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Abstract
We generalize a result of Prodinger in a recent issue of Integers about the oscillatory
behavior of a double summation related to the 2-adic valuation of the Boros-Moll
sequence.

1. Introduction

In order to evaluate the quartic integral
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1

Boros and Moll introduced in [7] the sequence

dl,m := 2−2m
∑

1≤k≤m

2k

(
2M − 2k
m− k

)(
m + k

m

)(
k

l

)
,

defined for integers l,m with 0 ≤ l ≤ m. These numbers were seen to be the
quotients of positive integers divided by powers of 2.

Several papers were then devoted to the combinatorial and arithmetic properties
of (a variation of) this sequence and of its 2-adic valuation (e.g., [8, 13, 9, 5, 14, 15]).
The purpose of this note is to generalize the result given in the recent paper [15],
which appeared in Integers. In that paper the author studies, for the values l = 3
and l = 5, the oscillatory behavior of the double sum

∑
1≤n<N

∑
1≤m≤n fl(m) =∑

1≤k<n fl(k)(n− k), where fl(m) is the 2-adic valuation of a certain subsequence
of the sequence (l!m!2m+ldl,m). We extend the result to any odd value of l ≥ 3. We
also prove that the oscillatory term that involves a continuous periodic function is
closely related to a function studied by Delange in [11] and in particular is nowhere
differentiable.
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2. Notation and a Basic Property

Definition 1. The sequences dl,m and Al,m are defined for integers l,m satisfying
0 ≤ l ≤ m by

dl,m := 2−2m
∑

1≤k≤m

2k

(
2m− 2k
m− k

)(
m + k

m

)(
k

l

)

and

Al,m := l!m!2m+ldl,m = l!m!2−(m−l)
∑

1≤k≤m

2k

(
2m− 2k
m− k

)(
m + k

m

)(
k

l

)
.

Remark 2. As proven in [9], the numbers Al,m are integers.

Definition 3. The sequence fl(m) is defined for positive integers l,m by

fl(m) := ν2(Al,l+(m−1).21+ν2(l))

where ν2(k) is the 2-adic valuation of the integer k, i.e., the largest exponent j such
that 2j divides k.

Remark 4. This definition is given in [17]. The study of fl(m) is simpler than,
but equivalent to, the study of ν2(Al,m).

It happens that ν2(Al,m) and thus fl(m) have a simple expression in terms of
the sequence j → s2(j), the sum of the binary digits of the integer j, as proven in
a somewhat hidden place.

Theorem 5. (see Corollary 1.3 of [6]) The 2-adic valuation of Al,m, for l > 0 is
given by

ν2(Al,m) = 3l − s2(m + l) + s2(m− l).

Corollary 6. We have the relation

fl(m) = 3l − s2(l + 2ν2(l)(m− 1)) + s2(m− 1).

In particular, for each odd integer l,

fl(m) = 3l + s2(m− 1)− s2(l + m− 1).

Proof. It suffices to use Theorem 5, Definition 3 above, and to note that for any
integer x we have s2(2x) = s2(x).



INTEGERS: 11 (2011) 3

3. A Summatory Function

The author of the paper [15] proves an asymptotic expansion of the double summa-
tory function of the sequences f3(m) and f5(m), that shows a remarkable oscillatory
behavior.

Theorem 7. (Theorems 1 and 2 of [15]) There exist two periodic continuous func-
tions φ and ψ such that

∑

1≤k<n

f3(k)(n−k) =
9n2

2
− 3n

2
log2 n− 3n

2
log2 π− 7n

4
+

3n
2 log 2

+nφ(log2 n)+O(n3/4)

and
∑

1≤k<n

f5(k)(n−k) =
15n2

2
−5n

2
log2 n−5n

2
log2 π−5n

4
+

5n
2 log 2

+nψ(log2 n)+O(n3/4).

Remark 8. Actually the expansions given in [15] are not correct. The expansions
above are taken from the corrected version [16]. Also note that the Fourier series
of φ (resp. ψ) is explicitly (resp. implicitly) given in [15].

The author of [15] indicates that the same method, i.e., the general principles
described in [12] and applied to the Dirichlet series

∑ fl(n)
ns , would work for any odd

l ≥ 3, but that the Dirichlet series for l ≥ 7 become more cumbersome. We will see
here that, for this Theorem 7, the seminal 1975 paper of Delange [11] suffices, and
that it even gives more. (Note that the paper of Delange uses only “elementary”
methods.) Let us first recall the theorem of Delange in [11].

Theorem 9. (Delange, [11]) Let q ≥ 2 be an integer. Let sq(n) denote the sum
of the base q digits of the integer n. Then, there exists a continuous function
F : R→ R, periodic with period 1 and nowhere differentiable, such that

∑

0≤n<m

sq(n) =
q − 1

2
m logq m + mF (logq m).

Furthermore the Fourier series of F is given by

F ∼
∑

k∈Z
cke2ikπx

with
c0 =

q − 1
2 log q

(log 2π − 1)− q + 1
4

and for k &= 0

ck = i
q − 1
2kπ

(
1 +

2ikπ

log q

)−1

ζ

(
2ikπ

log q

)
.
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We will prove the following result, which extends the main result in [15].

Theorem 10. We have the following asymptotic expansion for l ≥ 3 odd:

∑

1≤n<N

∑

1≤m≤n

fl(m) =
3lN2

2
− lN log N

2 log 2
+ d0N + lNF

(
log N

log 2

)
+ O(log N),

where F is Delange’s function. In particular, F is continuous, periodic with period
1, and nowhere differentiable. Its Fourier series is given by

G(x) ∼
∑

k∈Z\{0}
c′ke2ikπx

with

c′k =
1

2ikπ

(
1 +

2ikπ

log 2

)−1

ζ

(
2ikπ

log 2

)

and
d0 :=

∑

1≤m≤l−1

s2(m)− 5l
4
− l log π

2 log 2
+

l

2 log 2
·

Proof. We note that the double summation for fl is given by
∑

1≤n<N

∑

1≤m≤n

fl(m) =
∑

1≤m<N

fl(m)
∑

m≤n<N

1 =
∑

1≤k<n

fl(k)(n− k).

Using Corollary 6 we have
∑

1≤n<N

∑

1≤m≤n

fl(m) =
∑

1≤n<N

∑

1≤m≤n

(3l + s2(m− 1)− s2(l + m− 1))

=
3lN(N − 1)

2
+

∑

1≤n<N

Wn

where

Wn :=
∑

1≤m≤n

s2(m−1)−
∑

1≤m≤n

s2(l+m−1) =
∑

1≤m≤n−1

s2(m)−
∑

1≤m≤n

s2(l+m−1).

Now, if l < n, we have

Wn =






∑

1≤m≤l−1

s2(m) +
∑

l≤m≤n−1

s2(m)

−
∑

1≤m≤n−l

s2(l + m− 1)−
∑

n−l+1≤m≤n

s2(l + m− 1)

=
∑

1≤m≤l−1

s2(m)−
∑

n−l+1≤m≤n

s2(l + m− 1)

=
∑

1≤m≤l−1

s2(m)−
∑

0≤k≤l−1

s2(n + k).
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Thus
∑

1≤n<N

Wn =
∑

l<n<N

Wn + O(1)

=
∑

l<n<N

∑

1≤m≤l−1

s2(m)−
∑

l<n<N

∑

0≤k≤l−1

s2(n + k) + O(1)

=
∑

1≤n<N

∑

1≤m≤l−1

s2(m)−
∑

0≤k≤l−1

∑

l<n<N

s2(n + k) + O(1)

= N
∑

1≤m≤l−1

s2(m)−
∑

0≤k≤l−1

∑

l<n<N

s2(n + k) + O(1).

But
∑

0≤k≤l−1

∑

l<n<N

s2(n + k) =
∑

0≤k≤l−1

∑

1≤n<N

s2(n + k) + O(1)

=
∑

0≤k≤l−1

∑

k+1≤n<N+k

s2(j) + O(1)

=
∑

0≤k≤l−1

∑

1≤n<N+k

s2(j) + O(1)

=
∑

0≤k≤l−1




∑

1≤j<N

s2(j) +
∑

N≤j<N+k

s2(j)



 + O(1)

= l
∑

1≤j<N

s2(j) + O(log N)

(since for any m ≥ 1, s2(m) ≤ 1 + log m/ log 2).

So, finally,
∑

n<N

Wn = N
∑

1≤m≤l−1

s2(m)− l
∑

1≤j<N

s2(j) + O(log N)

and
∑

1≤n<N

∑

1≤m≤n

fl(m) =
3lN(N − 1)

2
+ N

∑

1≤m≤l−1

s2(m)− l
∑

1≤j<N

s2(j) + O(log N).

Using Theorem 9 we get

∑

1≤n<N

∑

1≤m≤n

fl(m) =
3lN(N − 1)

2
+ N

∑

1≤m≤l−1

s2(m)

− l

2 log 2
N log N − lNF

(
log N

log 2

)
+ O(log N).

The result holds by using the Fourier expansion of Delange’s function F .

Remark 11. It is worth noting that, while the term O(log N) depends on l, the
function F (Delange’s function) does not depend on l.
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4. Conclusion

The method used in [15] to study the asymptotics of the double summatory function∑
1≤n<N

∑
1≤m≤n fl(m) =

∑
1≤k<n fl(k)(n− k) is based on the philosophy of [12]

and involves the study of the Dirichlet series
∑ fl(n)

ns . It happens that these Dirichlet
series can be computed as infinite linear combinations of shifts of the zeta function.

It is worth noting that the series
∑ fl(n)

ns belong to a class of Dirichlet series that
have the following properties: they satisfy infinite functional equations, being equal
to infinite linear combinations of their shifts; they can be continued to meromorphic
functions on the whole plane; their poles (if any) are located on a finite number of
left half-lattices (see [1, Theorem 3 and Remark 4]). Namely the sequence (fl(n))n≥1

is 2-regular (see [2, 3, 4] for a definition), which is an immediate consequence of the
2-regularity of the sequence (s2(n))n and of the stability properties of 2-regular
sequences.

It is also worth noting that the method of [12], although giving asymptotic ex-
pansions of summatory functions of fairly general “digit-related sequences”, does
not give the (non-)differentiability properties of the oscillatory term. We have
mentioned the result of Delange [11]. Several other examples can be found in the
literature: a list of references and a unified treatment can be found in [10] and in
[18].
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