INTEGERS 11 (2011)

ON BASES WITH A T-ORDER

Quan-Hui Yang ${ }^{1}$
School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
yangquanhui01@163.com
Feng-Juan Chen
School of Mathematical Sciences, Nanjing Normal University, Nanjing, China and Department of Mathematics, Suzhou University, Suzhou, China
cfjsz@126.com

Received: 5/24/10: Revised: 11/3/10, Accepted: 11/15/10, Published: 1/13/11

Abstract

For any set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subseteq \mathbb{N}$, a basis A is said to have a T-order s if every sufficiently large integer is the sum of $s-t_{1}$ or $s-t_{2}$ or \ldots or $s-t_{n}$ elements taken from A (allowing repetitions), where s is the least integer with this property. We write $\operatorname{ord}^{(T)}(A)=s$. In this paper, we characterize those bases A which have a T-order.

1. Introduction

A set A of nonnegative integers is said to be an asymptotic basis of order r if every sufficiently large integer can be expressed as a sum of at most r elements taken from A (allowing repetitions) and r is the least integer with this property. We write $\operatorname{ord}(A)=r$. A basis A is said to have an exact order r^{\prime} if every sufficiently large integer is the sum of exactly r^{\prime} elements taken from A (again, allowing repetitions) and r^{\prime} is the least integer with this property. In this case we write $\operatorname{ord}^{*}(A)=r^{\prime}$. In [6], Erdős and Graham characterized those bases A which have an exact order. They proved the following result: a basis $A=\left\{a_{1}, a_{2}, \ldots\right\}$ has an exact order if and only if $\operatorname{gcd}\left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\}=1$. For related research, one may refer to [1-5].

In this note, we introduce the concept of T-order as follows and generalize the result by Erdős and Graham[6].

Definition 1. For any set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subseteq \mathbb{N}$, a basis A is said to have a T-order if there exists an integer s such that every sufficiently large integer is the sum of $s-t_{1}$ or $s-t_{2}$ or \ldots or $s-t_{n}$ integers taken from A (allowing repetitions). We indicate the least such s by $\operatorname{ord}^{(T)}(A)=s$.

[^0]Definition 2. For any set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subseteq \mathbb{N}$, a basis A is said to have an exact T-order if A has a T-order, and A does not have a T^{\prime}-order for any set $T^{\prime} \subsetneq T$.

By the definition, it's obvious that $\operatorname{ord}^{*}(A)=\operatorname{ord}^{(T)}(A)$ when $T=\{0\}$. It is easy to find examples of bases A which do not have a T-order. For example, if $A=\{x>0: x \equiv 1(\bmod 3)\}$ and $T=\{0,1\}$, then A doesn't have a T-order. By the definition, we know that a basis A has a T-order for any set T when it has an exact order. Meanwhile, if $0 \in T$, then $\operatorname{ord}(A) \leqslant \operatorname{ord}^{(T)}(A) \leqslant \operatorname{ord}^{*}(A)$. It is clear that if $0 \in T, 0 \in A$ and $\operatorname{ord}(A)=r$, then $\operatorname{ord}^{(T)}(A)=\operatorname{ord}^{*}(A)=r$. However, it is not difficult to construct examples of bases A such that

$$
\operatorname{ord}^{(T)}(A)>\operatorname{ord}(A) \operatorname{or}_{\operatorname{ord}^{*}}(A)>\operatorname{ord}^{(T)}(A)
$$

For example, if

$$
T=\{0,1\}
$$

and

$$
A_{1}=\bigcup_{k=0}^{\infty}\left\{x: 3^{2 k}+1 \leqslant x \leqslant 3^{2 k+1}\right\}
$$

then

$$
\operatorname{ord}\left(A_{1}\right)=3 \text { and } \operatorname{ord}^{(T)}\left(A_{1}\right)=4
$$

If

$$
T=\{0,1\} \text { and } A_{2}=\{x>0: x \equiv 2(\bmod 6) \text { or } x \equiv 3(\bmod 6)\}
$$

then

$$
\operatorname{ord}^{(T)}\left(A_{2}\right)=3 \text { and } \operatorname{ord}^{*}\left(A_{2}\right)=5
$$

In this paper, we characterize those bases A which have a T-order.

2. Bases with a T-order

For $A=\left\{a_{1}, a_{2}, \ldots\right\}$, let $D(A)=\operatorname{gcd}\left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\}$. It is easy to see that $D(A)$ does not depend on the order of A.

Lemma 3. If $A=\left\{a_{1}, a_{2}, \ldots\right\}$ is a basis, then $\left(a_{k}, D(A)\right)=1$ for all positive integers k.

Proof. If there exists k_{0} such that $\left(a_{k_{0}}, D(A)\right)=d>1$, then $d \mid a_{k}$ for all k. Therefore any sum of elements taken from A is a multiple of d, which contradicts the condition that A is a basis. This completes the proof of Lemma 3.

For $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and a positive integer h, define $h A$ as the h-fold sum set of A:

$$
h A=\left\{a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{h}}: i_{1} \leq \cdots \leq i_{h}\right\} .
$$

Lemma 4. If $A=\left\{a_{1}, a_{2}, \ldots\right\}$ is a basis, then there exists a positive integer n such that $n A \cap(n+D(A)) A \neq \emptyset$.

Proof. Since $D(A)=\operatorname{gcd}\left\{a_{k+1}-a_{k}: k=1,2, \ldots\right\}$, there is a positive integer t such that

$$
\operatorname{gcd}\left\{a_{k+1}-a_{k}: 1 \leqslant k \leqslant t\right\}=D(A)
$$

Thus, there exist integers $c_{1}, c_{2}, \ldots, c_{t}$ such that

$$
\begin{equation*}
\sum_{k=1}^{t} c_{k}\left(a_{k+1}-a_{k}\right)=D(A) \tag{1}
\end{equation*}
$$

We define p_{k} and q_{k} by

$$
p_{k}=\left\{\begin{array}{lll}
a_{k+1} & \text { if } & c_{k} \geqslant 0, \\
a_{k} & \text { if } & c_{k}<0,
\end{array} \quad q_{k}=\left\{\begin{array}{lll}
a_{k} & \text { if } & c_{k} \geqslant 0, \\
a_{k+1} & \text { if } & c_{k}<0 .
\end{array}\right.\right.
$$

Then (1) can be rewritten as

$$
\sum_{k=1}^{t}\left|c_{k}\right|\left(p_{k}-q_{k}\right)=D(A)
$$

i.e.,

$$
\sum_{k=1}^{t}\left|c_{k}\right| p_{k}=D(A)+\sum_{k=1}^{t}\left|c_{k}\right| q_{k}
$$

Let

$$
K=\sum_{k=1}^{t}\left|c_{k}\right| p_{k} q_{k}
$$

Since

$$
K=\sum_{k=1}^{t} \sum_{i=1}^{\left|c_{k}\right| p_{k}} q_{k} \in\left(\sum_{k=1}^{t}\left|c_{k}\right| p_{k}\right) A
$$

and

$$
K=\sum_{k=1}^{t} \sum_{j=1}^{\left|c_{k}\right| q_{k}} p_{k} \in\left(\sum_{k=1}^{t}\left|c_{k}\right| q_{k}\right) A
$$

we have $K \in n A \cap(n+D(A)) A$, where $n=\sum_{k=1}^{t}\left|c_{k}\right| q_{k}$. This completes the proof of Lemma 4.

Theorem 5. For any set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subseteq \mathbb{N}$, a basis $A=\left\{a_{1}, a_{2}, \ldots\right\}$ has a T order if and only if $t_{1}, t_{2}, \ldots, t_{n}$ contains a complete system of incongruent residues modulo $D(A)$.

Proof. (Necessity). Suppose that $\operatorname{ord}^{(T)}(A)=s$. Since $D(A)=\operatorname{gcd}\left\{a_{k+1}-a_{k}\right.$: $k=1,2, \ldots\}$, we have $a_{k+1} \equiv a_{k}(\bmod D(A))$ for all k. Therefore, any sum of $s-t_{i}$ elements of A is congruent to $\left(s-t_{i}\right) a_{1}$ modulo $D(A)$ for $i=1,2, \cdots, n$. If $t_{1}, t_{2}, \ldots, t_{n}$ does not contain a complete system of incongruent residues modulo $D(A)$, then $\left(s-t_{1}\right) a_{1},\left(s-t_{2}\right) a_{1}, \ldots,\left(s-t_{n}\right) a_{1}$ does not contain a complete system of incongruent residues modulo $D(A)$ either. It contradicts $\operatorname{ord}^{(T)}(A)=s$.
(Sufficiency). Suppose that $\operatorname{ord}(A)=r$. By Lemma 4, there exist two positive integers K and n such that

$$
K \in n A \cap(n+D(A)) A
$$

Then, for any integer $w \geqslant 1$ we have

$$
\begin{equation*}
w K \in \bigcap_{k=0}^{w}(w n+k D(A)) A . \tag{2}
\end{equation*}
$$

Let $s=(([r / D(A)]-1) n+[r / D(A)] D(A))+t_{n}$. Now we prove that every sufficiently large integer x can be represented as the sum of $s-t_{1}$ or \cdots or $s-t_{n}$ elements taken from A. Let $x_{1}=x-([r / D(A)]-1) K$.

Case 1: $D(A) \mid x_{1}$. By Lemma 3, we have $\left(a_{k}, D(A)\right)=1$ and $a_{k} \equiv a_{1}(\bmod$ $D(A))$ for any integer $k \geqslant 1$. Thus

$$
x_{1} \in \bigcup_{D(A) \mid i, i \leqslant r} i A .
$$

Setting $w=[r / D(A)]-1$ in (2), we obtain

$$
x=x_{1}+([r / D(A)]-1) K \in(([r / D(A)]-1) n+[r / D(A)] D(A)) A=\left(s-t_{n}\right) A
$$

Case 2: $D(A) \nmid x_{1}$. By Lemma 3, we have $\left(a_{1}, D(A)\right)=1$. Since $t_{1}, t_{2}, \ldots, t_{n}$ contains a complete system of incongruent residues modulo $D(A)$, we have that $\left(t_{n}-\right.$ $\left.t_{n}\right) a_{1},\left(t_{n}-t_{n-1}\right) a_{1}, \ldots,\left(t_{n}-t_{1}\right) a_{1}$ also contains a complete system of incongruent residues modulo $D(A)$. Thus, there exists an integer i such that $1 \leqslant i \leqslant n$ and

$$
\left(t_{n}-t_{i}\right) a_{1} \equiv x_{1} \quad(\bmod D(A))
$$

By Case 1, we have

$$
x_{1}-\left(t_{n}-t_{i}\right) a_{1}+([r / D(A)]-1) K \in(([r / D(A)]-1) n+[r / D(A)] D(A)) A
$$

Hence for any sufficiently large integer x, there exists an integer $i(1 \leqslant i \leqslant n)$ such that
$x=x_{1}+([r / D(A)]-1) K \in\left(([r / D(A)]-1) n+[r / D(A)] D(A)+\left(t_{n}-t_{i}\right)\right) A=\left(s-t_{i}\right) A$.
This completes the proof of Theorem 5.

Remark. By the proof Theorem 5, we have

$$
\operatorname{ord}^{(T)} A \leqslant(([r / D(A)]-1) n+[r / D(A)] D(A))+t_{n}
$$

Corollary 6. For any set $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subseteq \mathbb{N}$, a basis $A=\left\{a_{1}, a_{2}, \ldots\right\}$ has an exact T-order if and only if $D(A)=n$ and $t_{1}, t_{2}, \ldots, t_{n}$ is a complete system of incongruent residues modulo $D(A)$.

Proof. A has an exact T-order if and only if A has a T-order and A does not have a T^{\prime}-order for any set $T^{\prime} \subsetneq T$. By Theorem $5, T$ contains a complete system of incongruent residues modulo $D(A)$ and T^{\prime} does not contain a complete system of incongruent residues modulo $D(A)$. Namely $D(A)=n$ and $t_{1}, t_{2}, \ldots, t_{n}$ is a complete system of incongruent residues modulo $D(A)$.

Remark. Let $T=\{0\}$, by Corollary 6, we can get the result by Erdős and Graham.

Acknowledgments We sincerely thank our supervisor Professor Yong-Gao Chen for his valuable suggestions and useful discussions.

References

[1]H. Halberstam, K. F. Roth, Sequences, Clarendon Press, Oxford 1966.
[2]Janczak Miroslawa, Schoen Tomasz, Dense minimal asymptotic bases of order two, J. Number Theory 130(3)(2010), 580-585.
[3] Schmitt, Christoph, Uniformly thin bases of order two, Acta Arith. 124(1)(2006), 17-26.
[4]S. Chen, W. Z. Gu , Exact order of subsets of asymptotic bases, J. Number Theory 41(1)(1992), 15-21.
[5]X. D. Jia, Exact order of subsets of asymptotic bases in additive number theory, J. Number Theory 28(2)(1988), 205-218.
[6] P. Erdős, R. L. Graham, On bases with an exact order, Acta Arith. 37(1980), 201-207.

[^0]: ${ }^{1}$ Corresponding author

