2}(S_2) + \dots + \sigma^{\bar{a}_{|L|}}(S_{|L|})$, since $-\theta$ also belongs to $L = stab(\Sigma_n(\mathcal{A}))$ and $\theta \in \Sigma_n(\mathcal{A})$, we have $0 \in \Sigma_n(\mathcal{A})$, which contradicts (2).

Hence there exists a subsequence S' of S with length |G/L|+k (observe that a permissible value k for G is obviously permissible for G/L) such that $\mathbf{0} \notin \Sigma_{|G/L|}(\phi_L(\mathcal{A}'))$, where \mathcal{A}' is the subsequence of \mathcal{A} corresponding to the sequence S' and hence by minimality of |G|, we have

$$|\Sigma_{|G/L|}(\phi_L(\mathcal{A}'))| \ge 2^{k+1} - \delta' \ge 2^{k+1} - \delta,$$

and hence $|\Sigma_{|G/L|}(\mathcal{A}')| \geq 2^{k+1} - \delta$, where δ' is the parity of |G/L| and δ is that of n.

Since the length of the subsequence $\mathcal{A} \setminus \mathcal{A}'$ is n + k - (|G/L| + k) = n - |G/L|,

$$|\Sigma_n(\mathcal{A})| \ge |\Sigma_{|G/L|}(\mathcal{A}')| \ge 2^{k+1} - \delta,$$

- a contradiction to (3).

Therefore, we have $L = \langle 0 \rangle$ and hence by Theorem B, we have

$$|\Sigma_n(\mathcal{A})| \ge 1 - n + \sum_{x \in G} \min\{n, |\{i : 1 \le i \le n + k, x \in A_i\}|\}.$$

Since (2) implies that no element of G can be in n distinct A_i 's, we have

$$\begin{aligned} |\Sigma_n(\mathcal{A})| &\geq 1 - n + \sum_{x \in G} \min\{n, |\{i : 1 \leq i \leq n + k, x \in A_i\}|\} \\ &= 1 - n + \sum_{x \in G} |\{i : 1 \leq i \leq n + k, x \in A_i\}| \\ &= 1 - n + \sum_{i=1}^{n+k} |A_i|. \end{aligned}$$

Writing $t = |\{j : 1 \le j \le n + k, |A_j| = 1\}|$, from (2) and the above inequality we have,

$$|n-1 \ge |\Sigma_n(\mathcal{A})| \ge 1 - n + 2(n+k-t) + t_2$$

and hence,

$$t \ge 2(k+1).$$

Rearranging, if needed, we assume that (x_1, x_2, \dots, x_t) is the subsequence of S such that $|A_i| = |Ax_i| = 1$ for each $i, 1 \leq i \leq t$ and the element x_1 is repeated maximum number of times in (x_1, x_2, \dots, x_t) .

We observe that all the x_i 's appearing in (x_1, x_2, \dots, x_t) are either equal to the zero element of the group or those of order 2, when n is even.

Consider the sequence $S' = (y_1, y_2, \dots, y_{n+k})$, where $y_i = x_i - x_1$, for each i, $1 \le i \le n+k$. Write $\mathcal{B} = (B_1, B_2, \dots, B_{n+k})$, where $B_i = Ay_i = A(x_i - x_1)$, for each $i, 1 \le i \le n+k$.

Observing that $|Ax_1| = 1$, if we consider a typical element $\epsilon_{i_1}y_{i_1} + \epsilon_{i_2}y_{i_2} + \cdots + \epsilon_{i_n}y_{i_n}$, of $\Sigma_n(\mathcal{B})$, where $\epsilon_j \in \{1, -1\}$, then it can be written as:

$$\epsilon_{i_1}(x_{i_1} - x_1) + \epsilon_{i_2}(x_{i_2} - x_1) + \dots + \epsilon_{i_n}(x_{i_n} - x_1)$$

= $\epsilon_{i_1}x_{i_1} + \epsilon_{i_2}x_{i_2} + \dots + \epsilon_{i_n}x_{i_n},$

since $\sum_{j=1}^{n} \epsilon_{i_j} x_1 = n x_1 = 0.$

Hence, $\Sigma_n(\mathcal{A}) = \Sigma_n(\mathcal{B})$ and from (2) and (3), we have

$$0 \notin \Sigma_n(\mathcal{B}), \tag{4}$$

$$|\Sigma_n(\mathcal{B})| < 2^{k+1} - \delta.$$
(5)

By our construction, in the subsequence $S_1 = (y_1, y_2, \dots, y_t)$ of S', all the elements y_i , $1 \le i \le t$, satisfy $2y_i = 0$ and $y_1 = 0$ is repeated maximum number of times.

Depending on the parity of n, we consider the following two cases:

Case I (*n* is odd). We observe that in this case, $y_i = 0$ for all $i, 1 \le i \le t$. Now, we choose a maximal A-weighted zero-sum subsequence S_2 of $S' \setminus S_1$, possibly empty. If $|(S \setminus S_1) \setminus S_2| \le k$, then $(n+k) - |S_1| - |S_2| \le k \implies n - |S_2| \le |S_1|$ and hence by appending a subsequence of (zeros) S_1 of length $n - |S_2|$ to S_2 we get an A-weighted zero-sum subsequence of S' of length n, which is a contradiction to (4).

Thus, there exists a subsequence $S_3 = y_{j_1}y_{j_2}\cdots y_{j_{k+1}}$ of $(S' \setminus S_1) \setminus S_2$ which does not have any non-empty A-weighted zero-sum subsequence, by maximality of S_2 .

Consider the set

$$X = \left\{ \sum_{i=1}^{k+1} \epsilon_i y_{j_i} : \epsilon_i \in A = \{1, -1\} \right\}.$$

INTEGERS 11 (2011)

If for $\epsilon_i, \epsilon'_i \in A = \{1, -1\}$, we have

$$\sum_{i=1}^{k+1} \epsilon_i y_{j_i} = \sum_{i=1}^{k+1} \epsilon'_i y_{j_i},$$

then, writing $I = \{i : \epsilon_i \neq \epsilon'_i\},\$

$$2\sum_{i\in I}\epsilon_i y_{j_i}=0,$$

which implies, since n is odd, that $\sum_{i \in I} \epsilon_i y_{j_i} = 0$, which leads to a contradiction to the maximality of S_2 if I is non-empty.

Thus, we have $|X| \ge 2^{k+1}$. Now, considering the sum of a fixed subsequence of $S' \setminus S_3$ of length n - (k+1), and adding that to various sums in X, we have $|\Sigma_n(\mathcal{B})| \ge 2^{k+1}$ – a contradiction to (5).

Case II (*n* is even). Put $H = \langle y_1, y_2, \dots, y_t \rangle$. As we have already observed, $2y_i = 0$, for all $i, 1 \le i \le t$. Hence H is a subgroup of $\mathbb{Z}_2^{r'}$.

Thus,

$$|H| \le 2^{r'} \tag{6}$$

and by a result of Olson [17] on the Davenport constant of p-groups,

$$D(H) \le D(\mathbb{Z}_2^{r'}) = r' + 1.$$
 (7)

Since, by our assumption, $k \ge 2^{r'-1} - 1 + \frac{r'}{2}$, by (6) we have,

$$|S_1| = t \ge 2(k+1) \ge 2^{r'} + r' \ge |H| + D(H) - 1.$$

Also, 0 is repeated maximum number of times in S_1 .

So, we can apply Theorem A and it follows that S_1 has a zero-smooth subsequence T_1 such that $|T_1| \ge |S_1| - D(H) + 1$.

Therefore, from the fact $|S_1| = t \ge 2(k+1)$ and (7) we have

 $|T_1| \ge 2k + 2 - r'.$

Again, since, $k \ge 2^{r'-1} - 1 + \frac{r'}{2}$, we have $k - r' \ge 2^{r'-1} - 1 - \frac{r'}{2} \ge -1$, we have

$$|T_1| \ge 2k + 2 - r' = k + 2 + k - r' \ge k + 1.$$

We choose a maximal A-weighted zero-smooth subsequence T of S'. We have, $|T| \ge |T_1| \ge k + 1$. Further, (4) implies that |T| < n.

Consider the subsequence $S' \setminus T = y_{s_1} y_{s_2} \cdots y_{s_{k+l}}$, say, (since $|T| < n, l \ge 1$) and the set

$$Y = \left\{ \sum_{i \in I} y_{s_i} : I \subset \{1, 2, \cdots, k+1\}, I \neq \emptyset \right\}.$$

Now, if for subsets I, J of $\{1, 2, \dots, k+1\}$, with $I \neq J, I \neq \emptyset, J \neq \emptyset$, we have

$$\sum_{i\in I} y_{s_i} = \sum_{i\in J} y_{s_i},$$

then we have

$$\sum_{i\in I'}\delta_i y_{s_i}=0, \ \delta_i\in A,$$

where $I' = (I \cup J) \setminus (I \cap J)$.

Since it is clear that I' is non-empty, and $1 \leq |I'| \leq k+1 \leq |T|$, by the observation made in the Remark in Section 2, appending the subsequence corresponding to I' to T, we get a contradiction to the maximality of T. Therefore, we have $|Y| = 2^{k+1} - 1$. Adding $y_{s_{k+2}} + \cdots + y_{s_{k+l}}$ to each of the distinct sums in Y, we get $2^{k+1} - 1$ distinct sums $y_{s_{k+2}} + \cdots + y_{s_{k+l}} + \sum_{i \in I} y_{s_i} : I \subset \{1, 2, \cdots, k+1\}, I \neq \emptyset$.

Now, for a given $I \subset \{1, 2, \dots, k+1\}$, as $n - (|I| + l - 1) \leq n - l = |T|$, we can append an n - (|I| + l - 1) length A-weighted zero-sum subsequence of T to $y_{s_{k+2}} + \dots + y_{s_{k+l}} + \sum_{i \in I} y_{s_i}$ to make an A-weighted n-sum without changing the value of the sum.

Thus, $|\Sigma_n(\mathcal{B})| \ge 2^{k+1} - 1$, which is a contradiction to (5), and completes the proof of Theorem 1.

Remark. It is not difficult to observe that for a finite abelian group $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_r}, 1 < n_1 | \cdots | n_r$, satisfying $|G| > 2^{(2^{r'-1}-1+\frac{r'}{2})}$, where $r' = |\{i \in \{1, 2, \cdots, r\} : 2 | n_i\}|$, and $A = \{1, -1\}$, our theorem along with some counter examples like those given in [2] (see also [5]), yields

$$|G| + \sum_{i=1}^{r} \lfloor \log_2 n_i \rfloor \le E_A(G) \le |G| + \lfloor \log_2 |G| \rfloor.$$
(8)

This gives the exact value of $E_A(G)$ when G is cyclic (thus giving another proof of the main result in [2]) and unconditional bounds in many cases.

However, we mention that when $A = \{1, -1\}$, finding the corresponding bounds for $D_A(G)$ for a finite abelian group G and the exact value of $D_A(G)$ when G is cyclic, is not so difficult (see [2], [5]). Therefore, from the relation

$$E_A(G) = D_A(G) + n - 1,$$

which generalizes (1) for an abelian group G with |G| = n and a non-empty subset A of $\{1, \ldots, n-1\}$, established for cyclic groups by Yuan and Zeng [21] and for general finite abelian groups by Grynkiewicz, Marchan and Ordaz [13], the result (8) follows.

Acknowledgements. We thank the referee whose suggestions were helpful in improving the presentation of the paper.

References

- S. D. Adhikari, Y. G. Chen, Davenport Constant with weights and some related questions II, Journal of Combinatorial Theory, Series A 115 (2008), 178-184.
- [2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.
- [3] Sukumar Das Adhikari, Chantal David and Jorge Jiménez Urroz, Generalizations of some zero-sum theorems, Integers 8 (2008), Article A52.
- [4] S. D. Adhikari, P. Rath, Davenport Constant with weights and some related questions, Integers 6 (2006), Article A30.
- [5] Sukumar Das Adhikari, David J. Grynkiewicz and Zhi-Wei Sun, On Weighted Zero-Sum Sequences, preprint.
- [6] B. Bollobás, I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), no. 1, 27–35.
- [7] M. DeVos, L. Goddyn, B. Mohar, A Generalization of Kneser's Addition Theorem, Adv. Math. 220 (2009), 1531-1548.
- [8] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10(F) (1961), 41-43.
- W. D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58, (1996), 100–103.
- [10] W. D. Gao, I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006), no. 1, 26–32.
- [11] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman & Hall, CRC, 2006.
- [12] Simon Griffiths, The Erdős-Ginzburg-Ziv theorem with units, Discrete Math. 308 (2008), no. 23, 5473–5484.
- [13] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, A weighted generalization of two theorems of Gao, preprint.
- [14] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.
- [15] Florian Luca, A generalization of a classical zero-sum problem, Discrete Math. 307 (2007), no. 13, 1672–1678.
- [16] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996.
- [17] J. E. Olson, A combinatorial problem in finite abelian groups, I, J. Number Theory 1 (1969), 8-10.
- [18] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 Cambridge University Press, Cambridge, 2006.
- [19] Hong Bing Yu, A simple proof of a theorem of Bollobás and Leader, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2639–2640.
- [20] P. Yuan, X. Zeng, A new result on Davenport Constant, J. Number Theory 129 (2009), 3026-3028.
- [21] P. Yuan, X. Zeng, Davenport constant with weights, European Journal of Combinatorics 31 (2010), 677-680.