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Abstract
Here we show that the only aliquot cycle consisting only of rep-digits in base 10 is

the cycle consisting of the perfect number 6. Generally, we show that if g is an even
positive integer, then there are only finitely many aliquot cycles consisting entirely
of repdigits in base g, which are, at least in principle, effectively computable.

1. Introduction

Let σ(n) be the sum of the positive divisors and let s(n) = σ(n) − n be the sum
of the divisors of n which are less than n. A number is called perfect if σ(n) = 2n,
or, equivalently, s(n) = n. A pair of distinct positive integers (m,n) is said to form
an amicable pair if s(m) = n and s(n) = m. Many pairs of amicable numbers are
known, but it is not known if there exist infinitely many of them. More generally,
an aliquot cycle of length k is a k-tuple of distinct positive integers C = (n1, . . . , nk)
such that s(ni) = ni+1 for i = 1, . . . , k, where by convention we set nk+1 := n1.
When k = 1, the number n1 is perfect, and when k = 2, the aliquot cycle is just a
pair of amicable numbers. As a matter of notation, for a positive integer j we write
sj(n) for the jth fold iteration of the function s applied to the number n. For an
extensive list of references regarding works on aliquot cycles, see the webpage [1].

Recently, Pollack [3] proved that the only perfect repdigit in base 10 is N = 6.
Here we present a slight variation of this result.

Theorem 1. The only aliquot cycle all whose members are repdigits in base 10 is
C = (6).

Now let g > 1 be any integer. One may wonder if in light of Theorem 1 it would
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be possible to show that given g there are only finitely many aliquot cycles whose
members are repdigits in base g. This was proved in [3] for the special case of the
perfect numbers. We could not prove that this is the case in general, but we could
do so when g is even.

Theorem 2. If g is even, then there are only finitely many aliquot cycles whose
members are repdigits in base g. Moreover, all such cycles are effectively computable.

Note that g = 10 satisfies the condition of Theorem 2, so Theorem 1 is not
unexpected, but of course its beauty consists in the fact that one could actually
compute all such instances (their finiteness being guaranteed by Theorem 2).

The proof of Theorem 1 is completely elementary. The proof of Theorem 2 uses
some considerations from [2].

2. The Proof of Theorem 1

Let x := a(10m − 1)/9, with a ∈ {1, . . . , 9} and m being some positive integer,
represent some element of an aliquot cycle C consisting only of repdigits. By the
result from [3], we may assume that k ≥ 2. We want to prove that there is no such
example.

We first ran a computation searching for the aliquot chains containing an element
with at most 4 digits. That is, we assumed that m ≤ 4. It turns out that s(x) is a
repdigit in this range only when s(x) ∈ {0, 1, 3, 4, 6, 7}. For these last values, unless
s(x) = 6, iterating s a few more times and evaluating it at x we end up with 0. For
example, if s(x) = 3, then s3(x) = 0, while when s(x) = 4, then s4(x) = 0. Clearly,
(6) is an aliquot cycle of length 1.

From now on, we assume that the aliquot cycle contains only repdigits with at
least 5 digits.

For a nonzero integer t and a prime p we put νp(t) for the exponent of p in the
factorization of t. Write y := s(x) = b(10n − 1)/9, where b ∈ {1, . . . , 9} and n ≥ 5.
We then get that

9σ(x) = 9(x + y) = 10ma + 10nb− (a + b) ≡ −(a + b) (mod 25)

because both m ≥ 5 and n ≥ 5. Since a + b ≤ 18, it follows that ν2(σ(x)) ∈
{0, 1, 2, 3, 4}, i.e., ν2(σ(x)) < 5. Note that this inequality is a key part of the proof
of Lemma 4.

Next, we ran a computation for m ≤ 51. That is, we computed s(x) for all
m ∈ [5, 51] and all a ∈ {1, . . . , 9}. For the values for which x was prime we got of
course s(x) = 1, so s2(x) = 0. For all other values of x, we got a value of s(x) > 10
which is not a repdigit. So, from now on, we assume that m > 51 for all x in the
cycle.
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Next, we record the following useful observation. We use the symbol ! to denote
a number which is a perfect square of an integer.

Lemma 3. For any positive integer N the inequality

ν2(σ(N)) ≥
∑

p|N
νp(N)≡1 (mod 2)

ν2(p + 1)

holds.

Proof. Assume that N = p1 · · · pk!, where p1, . . . , pk are distinct primes. Let αi be
the exponent at which the prime pi appears in the factorization of N . Then αi is
odd for i = 1, . . . , k. Thus, αi + 1 is even, and therefore p2

i − 1 divides pαi+1
i − 1.

Grouping these accordingly we get

k∏

i=1

(pi + 1) |
k∏

i=1

(
pαi+1

i − 1
pi − 1

)
| σ(N),

which implies the desired inequality by comparing the exponents of 2 in the left-
and right-hand sides of the above divisibility relation.

The next result will be used in the proof of Lemma 5 to show that a and M =
(10m − 1)/9 are coprime.

Lemma 4. The number m is coprime to 3.

Proof. Assume this is false, so 3 | m. Then 3 | M , and in addition 7 | M if and only
if 6 | M .

Assume first that M is a multiple of 3 but not of 7. Then m is an odd multiple
of 3. Put m = 3m0, and write

M :=
10m − 1

9
=

(
10m0 − 1

9

)
(102m0 + 10m0 + 1) =: A · B,

A := A1!, and B := B1!,

where A1 and B1 are squarefree. In what follows, we use the fact that odd squares
are congruent to 1 modulo 8 whenever needed without mentioning it. The greatest
common divisor of A and B is 1 or 3. The number B is a multiple of 3 but not of
9. Thus, B1 is a multiple of 3. Since m0 = m/3 > 17, the number B is congruent
to 1 modulo 4, and therefore B1 is congruent to 1 modulo 4 also. Since 3 | B1, it
follows that there exists a prime p1 ≥ 11 dividing B1 such that p1 ≡ 3 (mod 4).

Now consider the number A. We have

10m0−1 + · · · + 103 + 102 + 10 + 1 = A1!.
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Since m0 > 17, the number on the left above is congruent to 7 modulo 8. Thus, A1

is congruent to 7 modulo 8.
Suppose first that 3 ! A1. Then either A1 = p2 is a prime congruent to 7 modulo

8, or A1 has at least two odd prime factors q2 and q3 such that q2 ≡ 3 (mod 4). At
any rate, we get using Lemma 3 that

ν2(σ(x)) ≥
∑

p|M
νp(M)≡1 (mod 2)

p≥11

ν2(p + 1) ≥ ν2(p1 + 1) +
∑

p|A1
p≥11

ν2(p + 1)

≥ 2 +
{

ν2(p2 + 1) and p2 ≡ 7 (mod 8), or
ν2(q2 + 1) + ν2(q3 + 1) and q2 ≡ 3 (mod 4)

}

≥ 2 + 3 = 5. (1)

Suppose next that 3 | A1. Then m0 = 3m1 and

A =
(

10m0 − 1
9

)
=

10m1 − 1
9

(102m1 + 10m1 + 1) =: C · D,

C := C1!, D := D1!,

where C1 and D1 are squarefree. Since m1 = m0/3 ≥ 6, we get as before that the
greatest common divisor of C and D is 1 or 3, and that D1 is divisible by a prime
q2 ≥ 11 which is congruent to 3 modulo 4. Finally, again since m1 ≥ 6, we get as
before that C1 is congruent to 7 modulo 8, therefore it must be divisible by some
prime q3 ≥ 11. Hence, invoking Lemma 3 again, we get that

ν2(σ(x)) ≥
∑

p|M
νp(M)≡1 (mod 2)

p≥11

ν2(p + 1) ≥ ν2(p1 + 1) + ν2(q2 + 1) + ν2(q3 + 1)

≥ 2 + 2 + 1 = 5.

This takes care of the case when M is coprime to 7.

Assume next that 7 | M . Then 6 | m. Write m = 6m2 and

M =
106m2 − 1

9
=

(
10m2 − 1

9

)
(10m2 + 1)(102m2 − 10m2 + 1)(102m2 + 10m2 + 1)

=: ABCD, with A := A1!, B := B1!, C := C1!, D := D1!,

where A1, B1, C1, and D1 are squarefree. As in the analysis of the case when 7 ! M ,
the greatest common divisor of any two of the numbers A, B, C, D is 1 or 3.

Since m2 ≥ 9, it follows that D ≡ 1 (mod 8), so D1 ≡ 1 (mod 8) and, since
9 ! D, 3 | D1. Also, D1 is a divisor of D which is number coprime to 5 (in fact,
congruent to 1 modulo 5), so D1 is coprime to 5 as well. Since D1 is squarefree, it
follows that if D1 has no prime factor p1 ≥ 11, then D1 ∈ {1, 3, 7, 21}. However,
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this last set does not contain any multiple of 3 which is congruent to 1 modulo 8.
Hence, D1 has a prime factor p1 ≥ 11.

Observe that C is coprime to 3 and C ≡ 1 (mod 8), so C1 ≡ 1 (mod 8). Also,
C is not a perfect square. Indeed, if it were then with u := 10m2 , we would get
u2−u + 1 = v2 with some positive integer v, which can be rewritten as (2u− 1)2 +
3 = (2v)2. Clearly, the only positive integer solution (u, v) of this last equation is
u = v = 1, which is not convenient for us. Thus, C1 &∈ {1, 3, 7, 21}, and therefore
C1 has a prime factor p2 ≥ 11.

We next consider the number B. Clearly, B ≡ 1 (mod 8); therefore B1 ≡ 1
(mod 8), and B is coprime to 3. The number B is not a square since if it were, then
we would have 10m2 + 1 = v2, or 10m2 = (v− 1)(v + 1). Since both v− 1 and v + 1
are complementary divisors of the same parity of 10m2 and their greatest common
divisor divides their difference which is 2, one sees easily that the only possibility
is v + 1 = 2 · 5m2 and v − 1 = 2m2−1, which leads to

2 = (v + 1)− (v − 1) = 2(5m2 − 2m2−2) > 2,

a contradiction. Hence, B1 &∈ {1, 3, 7, 21}, therefore B1 has a prime factor p3 ≥ 11.
Finally, let us consider the number A. Suppose first that 3 ! A. In particular, 7

does not divide A either. Observe that A ≡ 7 (mod 8); therefore A1 ≡ 7 (mod 8),
so A1 has a prime factor p4 ≡ 3 (mod 4). Now using Lemma 3, we get

ν2(σ(x)) ≥
∑

p|M
νp(M)≡1 (mod 2)

p≥11

ν2(p + 1) ≥
4∑

i=1

ν2(pi + 1) ≥ 1 + 1 + 1 + 2 = 5.

Assume next that A is a multiple of 3 and write m2 = 3m3. Then m3 ≥ 3 and

A =
103m3 − 1

9
=

(
10m3 − 1

9

)
(102m3 + 10m3 + 1) =: EF,

E = E1!, F := F1!,

where E1 and F1 are squarefree. The greatest common divisor of E and F is 1 or
3. Since m3 ≥ m2/3 ≥ 3, we have again that F and F1 are both congruent to 1
modulo 8 and since 3 | F1, one concludes as in previous arguments there exists a
prime q5 ≥ 11 dividing F . Returning to B, we have

B = 103m3 + 1 = (10m3 + 1)(102m3 − 10m3 + 1) =: GH,

G = G1!, H := H1!,

where G1 and G2 are squarefree. The greatest common divisor of G and H is 1 or
3, and since m3 ≥ 3, it follows that H ≡ 1 (mod 8); therefore H1 ≡ 1 (mod 8). A
previous argument shows that H is not a perfect square; therefore H1 &∈ {1, 3, 7, 21},
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so H1 is divisible by some prime r6 ≥ 11. Finally, G ≡ 1 (mod 8) and therefore
G1 ≡ 1 (mod 8). Furthermore, a previous argument shows that G is not a perfect
square; therefore G1 &∈ {1, 3, 7, 21}, so G1 also has a prime factor r7 ≥ 11. From
the above analysis we get

ν2(σ(x)) ≥
∑

p|M
νp(M)≡1 (mod 2)

p≥11

ν2(p + 1)

≥ ν2(p1 + 1) + ν2(p2 + 1) + ν2(q5 + 1) + ν2(r6 + 1) + ν2(r7 + 1)
≥ 1 + 1 + 1 + 1 + 1 = 5.

In all possible cases, we have obtained that ν2(σ(x)) ≥ 5, which is impossible.
Hence, m is coprime to 3.

The next lemma is an easy consequence of Lemma 4.

Lemma 5. We have gcd(a,M) = 1. In particular, ν2(σ(M)) ≥ 3.

Proof. Since M is coprime to both 2 and 5, it follows that if a and M are not
coprime, then M is a multiple of either 3 or 7. In both cases, 3 | m, which is not
allowed by Lemma 4. Since a and M are coprime, we have that σ(x) = σ(a)σ(M).
Furthermore, since m ≥ 3, we have that M ≡ 7 (mod 8). Write M := M1!, where
M1 is squarefree. Since M is coprime to 3 and 7, we get that either M1 has a prime
factor (≥ 11) congruent to 7 (mod 8), or M1 has at least two prime factors (both
≥ 11), one of which is congruent to 3 modulo 4. The argument used to derive (1)
based on Lemma 3 shows here that ν2(σ(M)) ≥ 3, which is what we wanted to
prove.

It is now time to continue with the proof of Theorem 1. Recall that y = s(x) =
b(10n − 1)/9. We put N = (10n − 1)/9. Lemma 5 tells us that ν2(σ(N)) ≥ 3.
Since we now know that ν2(σ(x)) ≥ ν2(σ(M)) ≥ 3, by Lemma 5, we get that
a + b ∈ {8, 16}.

Suppose first that a + b = 16. Then {a, b} = {7, 9}, or {8, 8}. In the first case,
assuming say that a = 7, we get ν2(σ(x)) = ν2(σ(7M)) = ν2(8σ(M)) ≥ 6, which is
impossible. In the second case, we get that 5 | 15 = σ(8) | σ(x) = x + y, therefore

5 | x + y =
8(10m + 10n)− 16

9
,

which is also impossible.
Hence, a + b = 8, therefore ν2(σ(x)) = 3. Since ν2(σ(x)) = ν2(σ(a))+ ν2(σ(M)),

we get, by Lemma 5, that σ(a) is odd, therefore a ∈ {1, 2, 4, 9}. A similar argument
applies to b. Since a + b = 8, the only possibility is a = b = 4.
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Let us now prove that m is odd. Indeed, if not, then m = 2m0 and

M =
102m0 − 1

10− 1
=

(
10m0 − 1

9

)
(10m0 + 1) := AB.

The two factors above A and B are coprime and B is not a square by an argument
from the proof of Lemma 4. Now Lemma 5 shows that since m0 ≥ 26 and A
is coprime to both 3 and 7, we have that ν2(σ(A)) ≥ 3. Hence, ν2(σ(M)) =
ν2(σ(A)) + ν2(σ(B)) ≥ 4, which is a contradiction. A similar argument applies to
n. Thus, both m and n are invertible modulo 6.

Now
7 = σ(4) | σ(x) = x + y =

4(10m + 10n)− 8
9

,

giving that 10m + 10n ≡ 2 (mod 7). But m and n are congruent to ±1 (mod 6).
The case m ≡ n ≡ 1 (mod 6) leads to 20 ≡ 2 (mod 7), which is false. The case
m ≡ n ≡ −1 (mod 6) leads to 2× 10−1 ≡ 2 (mod 7), which is again false. Finally,
the case when one of m and n is congruent to 1 and the other is congruent to −1
modulo 6 leads to 10 + 10−1 ≡ 2 (mod 7), which is again false.

The theorem is therefore proved.

3. The Proof of Theorem 2

As in the proof of Theorem 1, we use x = a(gm−1)/(g−1) for some element of the
aliquot cycle. We write c1, c2, . . . for possive computable constants which depend
on g. They are labelled increasingly in their order of appearance. We also use the
Landau symbol O and the Vinogradov symbol ( with their usual meaning. The
constants implied by them also depend on g. For a positive integer m we use the
standard notations τ(m), ω(m) and Ω(m) for the total number of divisors of m,
the number of distinct prime divisors of m, and the number of prime power (> 1)
divisors of m (or the number of primes appearing in the factorization of m counted
with the appropriate multiplicity).

Assume that {n1, . . . , nk} is the set of components of an aliquot cycle C, where
we order these numbers as n1 < n2 < · · · < nk. By the result from [3], we may
assume that k ≥ 2. There exists j ∈ {1, . . . , k − 1} such that s(nj) = nk. In
particular, nj is abundant. Put x := nj . Then it suffices to show that x is bounded
by some constant c1. We proceed as follows. As in the proof of Theorem 1, put
y := s(x). Then y > x, therefore if we write y = b(gn − 1)/(g − 1), then n ≥ m.
Put c2 := )log(2(g − 1))/(log 2)* + 1 and assume that x > gc2 . Then m ≥ c2, so
n ≥ c2. The equation σ(x) = x + y together with the fact that m ≥ c2, n ≥ c2, and
g is even, implies that

(g − 1)σ(x) = a(gm − 1) + b(gn − 1) ≡ −(a + b) (mod 2c2).
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Since a + b ≤ 2(g − 1) < 2c2 , it follows that ν2(σ(x)) ≤ c3 := c2 − 1. Lemma 3 in
[2] shows that there exists a constant c4 depending on g, such that (gm−1)/(g−1)
has in its prime factorization at least Ω(m) − c4 prime factors p appearing at odd
exponents. Up to replacing c4 by c4+π(g), we may assume that all these primes are
greater than g. In particular, there are at least Ω(m)− c4 prime factors appearing
at odd exponents in the factorization of x. Together with the present Lemma 3, it
follows that ν2(σ(x)) ≥ Ω(m)− c4.

This inequality is a key part of the proof. Combining these two facts, we get
that Ω(m) ≤ c5 := c3 + c4. Put again M := (gm − 1)/(g − 1) and observe that

σ(x)
x

( σ(M)
M

. (2)

Lemma 2 in [2], shows that

σ(M)
M

( log(eω(m))2. (3)

Since ω(m) ≤ Ω(m) ≤ c5, it follows that σ(x)/x ≤ c6. Now

c6 ≥
σ(x)

x
= 1 +

y

x
= 1 +

(
b

a

)(
gn − 1
gm − 1

)
≥ 1 +

gn−m

g − 1
,

showing that n −m ≤ c7. Since all three parameters a, b and n −m are at this
point bounded, we may assume that a and b are fixed and that n −m = c is also
fixed. So, we need to study the equation

σ(x) = σ

(
a

(
gm − 1
g − 1

))
=

(
a + bgc

g − 1

)
gm − a + b

g − 1
. (4)

To proceed, we use the information that Ω(m) ≤ c5 and successively bound the
possible prime factors of m. We first bound the smallest prime factor of m, let’s
call it p(m). Well, let us assume that p(m) > g. It is easy to see, invoking Fermat’s
Little Theorem for example, that all prime factors p of M are congruent to 1 modulo
some divisor d > 1 of m. In particular, they are all > p(m) > g. Hence, a and M
are coprime. We get

σ(x)
M

= σ(a)
(

σ(M)
M

)
= (a+bgc)

(
gm

gm − 1

)
− a + b

(g − 1)M
= a+bgc+O

(
1

gm

)
. (5)

The proof of Lemma 2 in [2] shows that

log
(

σ(M)
M

)
(

∑

d|m
d>1

log(ed)
d

(
∑

d|m
d>1

log d

d
,

where the right–most inequality follows because 3d ≤ d3 for all d ≥ 2 (hence,
log(ed) ≤ 3 log d).



INTEGERS: 11 (2011) 9

The function d +→ (log d)/d is decreasing for all d ≥ 3 (note that p(m) ≥ 3 since
p(m) > g ≥ 2). Furthermore, since all divisors d > 1 of m are at least p(m), we get
that

∑

d|m
d>1

log d

d
≤ (τ(m)− 1) log p(m)

p(m)
<

2Ω(m) log p(m)
p(m)

≤ c8 log p(m)
p(m)

,

where we can take c8 := 2c5 . If p(m) > c9, where c9 > g is so large such that the
inequality c8 log p(m)/p(m) < 1/2 holds, we then get that

σ(M)
M

≤ exp
(

c8 log p(m)
p(m)

)
< 1 +

2c8 log p(m)
p(m)

.

Returning to equation (5), we get that

σ(a) + O

(
log p(m)

p(m)

)
= a + bgc + O

(
1

gm

)
.

If σ(a) &= a+ bgc, we see that the above estimate implies that p(m) is bounded. Let
us now treat the case when σ(a) = a + bgc. If M is not a prime, then the smallest
prime factor of M is ≤ M1/2 ( gm/2, and therefore

σ(M)
M

≥ 1 +
c10

gm/2
.

Hence, returning to equation (5), we get that

σ(a) +
c10

gm/2
< a + bgc + O

(
1

gm

)
,

which via the fact that σ(a) = a + bgc gives gm/2 ( 1, so m is bounded. Finally,
assume that M is prime. Then equation (4) becomes

σ(a)
(

1 +
1
M

)
= (a + bgc)

(
1 +

1
(g − 1)M

)
− a + b

(g − 1)M
,

giving

σ(a) =
a + bgc

g − 1
− a + b

g − 1
.

Since also σ(a) = a + bgc, we get

a + bgc

g − 1
− a + b

g − 1
= a + bgc, or (a + bgc)

(
1− 1

g − 1

)
= −a + b

g − 1
,

but this last relation is impossible since its left–hand side is ≥ 0 while its right–hand
side is < 0.

And so, we have bounded p(m).
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We next use induction to bound successively the other prime factors of m.
Namely, fix some positive integer s ≤ c5 and assume that m = p1p2 . . . ps, where
p1 ≤ p2 ≤ · · · ≤ ps. Assume further that we have showed that for some j ∈
{1, . . . , s− 1} the prime pj is bounded by some constant depending on g. Observe
that we have just shown such a statement with j = 1. Write m = p1p2 · · · pjm1,
assume that p1p2 · · · pj is fixed, and all we need to do is to bound pj+1, which is
now the smallest prime factor of m1. We use a similar argument as before. Put
g1 := gp1···pj , M1 := (gm1

1 − 1)/(g1 − 1), a1 := a(g1 − 1)/(g − 1), and observe that
relation (4) can be rewritten as

σ(a1M1) =
(

a + bgc

g − 1

)
gm1
1 − a + b

g − 1
.

Assume that pj+1 > g1. Then, since all prime factors of M1 = (gm1
1 − 1)/(g1 − 1)

are congruent to 1 modulo some divisor d > 1 of m1, it follows, in particular, that
they are at least as large as g1 > a1. Hence, M1 and a1 are coprime, and so we get
that

σ(a1)
(

σ(M1)
M1

)
=

(
(a + bgc)(g1 − 1)

g − 1

)(
gm1
1

gm1
1 − 1

)
− a + b

(g − 1)M1
. (6)

The right–hand side above is

(a + bgc)(g1 − 1)
g − 1

+ O

(
1

gm

)
. (7)

On the left–hand side in relation (6) above, we have again that

log
(

σ(M1)
M1

)
(

∑

d|m1
d>1

log d

d
( log pj+1

pj+1
.

So, if pj+1 > c11 is sufficiently large, then

σ(M1)
M1

= exp
(

log
(

σ(M1)
M1

))
= exp

(
O

(
log pj+1

pj+1

))
= 1 + O

(
log pj+1

pj+1

)
. (8)

Inserting estimates (7) and (8) into equation (6), we get

σ(a1) + O

(
log pj+1

pj+1

)
=

(a + bgc)(g1 − 1)
g − 1

+ O

(
1

gm

)
.

As before, if σ(a1) &= (a + bgc)(g1 − 1)/(g − 1), we then get that pj+1 ( 1, which
is what we wanted. So, assume that σ(a1) = (a + bgc)(g1 − 1)/(g − 1). Again as
before, if M1 is not prime, then σ(M1)/M1 ≥ 1+ c12/gm/2. Together with equation
(6), we get that

σ(a1) +
c12

gm/2
≤ (a + bgc)(g1 − 1)

g − 1
+ O

(
1

gm

)
,
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which implies, via the fact that σ(a1) = (a + bgc)(g1 − 1)/(g − 1), that gm/2 ( 1,
so m ( 1. Finally, if M1 is prime, we then get that equation (6) is

σ(a1)
(

1 +
1

M1

)
=

(
(a + bgc)(g1 − 1)

g − 1

)(
1 +

1
(g1 − 1)M1

)
− a + b

(g − 1)M1
,

which implies via the fact that σ(a1) = (a + bgc)(g1 − 1)/(g − 1), that the relation

σ(a1) =
a + bgc

g − 1
− a + b

g − 1

also holds. Since also σ(a1) = (a + bgc)(g1 − 1)/(g − 1), we get that

(a + bgc)(g1 − 1)
g − 1

=
a + bgc

g − 1
− a + b

g − 1
,

or
(a + bgc)(g1 − 2)

g − 1
= −a + b

g − 1
.

However, this is impossible since its left–hand side is ≥ 0, while its right hand side
is < 0. This finishes the proof of the fact that pj+1 ( 1, and of Theorem 2.

We conclude with a couple of open problems.

Problem 6. Extend Theorem 2 to the case of an odd base g.

Problem 7. Show that if g > 1 is fixed, then there are only finitely many repdigits
in base g which are part of an amicable pair (with the other member of the amicable
pair not necessarily a repdigit).

Acknowledgements. We thank the referee for a careful reading of the original
manuscript and for suggestions which improved the quality of this paper. F. L.
worked on this project during a visit to CWI in Amsterdam in October 2010 as a
Beeger lecturer. During the preparation of this paper, F. L. was also supported in
part by Grants SEP-CONACyT 79685 and PAPIIT 100508.

References

[1] W. Creyaufmuller, Aliquot Sequences, http://www.aliquot.de/aliquote.htm.

[2] F. Luca and P. Pollack, Multiperfect numbers with identical digits, J. Number Theory 131
(2011), 260–284.

[3] P. Pollack, Perfect numbers with identical digits, Integers 11A (2011), A18, Proceedings
of the Integers Conference 2009 in Honor of the Birthdays of Melvyn Nathanson and Carl
Pomerance.


