QUADRATIC FORMS AND FOUR PARTITION FUNCTIONS MODULO 3

Jeremy Lovejoy
CNRS, LIAFA, Université Denis Diderot - Paris, Paris, France
lovejoy@liafa.jussieu.fr
Robert Osburn
School of Mathematical Sciences, University College Dublin, Dublin, Ireland
robert.osburn@ucd.ie

Received: 9/16/10, Accepted: 10/9/10, Published: 1/13/11

Abstract

Recently, Andrews, Hirschhorn and Sellers have proven congruences modulo 3 for four types of partitions using elementary series manipulations. In this paper, we generalize their congruences using arithmetic properties of certain quadratic forms.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence whose sum is n. An overpartition of n is a partition of n where we may overline the first occurrence of a part. Let $\bar{p}(n)$ denote the number of overpartitions of $n, \overline{p_{o}}(n)$ the number of overpartitions of n into odd parts, $\operatorname{ped}(n)$ the number of partitions of n without repeated even parts and $\operatorname{pod}(n)$ the number of partitions of n without repeated odd parts. The generating functions for these partitions are

$$
\begin{align*}
\sum_{n \geq 0} \bar{p}(n) q^{n} & =\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \tag{1}\\
\sum_{n \geq 0} \overline{p_{o}}(n) q^{n} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{2}\\
\sum_{n \geq 0} \operatorname{ped}(n) q^{n} & =\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{3}\\
\sum_{n \geq 0} \operatorname{pod}(n) q^{n} & =\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{4}
\end{align*}
$$

where as usual

$$
(a ; q)_{n}:=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) .
$$

The infinite products in (1)-(4) are essentially the four different ways one can specialize the product $(-a q ; q)_{\infty} /(b q ; q)_{\infty}$ to obtain a modular form whose level is relatively prime to 3 .

A series of four recent papers examined congruence properties for these partition functions modulo $3[1,5,6,7]$. Among the main theorems in these papers are the following congruences (see Theorem 1.3 in [6], Corollary 3.3 and Theorem 3.5 in [1], Theorem 1.1 in [5] and Theorem 3.2 in [7], respectively). For all $n \geq 0$ and $\alpha \geq 0$ we have

$$
\begin{equation*}
\overline{p_{o}}\left(3^{2 \alpha}(A n+B)\right) \equiv 0 \quad(\bmod 3), \tag{5}
\end{equation*}
$$

where $A n+B=9 n+6$ or $27 n+9$,

$$
\begin{gather*}
\operatorname{ped}\left(3^{2 \alpha+3} n+\frac{17 \cdot 3^{2 \alpha+2}-1}{8}\right) \equiv \operatorname{ped}\left(3^{2 \alpha+2} n+\frac{19 \cdot 3^{2 \alpha+1}-1}{8}\right) \equiv 0 \tag{6}\\
\bar{p}\left(3^{2 \alpha}(27 n+18)\right) \equiv 0 \quad(\bmod 3) \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{pod}\left(3^{2 \alpha+3}+\frac{23 \cdot 3^{2 \alpha+2}+1}{8}\right) \equiv 0 \quad(\bmod 3) \tag{8}
\end{equation*}
$$

We note that congruences modulo 3 for $\bar{p}(n), \bar{p}_{o}(n)$ and $\operatorname{ped}(n)$ are typically valid modulo 6 or 12 . The powers of 2 enter trivially (or nearly so), however, so we do not mention them here.

The congruences in (5)-(8) are proven in $[1,5,6,7]$ using elementary series manipulations. If we allow ourselves some elementary number theory, we find that much more is true.

With our first result we exhibit formulas for $\bar{p}_{o}(3 n)$ and $\operatorname{ped}(3 n+1)$ modulo 3 for all $n \geq 0$. These formulas depend on the factorization of n, which we write as

$$
\begin{equation*}
n=2^{a} 3^{b} \prod_{i=1}^{r} p_{i}^{v_{i}} \prod_{j=1}^{s} q_{j}^{w_{j}}, \tag{9}
\end{equation*}
$$

where $p_{i} \equiv 1,5,7$ or $11(\bmod 24)$ and $q_{j} \equiv 13,17,19$ or $23(\bmod 24)$. Further, let t denote the number of prime factors of n (counting multiplicity) that are congruent to 5 or $11(\bmod 24)$. Let $R(n, Q)$ denote the number of representations of n by the quadratic form Q.

Theorem 1. For all $n \geq 0$ we have

$$
\bar{p}_{o}(3 n) \equiv f(n) R\left(n, x^{2}+6 y^{2}\right) \quad(\bmod 3)
$$

and

$$
\operatorname{ped}(3 n+1) \equiv(-1)^{n+1} R\left(8 n+3,2 x^{2}+3 y^{2}\right) \quad(\bmod 3)
$$

where $f(n)$ is defined by

$$
f(n)= \begin{cases}-1, & n \equiv 1,6,9,10 \quad(\bmod 12) \\ 1, & \text { otherwise }\end{cases}
$$

Moreover, we have

$$
\begin{equation*}
\bar{p}_{o}(3 n) \equiv f(n)\left(1+(-1)^{a+b+t}\right) \prod_{i=1}^{r}\left(1+v_{i}\right) \prod_{j=1}^{s}\left(\frac{1+(-1)^{w_{j}}}{2}\right) \quad(\bmod 3) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n} \operatorname{ped}(3 n+1) \equiv \bar{p}_{o}(48 n+18) \quad(\bmod 3) \tag{11}
\end{equation*}
$$

There are many ways to deduce congruences from Theorem 1. For example, calculating the possible residues of $x^{2}+6 y^{2}$ modulo 9 we see that

$$
R\left(3 n+2, x^{2}+6 y^{2}\right)=R\left(9 n+3, x^{2}+6 y^{2}\right)=0
$$

and then (10) implies that $\bar{p}_{o}(27 n) \equiv \bar{p}_{o}(3 n)(\bmod 3)$. This gives (5). The congruences in (6) follow from those in (5) after replacing $48 n+18$ by $3^{2 \alpha}(48(3 n+2)+18)$ and $3^{2 \alpha}(48(9 n+6)+18)$ in (11). We record two more corollaries, which also follow readily from Theorem 1 .

Corollary 2. For all $n \geq 0$ and $\alpha \geq 0$ we have

$$
\overline{p_{o}}\left(2^{2 \alpha}(A n+B)\right) \equiv 0 \quad(\bmod 3),
$$

where $A n+B=24 n+9$ or $24 n+15$.
Corollary 3. If $\ell \equiv 1,5,7$ or $11(\bmod 24)$ is prime, then for all n with $\ell \nmid n$ we have

$$
\begin{equation*}
\bar{p}_{o}\left(3 \ell^{2} n\right) \equiv 0 \quad(\bmod 3) \tag{12}
\end{equation*}
$$

For the functions $\bar{p}(3 n)$ and $\operatorname{pod}(3 n+2)$ we have relations not to binary quadratic forms but to $r_{5}(n)$, the number of representations of n as the sum of five squares. Our second result is the following.

Theorem 4. For all $n \geq 0$ we have

$$
\bar{p}(3 n) \equiv(-1)^{n} r_{5}(n) \quad(\bmod 3)
$$

and

$$
\operatorname{pod}(3 n+2) \equiv(-1)^{n} r_{5}(8 n+5) \quad(\bmod 3)
$$

Moreover, for all odd primes ℓ and $n \geq 0$, we have

$$
\begin{equation*}
\bar{p}\left(3 \ell^{2} n\right) \equiv\left(\ell-\ell\left(\frac{n}{\ell}\right)+1\right) \bar{p}(3 n)-\ell \bar{p}\left(3 n / \ell^{2}\right) \quad(\bmod 3) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n+1} \operatorname{pod}(3 n+2) \equiv \bar{p}(24 n+15) \quad(\bmod 3) \tag{14}
\end{equation*}
$$

where $\left(\frac{\bullet}{\ell}\right)$ denotes the Legendre symbol.
Here we have taken $\bar{p}\left(3 n / \ell^{2}\right)$ to be 0 unless $\ell^{2} \mid 3 n$. Again there are many ways to deduce congruences. For example, (7) follows readily upon combining (13) in the case $\ell=3$ with the fact that

$$
r_{5}(9 n+6) \equiv 0 \quad(\bmod 3)
$$

which is a consequence of the fact that $R\left(9 n+6, x^{2}+y^{2}+3 z^{2}\right)=0$. One can check that (8) follows similarly. For another example, we may apply (13) with n replaced by $n \ell$ for $\ell \equiv 2(\bmod 3)$ to obtain

Corollary 5. If $\ell \equiv 2(\bmod 3)$ is prime and $\ell \nmid n$, then

$$
\bar{p}\left(3 \ell^{3} n\right) \equiv 0 \quad(\bmod 3)
$$

2. Proofs of Theorems 1 and 4

Proof of Theorem 1. On page 364 of [6] we find the identity

$$
\sum_{n \geq 0} \bar{p}_{o}(3 n) q^{n}=\frac{D\left(q^{3}\right) D\left(q^{6}\right)}{D(q)^{2}}
$$

where

$$
D(q):=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}
$$

Reducing modulo 3 , this implies that

$$
\begin{aligned}
\sum_{n \geq 0} \overline{p_{o}}(3 n) q^{n} & \equiv \sum_{x, y \in \mathbb{Z}}(-1)^{x+y} q^{x^{2}+6 y^{2}} \quad(\bmod 3) \\
& \equiv \sum_{n \geq 0} f(n) R\left(n, x^{2}+6 y^{2}\right) q^{n} \quad(\bmod 3)
\end{aligned}
$$

Now it is known (see Corollary 4.2 of [3], for example) that if n has the factorization in (9), then

$$
\begin{equation*}
R\left(n, x^{2}+6 y^{2}\right)=\left(1+(-1)^{a+b+t}\right) \prod_{i=1}^{r}\left(1+v_{i}\right) \prod_{j=1}^{s}\left(\frac{1+(-1)^{w_{j}}}{2}\right) \tag{15}
\end{equation*}
$$

This gives (10). Next, from [1] we find the identity

$$
\sum_{n \geq 0} \operatorname{ped}(3 n+1) q^{n}=\frac{D\left(q^{3}\right) \psi\left(-q^{3}\right)}{D(q)^{2}}
$$

where

$$
\psi(q):=\sum_{n \geq 0} q^{n(n+1) / 2}
$$

Reducing modulo 3 , replacing q by $-q^{8}$ and multiplying by q^{3} gives

$$
\sum_{n \geq 0}(-1)^{n+1} \operatorname{ped}(3 n+1) q^{8 n+3} \equiv \sum_{n \geq 0} R\left(8 n+3,2 x^{2}+3 y^{2}\right) q^{8 n+3} \quad(\bmod 3)
$$

It is known (see Corollary 4.3 of [3], for example) that if n has the factorization given in (9), then

$$
R\left(n, 2 x^{2}+3 y^{2}\right)=\left(1-(-1)^{a+b+t}\right) \prod_{i=1}^{r}\left(1+v_{i}\right) \prod_{j=1}^{s}\left(\frac{1+(-1)^{w_{j}}}{2}\right)
$$

Comparing with (15) finishes the proof of (11).
Proof of Theorem 4. On page 3 of [5] we find the identity

$$
\sum_{n \geq 0} \bar{p}(3 n) q^{n} \equiv \frac{D\left(q^{3}\right)^{2}}{D(q)} \quad(\bmod 3)
$$

Reducing modulo 3 and replacing q by $-q$ yields

$$
\sum_{n \geq 0}(-1)^{n} \bar{p}(3 n) q^{n} \equiv \sum_{n \geq 0} r_{5}(n) q^{n} \quad(\bmod 3)
$$

It is known (see Lemma 1 in [4], for example) that for any odd prime ℓ we have

$$
r_{5}\left(\ell^{2} n\right)=\left(\ell^{3}-\ell\left(\frac{n}{\ell}\right)+1\right) r_{5}(n)-\ell^{3} r_{5}\left(n / \ell^{2}\right)
$$

Here $r_{5}\left(n / \ell^{2}\right)=0$ unless $\ell^{2} \mid n$. Replacing $r_{5}(n)$ by $(-1)^{n} \bar{p}(3 n)$ throughout gives (13). Now equation (1) of [7] reads

$$
\sum_{n \geq 0}(-1)^{n} \operatorname{pod}(3 n+2) q^{n}=\frac{\psi\left(q^{3}\right)^{3}}{\psi(q)^{4}}
$$

Reducing modulo 3 we have

$$
\begin{aligned}
\sum_{n \geq 0}(-1)^{n} \operatorname{pod}(3 n+2) q^{n} & \equiv \psi(q)^{5}(\bmod 3) \\
& \equiv \sum_{n \geq 0} r_{5}(8 n+5) q^{n} \quad(\bmod 3) \\
& \equiv-\sum_{n \geq 0} \bar{p}(24 n+15) q^{n} \quad(\bmod 3)
\end{aligned}
$$

where the second congruence follows from Theorem 1.1 in [2]. This implies (14) and thus the proof of Theorem 4 is complete.

Acknowledgement We would like to thank Scott Ahlgren for pointing out reference [4]. The second author was partially funded by Science Foundation Ireland 08/RFP/MTH1081.

References

[1] G. Andrews, M. Hirschhorn, and J. Sellers, Arithmetic properties of partitions with even parts distinct, Ramanujan J., to appear.
[2] P. Barrucand, S. Cooper, and M. Hirschhorn, Results of Hurwitz type for five or more squares, Ramanujan J. 6 (2002), 347-367.
[3] A. Berkovich and H. Yesulyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, Ramanujan J. 20 (2009), 375-408.
[4] S. Cooper, Sums of five, seven, and nine squares, Ramanujan J. 6 (2002), 469-490.
[5] M. Hirschhorn and J. Sellers, An infinite family of overpartition congruences modulo 12, Integers 5 (2005), Article A20.
[6] M. Hirschhorn and J. Sellers, Arithmetic properties of overpartitions into odd parts, Ann. Comb. 10 (2006), 353-367.
[7] M. Hirschhorn and J. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273-284.

