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Abstract
The behavior of the multiplicative acceleration of Selmer’s algorithm is widely un-
known and no general result on convergence has been detected yet. Solely for its
2-dimensional, periodic expansions exist some results on convergence and approxi-
mation due to Fritz Schweiger. In this paper we show that periodic expansions of
any dimension do in fact converge and that the coordinates of the limit points are
rational functions of the largest eigenvalue of the periodicity matrix.

1. Introduction

While simple continued fractions are quite popular and, as a matter of fact, well-
known throughout the world of mathematics, their multidimensional generalizations
are rather unknown. But, there are at least two ways to approach a theory of mul-
tidimensional continued fractions (MCFs). One is more of a geometric nature,
while another concentrates on multidimensional continued fractions which can be
described by a set of (n + 1) × (n + 1)-matrices. The latter set includes amongst
others the Jacobi-Perron algorithm, as well as algorithms of Brun and Selmer. Each

of these algorithms generalizes the matrices
(

a 1
1 0

)
associated with continued frac-

tions to higher dimensions in order to achieve an equivalent of Lagrange’s Theorem,
but for cubic or higher roots. Interestingly, it is still unclear whether any one of
these algorithms really meets this requirement.

Despite the lack of such a theorem, there are a lot of discoveries that have been
made concerning periodicity and approximation characteristics of multidimensional
continued fractions. For further information, the books of Brentjes [2] and Schweiger
[11], both named Multidimensional Continued Fractions, are highly recommended.

This paper is organized as follows. Section 1.1 is devoted to the basic definition of
a fibred system that links multidimensional continued fractions to its simpler coun-
terpart, the continued fractions. The concept of cylinders, introduced in Section
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1.2, helps us to understand why the multiplicative version of Selmer’s algorithm is
so special among other algorithms, like that of Jacobi-Perron, Brun or even Selmer’s
subtractive algorithm. In Section 2 we introduce Selmer’s algorithm in its subtrac-
tive version (SSA) and show that it depicts a fibred system. We conclude the section
with an example for which the SSA eventually becomes periodic - an example for
which it is already known that both Brun’s and Jacobi-Perron’s algorithms become
periodic. After the introduction of Selmer’s multiplicative algorithm (MSA) in Sec-
tion 3.1, we show in Section 3.2 that it defines a fibred system, as well. In Section
3.3 we apply the concept of cylinders to the MSA and illustrate it graphically for
the 2-dimensional MSA. After a short section on the matrices of the MSA, the main
result of this paper, Theorem 11, which shows convergence of the periodic MSA,
is presented in Section 3.5. It is followed by Lemma 12, which is essential for the
proof of the weak convergence of the MSA. In the end, after a periodic example
for the MSA, we emphasize in Section 3.5.3 the importance of Theorem 11 for the
theory of multidimensional continued fractions and give a short discussion of future
directions in the final Section 4.

1.1. Fibred Systems

In this section we first introduce the notion of a fibred system and illustrate its
characteristics in the context of continued fractions. Thereby, we are able to define
multidimensional continued fractions by a set of matrices on such a fibred system.

Definition 1. Let B be a set and T : B → B be a map. The pair (B,T ) is called
a fibred system if the following conditions are satisfied:

1. There is a finite or countable set I (called the digit set).

2. There is a map k : B → I. Then the sets B(i) = k−1{i} = {x ∈ B : k(x) = i}
form a partition of B, and hence

⋃
i∈I B(i) = B.

3. The restriction of T to any B(i) is an injective map.

(The partition {B(i) : i ∈ I} is called the time-1-partition.)

Example. We consider the continued fraction algorithm. It is well-known that for
each irrational x ∈ [0, 1] there exists a corresponding continued fraction expansion
of the form

x = [a0, a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + . . .

,

where we restrict a1, a2, . . . to be positive integers. Now, we set B := [0, 1[ and
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obtain for x $= 0 the map

T : B → B

x %→ 1
x
− a(x), a(x) := 'x−1(.

For x = 0, however, we arrive at a stop and thus get Tx = 0. Further, by setting
I := N0 we obtain the map i : B → I defined by

i : x %→ a(x).

Then the set I := N0 is countable, while the sets B(i) form a partition of B.
Now we set y := Tx = 1

x − a(x) and restrict T to one of the sets B(i), i ∈ I.
Then for x1, x2 ∈ B(i) with Tx1 = Tx2 we immediately obtain x1 = x2, since
a(x1) = a(x2) = i. Hence, the pair (B,T ) indicates a fibred system.

With the knowledge of fibred systems we are now able to define multidimensional
continued fractions on the aforementioned systems by a set of matrices.

Definition 2. The fibred system (B,T ) is called a (multidimensional) continued
fraction if

1. B is a subset of Rn.

2. For every digit k ∈ I there is an invertible matrix α = α(k) = ((Aij)),
0 ≤ i, j ≤ n, such that y = Tx, x ∈ B(k), is given as

yi =
Ai0 +

∑n
j=1 Aijxj

A00 +
∑n

j=1 A0jxj
.

In particular, we are interested in the inverse matrix of such a multidimensional
continued fraction, as with this inverse we obtain an expression of x via its image
under the map T .

Definition 3. If (B,T ) is a (multidimensional) continued fraction, then we denote
the inverse matrix of α(k) by β(k) = ((Bij)), 0 ≤ i, j ≤ n. Then we define for
s ≥ 1:

β(k1, . . . , ks) := β(k1) . . .β(ks) = ((B(s)
ij )), 0 ≤ i, j ≤ n,

where B(1)
ij = Bij . Then y = T sx is equivalent to

xi =
B(s)

i0 +
∑n

j=1 B(s)
ij yj

B(s)
00 +

∑n
j=1 B(s)

0j yj

, 1 ≤ i ≤ n.
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Example. We consider again the continued fraction algorithm restricted to the set
B := [0, 1[. Then with help of a lemma in [7] there exists a ξn ∈ R for all n ∈ N0

such that for appropriate x := [0, a1, . . . , an] ∈ B we have

x = [0, a1, . . . , an] =
pn

qn
and x = [0, a1, . . . , an, ξn] =

pn + pn−1y

qn + qn−1y
,

where y := Tnx. According to the continued fraction algorithm, ξn $= 0 is always
satisfied and hence y = ξ−1

n . Now we turn to the matrices associated with the
continued fraction. Since 0 ≤ x ≤ 1, we have a0 = 0 and thus

(
qn qn−1

pn pn−1

)
=

(
0 1
1 0

)(
pn pn−1

qn qn−1

)
=

(
a1 1
1 0

)
. . .

(
an 1
1 0

)
,

which makes the continued fraction algorithm restricted to the set B := [0, 1[ a
(multidimensional) continued fraction in the sense of Definition (2) and (3).

1.2. The Concept of Cylinders

In the previous section we saw that the digit set I of a fibred system causes a
partition of the set B into the subsets B(i), i ∈ I; that is,

⋃

i∈I

B(i) = B.

Here, we did not require that T restricted to B(i), i ∈ I, is a surjective map.
Therefore a partition of TB(i), i ∈ I, could be of interest as well and we have
eventually arrived at the concept of cylinders.

Definition 4. The cylinder of rank s, defined by the digits i1, . . . , is, is the set

B(i1, . . . , is) : = B(i1) ∩ T−1B(i2) ∩ . . . ∩ T−(s−1)B(is)
= {x : i1(x) = i1, . . . , is(x) = is}.

Such a cylinder B(i1, . . . , is) is called proper (or full) if T sB(i1, . . . , is) = B.

Proposition 5. All cylinders of arbitrary rank s ∈ N are full if all cylinders of
rank 1 are full.

Proof. Assume that all cylinders of rank 1 are full. Then we get

TB(i) = B

for all i ∈ I. The rest follows from Definition 4 of cylinders, since for (i1, . . . , is) ∈ Is

we obtain TB(i1, . . . , is) = B(i2, . . . , is).
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2. Selmer’s Algorithm

In 1961, in connection with Brun’s algorithm, Selmer published a variation of its
subtractive version called Selmer’s subtractive algorithm (SSA). But instead of sub-
tracting the second largest initial value from the largest, like Brun did, he chose
to subtract the smallest initial value from the largest. This may at first seem to
be a marginal deviation, but it actually implicates a fundamental change. That
is, at some point in the expansion one inevitably ends up in the absorbing set
D := B(n− 1) ∪B(n).

2.1. Subtractive Version

Let ∆n+1 := {b = (b0, b1, . . . , bn) : b0 ≥ b1 ≥ · · · ≥ bn ≥ 0} and define

σb := (b0 − bn, b1, . . . , bn).

There is an index i = i(b), 0 ≤ i ≤ n, such that

πσb := (b1, b2, . . . , bi, b0 − bn, . . . , bn) ∈ ∆n+1.

Further, let
Bn := {(x1, . . . , xn) : 1 ≥ x1 ≥ · · · ≥ xn ≥ 0}.

Then with the help of the projection p : ∆n+1 → Bn defined by

p(b0, b1, . . . , bn) =
(

b1

b0
, . . . ,

bn

b0

)
,

we obtain the map T : Bn → Bn which makes the diagram

∆n+1 πσ−−−−→ ∆n+1

p

'
'p

Bn −−−−→
T

Bn

commutative.

2.2. Fibred System and Absorbing Set

In this section we prove that the SSA intrinsically represents a fibred system.
Shortly afterwards, we point to the absorbing set of Selmer’s algorithm. As a
matter of fact, the restriction of the SSA to this absorbing set coincides with an
algorithm of Mönkemeyer. Hence, for further references we point to [6], [8] and [11].

Proposition 6. The partition B(j) :=
{
x ∈ Bn : i(p−1x) = j

}
, 0 ≤ j ≤ n,

makes (Bn, T ) a fibred system.
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Proof. We set y := Tx and calculate the map T as follows:

j = 0

yk =
xk

1− xn
, 1 ≤ k ≤ n, xk =

yk

1 + yn
, 1 ≤ k ≤ n.

1 ≤ j ≤ n− 1

yk =
xk+1

x1
, 1 ≤ k ≤ j − 1, x1 =

1
yj + yn

,

yj =
1− xn

x1
, xk =

yk−1

yj + yn
, 2 ≤ k ≤ j,

yk =
xk

x1
, j + 1 ≤ k ≤ n, xk =

yk

yj + yn
, j + 1 ≤ k ≤ n.

j = n

yk =
xk+1

x1
, 1 ≤ k ≤ n− 1, x1 =

1
yn−1 + yn

,

yn =
1− xn

x1
, xk =

yk−1

yn−1 + yn
, 2 ≤ k ≤ n.

In summary, we obtain:

1. The digit set I := {0, . . . , n} is a countable set.

2. The map i : Bn → I defined by i : x %→ i(p−1x) causes a partition of Bn, since
evidently

⋃
j∈I B(j) = Bn.

3. If we restrict T to any B(j), then we obtain for y
′
= y

′′
and 0 ≤ j ≤ n:

j = 0 As y
′

n = y
′′

n, it follows that x
′

n = x
′′

n and thus x
′
= x

′′
.

1 ≤ j ≤ n− 1 As y
′

n = y
′′

n and y
′

j = y
′′

j , we obtain x
′

1 = x
′′

1 and hence x
′
= x

′′
.

j = n As y
′

n = y
′′

n and y
′

n−1 = y
′′

n−1, we get x
′

1 = x
′′

1 and therefore x
′
= x

′′
.

Consequently, the restriction of T to any B(j) is an injective map.

Theorem 7. (Absorbing Set) Let D := {x ∈ Bn : xn−1 + xn ≥ 1}. Then D is an
absorbing set, i.e.,
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1. we have TD = D, and

2. for almost every x ∈ Bn there is an N = N(x), such that TNx ∈ D.

Proof. A proof of this theorem can be found in [11, p. 55] and verifies that D =
B(n− 1) ∩B(n).

2.3. A Case of Periodicity

As the question of periodicity is by far the most interesting one, we state an example
of a periodic SSA.

Definition 8. The multidimensional continued fraction of x is called periodic if
there are numbers m ≥ 0, p ≥ 1 such that Tm+px = Tmx.

Example. (SSA) We consider the tuple x := (x1, x2) =
(

3
√

4− 1, 3
√

2− 1
)

and
apply the SSA. A straightforward calculation then shows that T 31x = Tx,

Tx =

(
3
√

4− 1
2− 3

√
2
,

3
√

2− 1
2− 3

√
2

)

T 2x =

(
3− 2 3

√
2

3
√

4− 1
,

3
√

2− 1
3
√

4− 1

)

...

T 30x =

(
54− 29 3

√
2− 11 3

√
4

30 3
√

4 + 13 3
√

2− 64
,

24 3
√

2 + 3 3
√

4− 35
30 3
√

4 + 13 3
√

2− 64

)

T 31x =

(
27 3
√

4− 11 3
√

2− 29
54− 29 3

√
2− 11 3

√
4
,

24 3
√

2 + 3 3
√

4− 35
54− 29 3

√
2− 11 3

√
4

)
.

3. Multiplicative Algorithms

While for Brun’s algorithm the multiplicative version really causes an acceleration of
expansions, the multiplicative version of Selmer’s algorithm does not. In addition,
none of its cylinders are full. It is, thus, more adequate to describe it as a mere
division algorithm in order to avoid any confusion. Under these circumstances it
seems unlikely that the algorithm provides convergent expansions or approximations
that are competitive in the field of multidimensional continued fractions. However,
it does.
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3.1. Selmer’s Division Algorithm

Let ∆n+1 := {b = (b0, b1, . . . , bn) : b0 ≥ b1 ≥ · · · ≥ bn ≥ 0}. Then we define

δb := (b0 − kbn, b1, . . . , bn), k :=
[

b0

bn

]
.

Since bn ≥ b0−kbn we get π : ∆n+1 → ∆n+1 defined by πδb := (b1, . . . , bn, b0−kbn).
Now let Bn := {(x1, . . . , xn) : 1 ≥ x1 ≥ · · · ≥ xn ≥ 0}. With the help of the
projection p : ∆n+1 → Bn, defined by

p(b0, b1, . . . , bn) =
(

b1

b0
, . . . ,

bn

b0

)
,

we finally get the bottom map

S(x1, . . . , xn) =
(

x2

x1
, . . . ,

xn

x1
,
1− kxn

x1

)
,

which makes the diagramm

∆n+1 πσ−−−−→ ∆n+1

p

'
'p

Bn −−−−→
S

Bn

commutative.
Hence the multiplicative version of Selmer’s algorithm (MSA) is given by

S : Bn → Bn

S(x1, . . . , xn) =
(

x2

x1
, . . . ,

xn

x1
,
1− kxn

x1

)
.

3.2. The Fibred System

In this section we simply prove that the MSA represents a fibred system.

Proposition 9. The partition

B(k) :=
{

x ∈ Bn :
1

k + 1
< xn ≤

1
k

}
, k = 1, 2, . . .

makes (Bn, S) a fibred system.

Proof. If xn = 0, we simply restrict to Bn−1 := {(x1, . . . , xn−1) : 1 ≥ x1 ≥ . . . ≥
xn−1 ≥ 0}. Then from k := [x−1

n ] we immediately get k ∈ N and thus:
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1. The digit set I := N is a countable set.

2. The map i : Bn → I, with i : x %→ k := [x−1
n ], amounts to a partition of Bn,

since evidently
⋃

k∈I B(k) = Bn.

3. If we restrict T to B(k), then for y
′
= y

′′
(and thus y

′

n = y
′′

n, y
′

n−1 = y
′′

n−1)
we obtain x

′

1 = x
′′

1 , and hence x
′
= x

′′
. Thus, the restriction of T to B(k) is

an injective map for all k ∈ N.

3.3. Cylinders and Time-1-Partition

Since k = [x−1
n ] the pair (Bn, S) is a fibred system with cells

B(k) :=
{

x ∈ Bn :
1

k + 1
< xn ≤

1
k

}
, k = 1, 2, . . . .

These B(k) denote cylinders of rank 1 and indicate, in our case, convex sets with
vertices

(
1, . . . , 1,

1
k

)
,

(
1, . . . , 1,

1
k + 1

)

(
1, . . . ,

1
k

,
1
k

)
,

(
1, . . . ,

1
k + 1

,
1

k + 1

)

...
(

1
k

, . . . ,
1
k

)
,

(
1

k + 1
, . . . ,

1
k + 1

)

depending only on k ∈ N. By the way, we obtain S( 1
k+1 , . . . , 1

k+1) = (1, . . . , 1) for
all cylinders B(k), k ∈ N.

In order to achieve more clarity we restrict our attention to the 2-dimensional
case. Hence, we consider the set B2 = {1 ≥ x1 ≥ x2 ≥ 0}. Since 1 ≥ x1 ≥ x2 und
1
k ≥ x2 > 1

k+1 , we obtain the convex set B(k) with vertices
(

1,
1
k

)
,

(
1,

1
k + 1

)
,

(
1
k

,
1
k

)
,

(
1

k + 1
,

1
k + 1

)
.

These cells B(k) form a partition of the set B2 that can be easily illustrated by
means of Figure (1).

Clearly, none of the cylinders B(k) are full, as they are mapped under S onto
the convex set with vertices

(
1
k

, 0
)

,

(
1

k + 1
,

1
k + 1

)
, (1, 0) , (1, 1) .

Hence, SB(k) ⊂ SB(k + 1) for all k ∈ N and additionally SB(k) is not a union of
cylinders of rank 1.
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X2

X1

1

2

1

2

1

10 1

3

1

3

1

4

1

4

1

2

3

Figure 1: The time-1-partition of the set B2 by the 2-dimensional MSA, where
k ∈ N indicates the associated cylinder B(k).

3.4. The Matrices

Notice that if we set y := Sx, then

x1 =
1

kyn−1 + yn

xi =
yi−1

kyn−1 + yn
, 2 ≤ i ≤ n.

Thus, according to the definition of a multidimensional continued fraction, the
associated (n + 1)× (n + 1)−matrices of the MSA are given by

β(k) :=





0 . . . k 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0
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and in dimension n = 3 by 



0 0 k 1
1 0 0 0
0 1 0 0
0 0 1 0



 .

Expanding the determinant along the last column leads to

detβ(k) = (−1)n det ! = ±1. (1)

Now we define the matrices β(s)(k1, . . . , ks), in common notation, as

β(s)(k1, . . . , ks) := β(k1) . . .β(ks) =





B(s−n+1)
0 . . . B(s−1)

0 B(s)
0 B(s−n)

0
...

...
...

B(s−n+1)
n . . . B(s−1)

n B(s)
n B(s−n)

n



 .

Hence for s ≥ 0 we obtain the relation

B(s+1)
i = ks+1B

(s−n+1)
i + B(s−n)

i , i = 0, . . . , n,

where β(0) denotes the unit matrix. If we set y = Ssx and ki = k(Si−1), 1 ≤ i ≤ s,
then we find that

xi =
B(s−n+1)

i + y1B
(s−n+2)
i + . . . + yn−1B

(s)
i + ynB(s−n)

i

B(s−n+1)
0 + y1B

(s−n+2)
0 + . . . + yn−1B

(s)
0 + ynB(s−n)

0

, i = 1, . . . , n. (2)

3.5. Periodic Expansions for Selmer’s Division Algorithm

In this section we eventually prove the convergence of the periodic MSA and quote
a simple example of periodicity. Since the proof allows us to apply a variety of other
theorems to Selmer’s multiplicative algorithm, we subsequently mention a few of
them. However for completeness and further information we refer to [11].

3.5.1. Weak Convergence of the Periodic MSA

Definition 10. The multidimensional continued fraction is weakly convergent if for
every x ∈ B we have

lim
s→∞

(
B(s)

10

B(s)
00

, . . . ,
B(s)

n0

B(s)
00

)
= x.
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If for every g with 0 ≤ g ≤ n we get

lim
s→∞

(
B(s)

1g

B(s)
0g

, . . . ,
B(s)

ng

B(s)
0g

)
= x,

for every x ∈ B we call the multidimensional continued fraction uniformly weakly
convergent.

Due to the special form of the matrices of the MSA (see Section 3.4), where in the
course of an expansion each n-th column passes through the whole matrix before it
drops out, Equation (3) already ensures uniformly weak convergence of the MSA.

Theorem 11. Assume that the algorithm of x = (x1, . . . , xn) eventually becomes
periodic with period length p. Then

lim
s→∞

(
B(s)

1

B(s)
0

, . . . ,
B(s)

n

B(s)
0

)
= x. (3)

Hence, the periodic, multiplicative algorithm of Selmer is weakly convergent and
even uniformly weakly convergent.

Proof. As a preperiod does not affect the convergence of an expansion, we can
clearly assume that the expansion is purely periodic with period length p.

Let M denote the matrix of the periodic expansion of length p, i.e.,

M := β(p)(k1, . . . , kp) =





B(p−n+1)
0 . . . B(p−1)

0 B(p)
0 B(p−n)

0
...

...
B(p−n+1)

n . . . B(p−1)
n B(p)

n B(p−n)
n



 ;

and let Mk the matrix of the periodic expansion of length kp so that

Mk =





B(kp−n+1)
0 . . . B(kp−1)

0 B(kp)
0 B(kp−n)

0
...

...
B(kp−n+1)

n . . . B(kp−1)
n B(kp)

n B(kp−n)
n



 .

The characteristic polynomial of M can be written as

χM (t) := det (t!−M) = tn+1 − bntn − . . .− b1t− b0,

where b0 = (−1)n−1 det (M), and we denote its eigenvalues by ρ0, ρ1, . . . , ρn.
Note that in case that the matrix M has entries equal to 0, then due to the

periodicity of the expansion we can use Lemma (12) (which is stated with its proof
at the end of the argument) in order to get a natural number m(n), such that Mm
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is a positive matrix for all m ≥ m(n) and we could continue with the period length
mp. Hence, without loss of generality, we can assume that M is a positive matrix
and that the period length remains at p.

Due to the periodicity of the expansion, M is a positive matrix and we can thus
apply the Perron-Frobenius Theorem [11, page 112], which allows us to arrange the
eigenvalues so that ρ0 > |ρ1| ≥ . . . ≥ |ρn|, ρ0 > 1, where ρ0 is a simple and positive
root of χM (t). Furthermore, with the help of the famous Caley-Hamilton Theorem
we obtain Mn+1 − bnMn − . . .− b1M − b0 = 0. By multiplying this expression by
Mkβ(k1, . . . , kj), we see that for the entries of the matrices the relations

B((k+n+1)p+j)
i − bnB((k+n)p+j)

i − . . .− b1B
((k+1)p+j)
i − b0B

(kp+j)
i = 0

hold for 0 ≤ i ≤ n and 0 ≤ j < p. Applying Theorem 41 of [11, page 114] we obtain
the general solution

B(kp+j)
i = d(i, j)ρk

0

+ b10(i, j)
(

k
0

)
ρk
1 + . . . + b1,m1−1(i, j)

(
k

m1 − 1

)
ρk−m1+1
1

+ . . .

+ bs0(i, j)
(

k
0

)
ρk

s + . . . + bs,ms−1(i, j)
(

k
ms − 1

)
ρk−ms+1

s ,

(4)

where m1, . . . ,ms are the multiplicities of the roots ρ1, . . . , ρs, which satisfy 1 +
m1 + . . . + ms = n + 1. If the start values B(kp+j)

i are given for all k = 0, . . . , n,
then the solution sequence (B(kp+j)

i ), k ≥ 1, is uniquely determined.
Now, we will consider the terms in Equation (4) more precisely. Clearly from

ρ0 > |ρ1| ≥ · · · ≥ |ρn| and ρ0 > 1 follows

lim
k→∞

ρk−µ
γ

ρk
0

= 0, 1 ≤ γ ≤ s, 0 ≤ µ ≤ mγ − 1.

Furthermore, for all γ, 1 ≤ γ ≤ s, and ε > 0, the relations
(

k + 1
µ

)
=

(
k
µ

)
k + 1

k + 1− µ
, 1 ≤ µ ≤ mγ − 1

(1 + ε)k+1 = (1 + ε)k(1 + ε)

hold for all k ∈ N, and it follows that

k + 1
k + 1− µ

k→∞−−−−→ 1, 1 ≤ µ ≤ mγ − 1

(1 + ε) > 1.
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In summary, there exists a k
′
, such that for all k ≥ k

′
(ε) the inequality k+1

k+1−µ <

(1+ε) holds, and consequently with increasing k, k ≥ k
′
(ε), the term (1+ε)k grows

faster than
(

k
µ

)
. Thus

lim
k→∞

(
k
µ

)
(1 + ε)−k = 0 for all µ with 1 ≤ µ ≤ mγ − 1.

Since ρ0 > 1, there is a ε > 0, such that ρ0 = 1 + ε. Consequently there also
exists a k∗(ε) > k

′
(ε), such that for all k ≥ k∗(ε) the term ρk

0 grows faster than(
k
µ

) ∣∣ρk−µ
γ

∣∣ for any µ, γ with 0 ≤ µ ≤ mγ − 1 and 1 ≤ γ ≤ s. So we derive from

Equation (4), for d(i, j) $= 0, the limit

lim
k→∞

B(kp+j)
i

ρk
0

= d(i, j), (5)

as n is an integer and bγµ represents a constant for all γ, µ with 1 ≤ γ ≤ s, 0 ≤ µ ≤
mγ .

Now, we use the recursion relations from Section 3.4 to get

B(s+n)
i = ks+nB(s)

i + B(s−1)
i

B(s+n+1)
i = ks+n+1B

(s+1)
i + B(s)

i .

Clearly, if B(s)
i / ρk

0 then B(s+j)
i / ρk

0 for all j ∈ N, j ≥ n · (n − 1). Since d(i, j)
doesn’t depend on k and n is finite, it follows that, if d(i, j) $= 0 for some j, then
d(i, j) $= 0 for all j, 0 ≤ j < p.

Due to periodicity, the matrices Mk will be part of the expansion and using the
eigenvalues of M we know that for the trace of Mk the relation

B(kp−n+1)
0 + . . . + B(kp)

n−1 + B(kp−n)
n = ρk

0 + . . . + ρk
n (6)

holds. Due to periodicity, Equation (6) is also valid for arbitrarily large k and as
n is finite, there is at least one summand B(kp−n+1)

0 , . . . , B(kp)
n−1, B

(kp−n)
n , for whose

related d(i, j) we have d(i, j) $= 0 by Equation (4). Hence for this i we obtain
d(i, j) $= 0 for all j, 0 ≤ j < p, due to the recursion relations.

Now, we consider the relation for xi in Equation (2). As y = T sx ∈ B(ks+1) :=
{x ∈ Bn : 1

ks+1+1 < xn ≤ 1
ks+1

} we get

1
ks+1 + 1

≤ B(s−n+1)
i + . . . + B(s)

i + B(s−n)
i

B(s−n+1)
0 + . . . + B(s)

0 + B(s−n)
0

≤ ks+1 + 1, i = 1, . . . , n.

Due to periodicity, we can define k∗ := max(k1, . . . , kp) + 1 to obtain

1
k∗
≤ B(s−n+1)

i + . . . + B(s)
i + B(s−n)

i

B(s−n+1)
0 + . . . + B(s)

0 + B(s−n)
0

≤ k∗, i = 1, . . . , n. (7)
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As a result, Equation (7) is also bounded for arbitrarily large s, but as d(i, j) $= 0
is valid for 0 ≤ j < p and a fixed i ∈ {0, . . . , n}, the boundedness implies d(i, j) $= 0
for all 0 ≤ i ≤ n, 0 ≤ j < p.

Again, due to periodicity, with M being part of the expansion, Mk is also part
of the expansion and the equation

Mk





1
x1
...

xn




= λk





1
x1
...

xn





shows that for a positive eigenvalue λ of the matrix M the relation

B(kp−n+1)
0 + x1B

(kp−n+2)
0 + . . . + xn−1B

(kp)
0 + xnB(kp−n)

0 = λk (8)

holds.
But, as Equation (8) is, due to periodicity, valid for arbitrarily large k and

d(0, j) $= 0 for all 0 ≤ j < p, we get λ = ρ0. Thus, by Equation (2) we derive for
T px = x and for all 1 ≤ i ≤ n the relation

xi = ρ−k
0

(
B(kp−n+1)

i + x1B
(kp−n+2)
i + . . . + xn−1B

(kp)
i + xnB(kp−n)

i

)
. (9)

Due to periodicity, Equation (9) holds for arbitrarily large k; hence, since d(i, j)
exists for all 0 ≤ i ≤ n, 0 ≤ j < p, every single limit in the relation

xi = lim
k→∞

ρ−k
0 B(kp−n+1)

i + x1 lim
k→∞

ρ−k
0 B(kp−n+2)

i + . . . + xn lim
k→∞

ρ−k
0 B(kp−n)

i

exists for all i, 1 ≤ i ≤ n. Due to periodicity, we can write β2kp+j = Mkβkp+j and
thus see that for the entries of the matrices the relations

B2kp+j
i = B(kp−n+1)

i B(kp+j)
0 + . . . + B(kp)

i B(kp+j)
n−1 + B(kp−n)

i B(kp+j)
n

hold for 1 ≤ i ≤ n and 0 ≤ j ≤ p − 1. As ρk
0 > |ρk

1 | ≥ . . . ≥ |ρk
n| follows from

ρ0 > |ρ1| ≥ . . . ≥ |ρn|, we have

d(i, j) = d(0, j) lim
k→∞

ρ−k
0 B(kp−n+1)

i + . . . + d(n, j) lim
k→∞

ρ−k
0 B(kp−n)

i . (10)

Hence, we set

xi =
d(i, j)
d(0, j)

, 1 ≤ i ≤ n (11)

in Equation (9) and obtain Equation (10) as a result. By Equation (1) we know
that the determinant of Mk is not zero. Thus, Equation (9) represents a system of
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n equations in n variables and xi is uniquely determined by Equation (11). Since
this is valid for all j, 0 ≤ j < p, and d(i, j) does not depend on k, we finally get

lim
s→∞

(
B(s)

1

B(s)
0

, . . . ,
B(s)

n

B(s)
0

)
= x.

Lemma 12. Let M be a (n + 1)× (n + 1)−matrix defined by

M :=





0 . . . k 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0




,

where k ∈ N is positive. Then there is a p(n) ∈ N, such that Mp is a positive matrix
for all p ≥ p(n).

Proof. Notice that M = E′ + K, where

E′ :=





0 . . . 0 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0




, K :=





0 . . . k 0
0 0 . . . 0
...

. . . . . .
...

0 . . . 0 0




.

Furthermore (E′)n+1 = ! represents the unit matrix and K2 the zero matrix. Then
clearly the relation

K(E′)n−1 =




k · · · 0
...

...
0 · · · 0





holds.
Now, we set p = n2 +1 and consider Mp. Then we get Mp = K∗+A, where K∗

is given by

K∗ =





kn−1 · · · k 1 kn

kn . . . k 1

1
. . . k

...
. . .

...
kn−2 · · · 1 kn kn−1
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and A ≥ 0. The shape of K∗ results from

K∗ = (E′)n2+1 +
n−1∑

j=0

n∑

i=0

(E′)i[K(E′)n−1]jK(E′)n2−jn−i

= (E′)n2+1 +
n∑

i=0

(E′)iK(E′)n2−i

+
n∑

i=0

(E′)iK(E′)n−1K(E′)n2−n−i

+ · · ·

+
n∑

i=0

(E′)i K(E′)n−1 . . .K(E′)n−1

︸ ︷︷ ︸
[K(E′)n−1]n−1

K(E′)n−i.

Hence, for all p ≥ n2 + 1 the matrix Mp has only posivite entries. Therefore, the
matrix βp of a periodic MSA is a positive matrix for k ≥ 1.

3.5.2. Example of a Periodic MSA

Unfortunately the MSA of x := ( 3
√

4, 3
√

2) does not become periodic within the
first 40 steps of expansion. Although we are unaware of whether or not periodicity
eventually occurs in this expansion, there certainly are periodic expansions, some
even of period length 1.
Example. We consider the tuple x := (x1, x2) = (

√
5−1
2 , 3−

√
5

2 ) and apply Selmer’s
multiplicative algorithm. Note that x2 = x2

1. Then we obtain

Tx =

(
3−

√
5√

5− 1
,
−4 + 2

√
5√

5− 1

)

and by multiplying each fraction by
√

5+1√
5+1

we obtain

Tx =

(√
5− 1
2

,
3−

√
5

2

)
.

Hence the MSA for x := (x1, x2) = (
√

5−1
2 , 3−

√
5

2 ) becomes periodic with a period
of length 1.

3.5.3. Some General Results on the Periodic MSA

Since we proved in Theorem 11 that the MSA is uniformly weakly convergent we
can show that the coordinates of the limit points are rational functions of the largest
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eigenvalue of the periodicity matrix. Due to the weakly convergence of a periodic
MSA, we can apply a theorem on approximation properties of MCFs which can
be traced back to Perron [9]. It states, in terms of the MSA, that for all ε > 0
and g > g(ε) we have |B(pg)

0 xi − B(pg)
i | < |ρ1(1 + ε)|g, i = 1, . . . , n, where p is

the period length and ρ1 is, as in Theorem 11, the second largest eigenvalue of M .
The general form of these theorems for multidimensional continued fractions can be
found in [11, p. 115-119, 157-162].

Theorem 13. Assume that the algorithm of x = (x1, . . . , xn) eventually becomes
periodic with period length p. Then x1, . . . , xn are rational functions in ρ0, where
ρ0 denotes the largest eigenvalue of the characteristic polynomial of the periodicity
matrix β(p). Therefore x1, . . . , xn belong to a number field of degree at most n + 1.

Proof. Clearly we can assume that the expansion is purely periodic with period
length p. Due to Theorem 11, we know that

Mk





1
x1
...

xn




= ρk

0





1
x1
...

xn





and thus obtain B(kp−n+1)
0 + x1B

(kp−n+2)
0 + . . . + xn−1B

(kp)
0 + xnB(kp−n)

0 = ρk
0 .

Therefore we can calculate x1, . . . , xn as rational functions in ρ0 from the equation

M





1
x1
...

xn




= ρ0





1
x1
...

xn




.

4. Outlook

Due to Jeffrey C. Lagarias [4] it is already known that the subtractive versions of
Jacobi-Perron’s, Brun’s, and Selmer’s algorithms are weakly convergent for periodic
expansions. Now, due to Theorem 11 of this paper, we know that the same is
true for the ”odd” multiplicative Selmer algorithm (MSA). Hence, we can apply a
theorem linking the convergence speed of a periodic expansion to the eigenvalues
of the periodicity matrix [11, p. 157-162], which yields the approximation result
mentioned in Section 3.5.3. But, what about convergence in the non-periodic case?

Lagarias [5] was able to show that every multidimensional continued fraction
algorithm of dimension n ≥ 2 must include approximations which are not best ap-
proximations. However, this does not exclude the possibility that multidimensional
continued fractions can yield successive best approximations. But, it seems much
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more difficult to find results on approximation properties in the general case than
in the purely periodic one. After all, the unanswered question of periodicity is what
makes multidimensional continued fractions so fascinating.

Interestingly, Leon Bernstein [1] showed periodicity for certain groups of tuples
using the Jacobi-Perron algorithm. And originally, Jacobi’s intentions were to find
an algorithm that yields periodic expansions for every cubic or higher-dimensional
irrational number, just as the simple continued fraction algorithm does for quadratic
irrationals. With the technique of singularization [10], emerging fields of application
[13, 3] and the help of computers, there should be a way to get hold of the periodicity
of the multidimensional continued fractions.

Acknowledgements. I sincerely thank my adviser Prof. Dr. Stefan Müller-Stach
as well as Prof. Dr. Fritz Schweiger for proofreading parts of this article and their
valuable suggestions.
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