EULER'S PENTAGONAL NUMBER THEOREM IMPLIES THE JACOBI TRIPLE PRODUCT IDENTITY

Chuanan Wei ${ }^{1}$
Department of Information Technology, Hainan Medical College, Haikou, China
weichuanan@yahoo.com.cn
Dianxuan Gong
College of Sciences, Hebei Polytechnic University, Tangshan, China
dxgong@heut.edu.cn

Received: 3/30/10, Revised: 11/14/10, Accepted: 5/11/11, Published: 6/8/11

Abstract

By means of Liouville's theorem, we show that Euler's pentagonal number theorem implies the Jacobi triple product identity.

1. The Result

For two complex numbers x and q, define the q-shifted factorial by

$$
(x ; q)_{0}=1 \quad \text { and } \quad(x ; q)_{n}=\prod_{i=0}^{n-1}\left(1-q^{i} x\right) \quad \text { for } \quad n \in \mathbb{N} .
$$

When $|q|<1$, the following product of infinite order is well-defined:

$$
(x ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-q^{i} x\right)
$$

Then Euler's pentagonal number theorem(cf. Andrews, Askey and Roy [2, Section 10.4]) and the Jacobi triple product identity(cf. Jacobi [4]) can be stated, respectively, as follows:

$$
\begin{align*}
& \sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\frac{k}{2}(3 k+1)}=(q ; q)_{\infty} \tag{1}\\
& \sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{k}{2}} x^{k}=(q ; q)_{\infty}(x ; q)_{\infty}(q / x ; q)_{\infty} \quad \text { where } x \neq 0 \tag{2}
\end{align*}
$$

[^0]It is well-known that (2) contains (1) as a special case. We shall prove that (1) implies (2) by means of Liouville's theorem: every bounded entire function must be a constant. It is a surprise that our proof for (2), which will be displayed, does not require expanding the expression $(q ; q)_{\infty}(x ; q)_{\infty}(q / x ; q)_{\infty}$ as a power series in x.

For facilitating the use of Liouville's theorem, Chu and Yan [1] gave the following statement.

Lemma 1. Let f be a holomorphic function on $\mathbb{C} \backslash\{0\}$ satisfying the functional equation $f(z)=f(q z)$ where $0<|q|<1$. Then f is a constant.

Proof of the Jacobi triple product identity. Define $F(x)=U(x) / V(x)$, where $U(x)$ and $V(x)$ stand respectively for

$$
\begin{aligned}
U(x) & =\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{k}{2}} x^{k}, \\
V(x) & =(q ; q)_{\infty}(x ; q)_{\infty}(q / x ; q)_{\infty}
\end{aligned}
$$

It is not difficult to check the two equations:

$$
U(x)=-x U(q x) \quad \text { and } \quad V(x)=-x V(q x)
$$

which lead consequently to the following relation: $F(x)=F(q x)=F\left(q^{2} x\right)=\cdots$. Observe that the possible poles of $F(x)$ are given by the zeros of $V(x)$, which consist of $x=q^{n}$ with $n \in \mathbb{Z}$ and are all simple. However, $U\left(q^{n}\right)=0$ for $n \in \mathbb{Z}$, which is justified as follows. Shifting the summation index $k \rightarrow k-n$ for $U\left(q^{n}\right)$, we obtain the equation:

$$
\begin{aligned}
U\left(q^{n}\right) & =\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{k}{2}+n k}=\sum_{k=-\infty}^{+\infty}(-1)^{k-n} q^{\binom{k-n}{2}+n(k-n)} \\
& =(-1)^{n} q^{-\binom{n}{2}} \sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{k}{2}} .
\end{aligned}
$$

Splitting the last sum into two parts and performing the replacement $k \rightarrow 1-k$ for the second sum, we have

$$
\begin{aligned}
U\left(q^{n}\right) & =(-1)^{n} q^{-\binom{n}{2}}\left\{\sum_{k=1}^{+\infty}(-1)^{k} q^{\binom{k}{2}}+\sum_{k=-\infty}^{0}(-1)^{k} q^{\binom{k}{2}}\right\} \\
& =(-1)^{n} q^{-\binom{n}{2}}\left\{\sum_{k=1}^{+\infty}(-1)^{k} q^{\binom{k}{2}}-\sum_{k=1}^{+\infty}(-1)^{k} q^{\binom{k}{2}}\right\} \\
& =0 .
\end{aligned}
$$

Therefore, $F(x)$ is a holomorphic function on $\mathbb{C} \backslash\{0\}$ and must be a constant thanks to Lemma 1. It remains to be shown that this constant is one. Denote by $\omega=\exp (2 \pi / 3)$ the cubic root of unity. Then we get the equation:

$$
U(\omega)=\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{3 k}{2}}-\omega \sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{1+3 k}{2}}+\omega^{2} \sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{2+3 k}{2}}
$$

According to Euler's pentagonal number theorem (1), we can check, without difficulty, that

$$
\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{3 k}{2}}=\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{1+3 k}{2}}=\left(q^{3} ; q^{3}\right)_{\infty}
$$

Combining the last identity with the derivation

$$
\begin{aligned}
\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\binom{2+3 k}{2}} & \left.=\sum_{k=0}^{+\infty}(-1)^{k} q^{\binom{2+3 k}{2}}+\sum_{k=-\infty}^{-1}(-1)^{k} q^{(2+3 k}\right) \\
& =\sum_{k=0}^{+\infty}(-1)^{k} q^{\binom{2+3 k}{2}}-\sum_{k=0}^{+\infty}(-1)^{k} q^{\binom{2+3 k}{2}} \\
& =0
\end{aligned}
$$

we achieve the following relation: $U(\omega)=(1-w)\left(q^{3} ; q^{3}\right)_{\infty}=V(\omega)$, which leads to

$$
F(x)=F(\omega)=U(\omega) / V(\omega)=1
$$

This proves the Jacobi triple product identity (2).
Remark: One can also show that Euler's pentagonal number theorem implies the quintuple product identity(cf. Gasper and Rahman [3, Section 1.6]) in the same method. The details will not be reproduced here.

Acknowledgment The authors are grateful to the referee for helpful comments.

References

[1] W. Chu and Q. Yan, Verification method for theta function identities via Liouville's theorem, Arch. Math. 90 (2008), 331-340.
[2] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series(2nd edition), Cambridge University Press, Cambridge, 2004.
[4] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti. Sumtibus fratrum Bornträger, Königsberg, 1829.

[^0]: ${ }^{1}$ Cooresponding author

