
#A43 INTEGERS 11 (2011)

CONVOLUTION AND RECIPROCITY FORMULAS FOR
BERNOULLI POLYNOMIALS

Takashi Agoh1

Department of Mathematics, Tokyo University of Science, Noda, Chiba, Japan
agoh takashi@ma.noda.tus.ac.jp

Karl Dilcher2

Department of Mathematics and Statistics, Dalhousie University, Halifax,
Nova Scotia, Canada

dilcher@mathstat.dal.ca

Received: 10/7/10, Accepted: 5/18/11, Published: 6/27/11

Abstract
We prove a new convolution identity for sums of products of two Bernoulli polyno-
mials. This can be rewritten to obtain a reciprocity relation for a related sum. The
proof uses some results on Stirling numbers of both kinds which are of independent
interest. In particular, a class of polynomials related to the Stirling numbers of the
second kind turns out to be a useful tool.

1. Introduction

For the classical Bernoulli numbers Bn, n = 0, 1, 2, . . ., which can be defined by the
exponential generating function

t

et − 1
=

∞∑

n=0

Bn
tn

n!
(|t| < 2π), (1)

a great number of linear and nonlinear recurrence relations are known. For a brief
review of the relevant literature see, e.g., [1].

One of the most basic and remarkable identities is the nonlinear or convolution
identity

n∑

j=0

(
n

j

)
BjBn−j = −nBn−1 − (n− 1)Bn (n ≥ 1), (2)
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which is also known in its equivalent form

n−1∑

j=1

(
2n
2j

)
B2jB2n−2j = −(2n + 1)B2n (n ≥ 2). (3)

These identities, which are usually attributed to Euler, have been extended and
generalized in various directions, most recently by the authors [1], [3]. Extensions
to Bernoulli polynomials are also known, for instance

n∑

j=0

(
n

j

)
Bj(y)Bn−j(x) = n(x + y − 1)Bn−1(x + y)− (n− 1)Bn(x + y); (4)

see, e.g., [11, (50.11.2)], or [7], [9] for further extensions. The Bernoulli polynomials
Bn(x) can be defined by the exponential generating function

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π), (5)

or equivalently

Bn(x) =
n∑

j=0

(
n

j

)
Bn−jx

j , (6)

with the obvious connection Bn(0) = Bn. The Bernoulli polynomials also satisfy
the reflection identity

Bn(1− x) = (−1)nBn(x), (7)

which can be obtained by easy manipulations of (5). Now we let y = 0 in (4) and
use the fact that B1 = −1/2 and B2j+1 = 0 for j ≥ 1. Then

#n/2$∑

j=0

(
n

2j

)
B2jBn−2j(x) = n(x− 1

2
)Bn−1(x)− (n− 1)Bn(x). (8)

This has been generalized to the following interesting identity:

Bk(x)Bm(x) =
# k+m

2 $∑

j=0

[(
k

2j

)
m +

(
m

2j

)
k

]
B2jBk+m−2j(x)

k + m− 2j
(9)

+ (−1)k+1 k!m!
(k + m)!

Bk+m,

(valid for k + m ≥ 2); see [14, p. 75] or, in modern notation, [5]. If we set m = 1
and k = n − 1 in (9), then after some easy manipulations we get (8). Given the
identity (9), we may now ask whether there are “easy” evaluations of sums such as
the one on the right of (9), but
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(i) with B2j(x)Bk+m−2j , or
(ii) with B2j(x)Bk+m−2j(x)

in place of B2jBk+m−2j(x). It turns out that, roughly speaking, a sum of type
(i) evaluates as one of type (ii), and vice versa. In particular, we will prove the
following result.

Theorem 1. For all k,m ≥ 1 we have

m
k∑

j=0

(
k

j

)
(−1)k−j

m + j
Bm+j(x)Bk−j(x) (10)

+ k
m∑

j=1

(
m

j

)
1

k + j
Bk+jBm−j(x) = (−1)k k!m!

(k + m)!
Bk+m(x)

By interchanging m and k and adding the resulting identity thus obtained to the
original identity (10), we immediately get the following

Corollary 2. For all k,m ≥ 1 we have

m
k∑

j=0

(
k

j

)
(−1)k−jBm+j(x) + Bm+j

m + j
Bk−j(x) (11)

+ k
m∑

j=0

(
m

j

)
(−1)m−jBk+j(x) + Bk+j

k + j
Bm−j(x)

= BmBk(x) + BkBm(x) + ((−1)k + (−1)m)
k!m!

(k + m)!
Bk+m(x).

This can be written as a reciprocity relation, in the spirit of [2]. Indeed, if b(k,m)
denotes the first sum in (11), then we have

b(k,m) + b(m,k) = BmBk(x) + BkBm(x) + ((−1)k + (−1)m)
k!m!

(k + m)!
Bk+m(x).

Note the symmetry in k and m.
This paper is structured as follows. In Section 2 we will review some properties

of the Stirling numbers of both kinds and define a class of polynomials related to
the Stirling number of the second kind. The results obtained in this section can also
be considered to be of independent interest. In Section 3 we will then apply these
results to the proof of Theorem 1. We conclude this paper with some additional
remarks and results, in Section 4, on the Stirling-type polynomials.

2. Stirling Numbers and Related Polynomials

It is well known that Stirling numbers of both kinds and Bernoulli numbers are
closely related to each other. In this paper as well, Stirling numbers turn out to be
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essential tools in the proof of Theorem 1.
While they are often defined in a purely combinatorial way (see, e.g., [10], Sec-

tion 6.1), for our purposes it is more convenient to consider the Stirling numbers of
the first kind, s(n, k), and of the second kind, S(n, k), as coefficients in the change
between the two standard bases of the vector space of single-variable polynomials:

x(x− 1) · · · (x− n + 1) =
n∑

k=0

s(n, k)xk, (12)

xn =
n∑

k=0

S(n, k)x(x− 1) · · · (x− k + 1). (13)

It follows directly from these definitions that

S(n, 0) = s(n, 0) = 0 for n ≥ 1, (14)
S(n, 1) = s(n, 1) = 1 for n ≥ 1, (15)

S(n, n− 1) = −s(n, n− 1) = n(n−1)
2 for n ≥ 1, (16)

S(n, n) = s(n, n) = 1 for n ≥ 0, (17)

and by convention we set

s(n, j) = S(n, j) = 0 for j > n and j < 0. (18)

Another pair of basic and important identities are the triangular or Pascal-type
relations

S(n + 1, k) = S(n, k − 1) + k S(n, k), (19)
s(n + 1, k) = s(n, k − 1)− n s(n, k). (20)

By substituting (13) into (12) and (12) into (13), we obtain, respectively, the follow-
ing two orthogonality relations which connect the Stirling numbers of both kinds:

m∑

j=k

s(m, j)S(j, k) = δmk,
m∑

j=k

S(m, j)s(j, k) = δmk, (21)

where δmk is the Kronecker symbol. For important combinatorial interpretations
of the Stirling numbers see, e.g., [10], where numerous other properties can be
found, including connections with Bernoulli numbers. The book [8] is another good
reference, as are the on-line resources [16], [17].

In studying convolution identities for Bernoulli numbers, the following derivative
expression proved to be essential: For any m ≥ 0 we have

dm

dtm
1

et − 1
= (−1)m

m+1∑

j=1

(j − 1)!
S(m + 1, j)
(et − 1)j

. (22)
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It is therefore not surprising that in dealing with Bernoulli polynomials we obtain
a polynomial analogue of (22).

Indeed, let us define, for each 0 ≤ k ≤ n, the polynomial

S(n, k;x) =
n−k∑

j=0

(−1)j

(
n− 1

j

)
S(n− j, k)xj . (23)

The properties (14), (15) and (17) immediately give

S(n, 0;x) = 0 for n ≥ 1, (24)
S(n, 1;x) = (1− x)n−1 for n ≥ 1, (25)
S(n, n;x) = 1 for n ≥ 0, (26)
S(n, k; 0) = S(n, k) for n ≥ k ≥ 0. (27)

Furthermore, we have the following triangular recurrence relation which is analogous
to (19):

Lemma 3. For all 1 ≤ k ≤ n we have

S(n + 1, k;x) = S(n, k − 1;x) + (k − x)S(n, k;x). (28)

Proof. We use (23) to write

S(n + 1, k;x)− S(n, k − 1;x) (29)

=
n+1−k∑

j=0

(−1)j

[(
n

j

)
S(n + 1− j, k)−

(
n− 1

j

)
S(n− j, k − 1)

]
xj .

Now we use the triangular relations
(n

j

)
=

(n−1
j

)
+

(n−1
j−1

)
and

S(n− j, k − 1) = S(n + 1− j, k)− k S(n− j, k),

where this last one comes from (19), and we see that the expression in square
brackets in (29) becomes

(
n− 1
j − 1

)
S(n + 1− j, k) + k

(
n− 1

j

)
S(n− j, k),

after two terms have canceled. Hence the right-hand side of (29) becomes, after a
shift in summation,

n−k∑

j=0

(−1)j+1

(
n− 1

j

)
S(n− j, k)xj+1 + k

n−k∑

j=0

(−1)j

(
n− 1

j

)
S(n− j, k)xj ,

which is (k − x)S(n, k;x), by (23). This completes the proof.
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Further properties of the polynomials S(n, k;x) and connections with known
objects, not needed here, can be found in Section 4 below.

We are now ready to prove the main lemma of this section, namely the polynomial
analogue of (22).

Lemma 4. For all m ≥ 0 we have

dm

dtm
ext

et − 1
= (−1)mext

m+1∑

j=1

(j − 1)!
S(m + 1, j;x)

(et − 1)j
. (30)

Proof. We proceed by induction on m. The base case m = 0 is obvious by (25).
Now assume that (30) holds, and note that

d

dt

ext

(et − 1)j
= −ext (j − x)(et − 1) + j

(et − 1)j+1
.

Then upon differentiating (30) and multiplying both sides by −1, we get

(−1)m+1 dm+1

dtm+1

ext

et − 1

= ext




m+1∑

j=1

(j − 1)!
(j − x)S(m + 1, j;x)

(et − 1)j
+

m+1∑

j=1

j!
S(m + 1, j;x)
(et − 1)j+1





= ext




m+1∑

j=1

(j − 1)!
(j − x)S(m + 1, j;x)

(et − 1)j
+

m+2∑

j=2

(j − 1)!
S(m + 1, j − 1;x)

(et − 1)j





= ext
m+2∑

j=1

(j − 1)!
S(m + 2, j;x)

(et − 1)j
,

where we have used (28) in the last equation. This proves (30) by induction.

The last lemma in this section involves the Stirling numbers of both kinds, as
well as the polynomials introduced above, and is reminiscent of the left-hand sides
in the orthogonality relations (21).

Lemma 5. For all 1 ≤ k ≤ m we have

m∑

j=k

S(m, j)s(j, k)
1
j

= (−1)m−k 1
m

(
m

k

)
Bm−k, (31)

m∑

j=k

S(m, j;x)s(j, k)
1
j

= (−1)m−k 1
m

(
m

k

)
Bm−k(x). (32)
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Proof. We begin with (31). The cases m = k and m = k+1 can be verified directly,
using (16), (17) and the fact that B0 = 1 and B1 = −1/2. Since B2j+1 = 0 for all
j ≥ 1, (31) is seen to be the same as identity (6.100) in [10, p. 290] when m > k+1.

Let Sm
k (x) denote the left-hand side of (32). To evaluate it, we use (23) and first

change the orders of summation:

Sm
k (x) =

m∑

j=k

m−j∑

ν=0

(
m− 1

ν

)
(−1)νS(m− ν, j)s(j, k)xν 1

j

=
m−k∑

j=0

j∑

ν=0

(
m− 1

ν

)
(−x)νS(m− ν,m− j)s(m− j, k)

1
m− j

=
m−k∑

ν=0

(
m− 1

ν

)
(−x)ν

m−k∑

j=ν

S(m− ν,m− j)s(m− j, k)
1

m− j

=
m−k∑

ν=0

(
m− 1

ν

)
(−x)ν

m−ν∑

j=k

S(m− ν, j)s(j, k)
1
j
.

Now we can apply (31), and after manipulating the product of binomial coefficients
we get

Sm
k (x) =

m−k∑

ν=0

(
m− 1

ν

)
xν(−1)m−k

(
m− ν

k

)
Bm−ν−k

m− ν

=
(−1)m−k

m

(
m

k

) m−k∑

ν=0

(
m− k

ν

)
Bm−ν−kxν

=
(−1)m−k

m

(
m

k

)
Bm−k(x),

where we have used (6) for the last equation. This completes the proof of (32).

3. Proof of Theorem 1

We are now ready to prove Theorem 1. Our starting point is the observation that
the first sum in (10) is a term in the Cauchy product of two power series. To be
more specific, this sum is the coefficient of tk/k! in the power series expansion of
the product

( ∞∑

n=0

Bm+n(x)
m + n

tn

n!

)( ∞∑

ν=0

(−1)νBν(x)
tν

ν!

)
=: Fm(t, x)G(t, x). (33)
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To obtain the generating function Fm(t, x) for the first series, we note that (5)
readily gives

F1(t, x) =
etx

et − 1
− 1

t
=

∞∑

n=0

B1+n(x)
1 + n

tn

n!

(a function analytic at t = 0), and thus

Fm(t, x) =
dm−1

dtm−1

(
ext

et − 1
− 1

t

)
(34)

= (−1)m−1



ext
m∑

j=1

(j − 1)!
S(m, j;x)
(et − 1)j

− (m− 1)!
tm



 ,

by Lemma 2. Next, by (7) and (5) we have

G(t, x) =
tete−xt

et − 1
.

Hence we need to find the coefficient of tk/k! in the power series expansion of

Fm(t, x)G(t, x) = A(t, x) + B(t, x),

where

A(t, x) := (−1)m−1
m∑

j=1

(j − 1)!S(m, j;x)
tet

(et − 1)j+1
, (35)

B(t, x) := (−1)m(m− 1)!
ete−xt

tm−1(et − 1)
. (36)

Both A(t, x) and B(t, x) have poles of order m − 1 at t = 0, but this will not
affect what follows; we simply consider the corresponding Laurent series. For ease
of notation, let [f(t)]k denote the coefficient of tk/k! in f(t).

We first determine [A(t, x)]k. To do so, we use the Bernoulli polynomials of order
r, defined by the exponential generating function

(
t

et − 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n!
(|t| < 2π), (37)

and the corresponding Bernoulli numbers of higher order, given by

B(r)
n := B(r)

n (0). (38)

For further information on these objects see, e.g., [15] or [12]. Here we take r to be
a positive integer parameter. We now have with (37),

tet

(et − 1)j+1
=

1
tj

(
t

et − 1

)j+1

et =
1
tj

∞∑

n=0

B(j+1)
n (1)

tn

n!
,
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and this means that [
tet

(et − 1)j+1

]

k

=
k!

(k + j)!
B(j+1)

k+j (1). (39)

The following lemma now gives an expression of the right-hand side of (39) in terms
of Bernoulli numbers and Stirling numbers of the first kind.

Lemma 6. For all k ≥ 1 and n ≥ 0 we have

B(k)
n (1) = k

(
n

k

) k−1∑

r=0

(−1)k−1−rs(k − 1, k − r − 1)
Bn−r

n− r
. (40)

Proof. The higher-order Bernoulli polynomials and numbers satisfy the identities

B(k)
n (x + 1)−B(k)

n (x) = nB(k−1)
n−1 (x), (41)

and

B(k)
n = k

(
n

k

) k−1∑

r=0

(−1)k−1−rs(k, k − r)
Bn−r

n− r
; (42)

see, e.g., [15, p. 148ff.] or [12]. Now, using (41) with x = 0 and then (38), we get

B(k)
n (1) = B(k)

n + nB(k−1)
n−1 . (43)

We consider the last term and obtain with (42),

nB(k−1)
n−1 = (k − 1)n

(
n− 1
k − 1

) k−2∑

r=0

(−1)k−rs(k − 1, k − 1− r)
Bn−1−r

n− 1− r

= (k − 1)k
(

n

k

) k−1∑

r=1

(−1)k−1−rs(k − 1, k − r)
Bn−r

n− r
.

Now we use the fact that by (20) we have

s(k, k − r) + (k − 1)s(k − 1, k − r) = s(k − 1, k − r − 1),

and therefore by adding the last expression above to (42), we get by (43) the desired
formula (40).

Continuing with the proof of Theorem 1, we use Lemma 4 with (35) and (39) to
obtain

[A(t, x)]k = (−1)m−1
m∑

j=1

(j − 1)!S(m, j;x)
k!

(k + j)!
B(j+1)

k+j (1)

= (−1)m−1
m∑

j=1

k

j
S(m, j;x)

j∑

r=0

(−1)j−rs(j, j − r)
Bk+j−r

k + j − r

= (−1)m−1
m∑

j=1

k

j
S(m, j;x)

j∑

r=1

(−1)rs(j, r)
Bk+r

k + r
,
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where we have changed the order of summation in the second sum, keeping in mind
that s(j, 0) = 0 since j > 0. Now we interchange the two summations and then use
the second part of Lemma 3:

[A(t, x)]k = k
m∑

r=1

(−1)m−1−r Bk+r

k + r

m∑

j=r

S(m, j;x)s(j, r) (44)

= − k

m

m∑

r=1

(
m

r

)
Bk+r

k + r
Bm−r(x).

It remains to deal with B(t, x) in (36). To do this, we note that with (5) we have

ete−xt

tm−1(et − 1)
=

1
tm

te(1−x)t

et − 1
=

1
tm

∞∑

n=0

Bn(1− x)
tn

n!
,

so that
[

ete−xt

tm−1(et − 1)

]

k

=
k!

(k + m)!
Bk+m(1− x) = (−1)k+m k!

(k + m)!
Bk+m(x),

where we have used (7) in the second equation. Thus, with (36) we have

[B(t, x)]k = (−1)k k!(m− 1)!
(k + m)!

Bk+m(x).

Finally, this with (44) and the discussion at the beginning of this section immedi-
ately gives (10). The proof of Theorem 1 is now complete.

4. Further Remarks

The polynomials S(n, k;x) introduced as a tool in Section 2 are interesting in their
own right, and are closely related to some known concepts of generalized Stirling
numbers. Indeed, the “non-central Stirling numbers of the second kind”, S2(n +
1, k; r), are defined in [6, p. 314], and it is shown that they satisfy

S2(n + 1, k; r) = S2(n, k − 1; r) + (k + r)S2(n, k; r), (45)

with initial conditions S2(n, 0; r) = rn for n ≥ 0, once again with the convention
that S2(0, 0; r) = 1. We see that the recurrence (45) is the same as (28), with the
exception of the coefficient (k + x). For greater convenience we therefore introduce
the class of polynomials T (n, k;x) := S2(n, k;−x), which can then be defined by

T (n + 1, k;x) = T (n, k − 1;x) + (k − x)T (n, k;x), (46)
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with
T (n, 0, x) := (−x)n for all n ≥ 0.

Now, the main differences from S(n, k;x) are the different initial conditions (24),
namely S(n, 0;x) = 0 for n ≥ 1, and S(0, 0;x) = 1. However, it is easily seen that
the sum

T (n, k;x) + xT (n− 1, k;x)

satisfies the same recurrence relation as (28), as well as

T (n, 0;x) + xT (n− 1, 0;x) = (−x)n + x(−x)n−1 = 0 (n ≥ 1),

and T (0, 0;x) = 1. This uniquely defines these polynomials, and therefore we have

S(n, k;x) = T (n, k;x) + xT (n− 1, k;x). (47)

Now, it is known that the polynomials S2(n, k;x) satisfy an explicit formula (see,
e.g., [6, p. 316]), which translated to the T (n, k;x) is

T (n, k;x) =
1
k!

k∑

j=0

(−1)j

(
k

j

)
(k − j − x)n. (48)

By substituting (48) into (47) we get after some straightforward manipulation with
the binomial coefficients,

S(n, k;x) =
1

(k − 1)!

k−1∑

j=0

(−1)j

(
k − 1

j

)
(k − j − x)n−1. (49)

When x = 0, this is consistent with a well-known explicit formula for the usual
Stirling numbers of the second kind, S(n, k).

Finally, comparing (49) with (48), we get another connection between the two
types of polynomials, namely

S(n, k;x) = T (n− 1, k − 1;x− 1).

We finally remark that the polynomials T (n, k;x) occur as generalized Stirling num-
bers in [4], where some references and further generalizations can be found. These
polynomials are also a special case of a vast and unified generalization in [13]. In
fact, these polynomials can be seen as the generalized Stirling numbers belonging
to the triple (0, 1,−x) in the notation of [13].
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