ALIQUOT CYCLES OF REPDIGITS

Florian Luca
Instituto de Matemáticas, Universidad Nacional Autonoma de México, Morelia, Michoacán, México
fluca@matmor.unam.mx

Herman te Riele
Centrum Wiskunde \mathcal{E}^{3} Informatica, Amsterdam, The Netherlands
Herman.te.Riele@cwi.nl

Received: 1/17/11, Revised: 6/28/11, Accepted: 8/22/11, Published: 9/19/11

Abstract

Here we show that the only aliquot cycle consisting only of rep-digits in base 10 is the cycle consisting of the perfect number 6. Generally, we show that if g is an even positive integer, then there are only finitely many aliquot cycles consisting entirely of repdigits in base g, which are, at least in principle, effectively computable.

1. Introduction

Let $\sigma(n)$ be the sum of the positive divisors and let $s(n)=\sigma(n)-n$ be the sum of the divisors of n which are less than n. A number is called perfect if $\sigma(n)=2 n$, or, equivalently, $s(n)=n$. A pair of distinct positive integers (m, n) is said to form an amicable pair if $s(m)=n$ and $s(n)=m$. Many pairs of amicable numbers are known, but it is not known if there exist infinitely many of them. More generally, an aliquot cycle of length k is a k-tuple of distinct positive integers $\mathcal{C}=\left(n_{1}, \ldots, n_{k}\right)$ such that $s\left(n_{i}\right)=n_{i+1}$ for $i=1, \ldots, k$, where by convention we set $n_{k+1}:=n_{1}$. When $k=1$, the number n_{1} is perfect, and when $k=2$, the aliquot cycle is just a pair of amicable numbers. As a matter of notation, for a positive integer j we write $s_{j}(n)$ for the j th fold iteration of the function s applied to the number n. For an extensive list of references regarding works on aliquot cycles, see the webpage [1].

Recently, Pollack [3] proved that the only perfect repdigit in base 10 is $N=6$. Here we present a slight variation of this result.

Theorem 1. The only aliquot cycle all whose members are repdigits in base 10 is $\mathcal{C}=(6)$.

Now let $g>1$ be any integer. One may wonder if in light of Theorem 1 it would
be possible to show that given g there are only finitely many aliquot cycles whose members are repdigits in base g. This was proved in [3] for the special case of the perfect numbers. We could not prove that this is the case in general, but we could do so when g is even.

Theorem 2. If g is even, then there are only finitely many aliquot cycles whose members are repdigits in base g. Moreover, all such cycles are effectively computable.

Note that $g=10$ satisfies the condition of Theorem 2, so Theorem 1 is not unexpected, but of course its beauty consists in the fact that one could actually compute all such instances (their finiteness being guaranteed by Theorem 2).

The proof of Theorem 1 is completely elementary. The proof of Theorem 2 uses some considerations from [2].

2. The Proof of Theorem 1

Let $x:=a\left(10^{m}-1\right) / 9$, with $a \in\{1, \ldots, 9\}$ and m being some positive integer, represent some element of an aliquot cycle \mathcal{C} consisting only of repdigits. By the result from [3], we may assume that $k \geq 2$. We want to prove that there is no such example.

We first ran a computation searching for the aliquot chains containing an element with at most 4 digits. That is, we assumed that $m \leq 4$. It turns out that $s(x)$ is a repdigit in this range only when $s(x) \in\{0,1,3,4,6,7\}$. For these last values, unless $s(x)=6$, iterating s a few more times and evaluating it at x we end up with 0 . For example, if $s(x)=3$, then $s_{3}(x)=0$, while when $s(x)=4$, then $s_{4}(x)=0$. Clearly, (6) is an aliquot cycle of length 1.

From now on, we assume that the aliquot cycle contains only repdigits with at least 5 digits.

For a nonzero integer t and a prime p we put $\nu_{p}(t)$ for the exponent of p in the factorization of t. Write $y:=s(x)=b\left(10^{n}-1\right) / 9$, where $b \in\{1, \ldots, 9\}$ and $n \geq 5$. We then get that

$$
9 \sigma(x)=9(x+y)=10^{m} a+10^{n} b-(a+b) \equiv-(a+b) \quad\left(\bmod 2^{5}\right)
$$

because both $m \geq 5$ and $n \geq 5$. Since $a+b \leq 18$, it follows that $\nu_{2}(\sigma(x)) \in$ $\{0,1,2,3,4\}$, i.e., $\nu_{2}(\sigma(x))<5$. Note that this inequality is a key part of the proof of Lemma 4.

Next, we ran a computation for $m \leq 51$. That is, we computed $s(x)$ for all $m \in[5,51]$ and all $a \in\{1, \ldots, 9\}$. For the values for which x was prime we got of course $s(x)=1$, so $s_{2}(x)=0$. For all other values of x, we got a value of $s(x)>10$ which is not a repdigit. So, from now on, we assume that $m>51$ for all x in the cycle.

Next, we record the following useful observation. We use the symbol \square to denote a number which is a perfect square of an integer.

Lemma 3. For any positive integer N the inequality

$$
\nu_{2}(\sigma(N)) \geq \sum_{\substack{p \mid N \\ \nu_{p}(N) \equiv 1(\bmod 2)}} \nu_{2}(p+1)
$$

holds.
Proof. Assume that $N=p_{1} \cdots p_{k} \square$, where p_{1}, \ldots, p_{k} are distinct primes. Let α_{i} be the exponent at which the prime p_{i} appears in the factorization of N. Then α_{i} is odd for $i=1, \ldots, k$. Thus, $\alpha_{i}+1$ is even, and therefore $p_{i}^{2}-1$ divides $p_{i}^{\alpha_{i}+1}-1$. Grouping these accordingly we get

$$
\prod_{i=1}^{k}\left(p_{i}+1\right)\left|\prod_{i=1}^{k}\left(\frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}\right)\right| \sigma(N)
$$

which implies the desired inequality by comparing the exponents of 2 in the leftand right-hand sides of the above divisibility relation.

The next result will be used in the proof of Lemma 5 to show that a and $M=$ $\left(10^{m}-1\right) / 9$ are coprime.

Lemma 4. The number m is coprime to 3 .
Proof. Assume this is false, so $3 \mid m$. Then $3 \mid M$, and in addition $7 \mid M$ if and only if $6 \mid M$.

Assume first that M is a multiple of 3 but not of 7 . Then m is an odd multiple of 3 . Put $m=3 m_{0}$, and write

$$
\begin{aligned}
M & :=\frac{10^{m}-1}{9}=\left(\frac{10^{m_{0}}-1}{9}\right)\left(10^{2 m_{0}}+10^{m_{0}}+1\right)=: A \cdot B \\
A & :=A_{1} \square, \quad \text { and } \quad B:=B_{1} \square,
\end{aligned}
$$

where A_{1} and B_{1} are squarefree. In what follows, we use the fact that odd squares are congruent to 1 modulo 8 whenever needed without mentioning it. The greatest common divisor of A and B is 1 or 3 . The number B is a multiple of 3 but not of 9. Thus, B_{1} is a multiple of 3 . Since $m_{0}=m / 3>17$, the number B is congruent to 1 modulo 4 , and therefore B_{1} is congruent to 1 modulo 4 also. Since $3 \mid B_{1}$, it follows that there exists a prime $p_{1} \geq 11$ dividing B_{1} such that $p_{1} \equiv 3(\bmod 4)$.

Now consider the number A. We have

$$
10^{m_{0}-1}+\cdots+10^{3}+10^{2}+10+1=A_{1} \square
$$

Since $m_{0}>17$, the number on the left above is congruent to 7 modulo 8. Thus, A_{1} is congruent to 7 modulo 8 .

Suppose first that $3 \nmid A_{1}$. Then either $A_{1}=p_{2}$ is a prime congruent to 7 modulo 8 , or A_{1} has at least two odd prime factors q_{2} and q_{3} such that $q_{2} \equiv 3(\bmod 4)$. At any rate, we get using Lemma 3 that

$$
\begin{align*}
\nu_{2}(\sigma(x)) & \geq \sum_{\substack{p \mid M \\
\nu_{p}(M) \equiv 1 \\
p \geq 11}} \nu_{2}(p+1) \geq \nu_{2}\left(p_{1}+1\right)+\sum_{\substack{p \mid A_{1} \\
p \geq 11}} \nu_{2}(p+1) \\
& \geq 2+\left\{\begin{array}{cc}
\nu_{2}\left(p_{2}+1\right) & \text { and } \\
\nu_{2}\left(q_{2}+1\right)+\nu_{2}\left(q_{3}+1\right) & \text { and } \\
p_{2} \equiv 7(\bmod 8), \text { or } \\
q_{2} \equiv 3(\bmod 4)
\end{array}\right\} \\
& \geq 2+3=5 . \tag{1}
\end{align*}
$$

Suppose next that $3 \mid A_{1}$. Then $m_{0}=3 m_{1}$ and

$$
\begin{aligned}
& A=\left(\frac{10^{m_{0}}-1}{9}\right)=\frac{10^{m_{1}}-1}{9}\left(10^{2 m_{1}}+10^{m_{1}}+1\right)=: C \cdot D \\
& C:=C_{1} \square, \quad D:=D_{1} \square
\end{aligned}
$$

where C_{1} and D_{1} are squarefree. Since $m_{1}=m_{0} / 3 \geq 6$, we get as before that the greatest common divisor of C and D is 1 or 3 , and that D_{1} is divisible by a prime $q_{2} \geq 11$ which is congruent to 3 modulo 4 . Finally, again since $m_{1} \geq 6$, we get as before that C_{1} is congruent to 7 modulo 8 , therefore it must be divisible by some prime $q_{3} \geq 11$. Hence, invoking Lemma 3 again, we get that

$$
\begin{aligned}
\nu_{2}(\sigma(x)) \geq \sum_{\substack{p \mid M \\
\nu_{p}(M) \equiv 1 \\
p \geq 11}} \nu_{2}(p+1) & \geq \nu_{2}\left(p_{1}+1\right)+\nu_{2}\left(q_{2}+1\right)+\nu_{2}\left(q_{3}+1\right) \\
& \geq 2+2+1=5 .
\end{aligned}
$$

This takes care of the case when M is coprime to 7 .
Assume next that $7 \mid M$. Then $6 \mid m$. Write $m=6 m_{2}$ and

$$
\begin{aligned}
M & =\frac{10^{6 m_{2}}-1}{9}=\left(\frac{10^{m_{2}}-1}{9}\right)\left(10^{m_{2}}+1\right)\left(10^{2 m_{2}}-10^{m_{2}}+1\right)\left(10^{2 m_{2}}+10^{m_{2}}+1\right) \\
& =: \quad A B C D, \quad \text { with } A:=A_{1} \square, \quad B:=B_{1} \square, \quad C:=C_{1} \square, \quad D:=D_{1} \square,
\end{aligned}
$$

where A_{1}, B_{1}, C_{1}, and D_{1} are squarefree. As in the analysis of the case when $7 \nmid M$, the greatest common divisor of any two of the numbers A, B, C, D is 1 or 3 .

Since $m_{2} \geq 9$, it follows that $D \equiv 1(\bmod 8)$, so $D_{1} \equiv 1(\bmod 8)$ and, since $9 \nmid D, 3 \mid D_{1}$. Also, D_{1} is a divisor of D which is number coprime to 5 (in fact, congruent to 1 modulo 5), so D_{1} is coprime to 5 as well. Since D_{1} is squarefree, it follows that if D_{1} has no prime factor $p_{1} \geq 11$, then $D_{1} \in\{1,3,7,21\}$. However,
this last set does not contain any multiple of 3 which is congruent to 1 modulo 8 . Hence, D_{1} has a prime factor $p_{1} \geq 11$.

Observe that C is coprime to 3 and $C \equiv 1(\bmod 8)$, so $C_{1} \equiv 1(\bmod 8)$. Also, C is not a perfect square. Indeed, if it were then with $u:=10^{m_{2}}$, we would get $u^{2}-u+1=v^{2}$ with some positive integer v, which can be rewritten as $(2 u-1)^{2}+$ $3=(2 v)^{2}$. Clearly, the only positive integer solution (u, v) of this last equation is $u=v=1$, which is not convenient for us. Thus, $C_{1} \notin\{1,3,7,21\}$, and therefore C_{1} has a prime factor $p_{2} \geq 11$.

We next consider the number B. Clearly, $B \equiv 1(\bmod 8)$; therefore $B_{1} \equiv 1$ $(\bmod 8)$, and B is coprime to 3 . The number B is not a square since if it were, then we would have $10^{m_{2}}+1=v^{2}$, or $10^{m_{2}}=(v-1)(v+1)$. Since both $v-1$ and $v+1$ are complementary divisors of the same parity of $10^{m_{2}}$ and their greatest common divisor divides their difference which is 2 , one sees easily that the only possibility is $v+1=2 \cdot 5^{m_{2}}$ and $v-1=2^{m_{2}-1}$, which leads to

$$
2=(v+1)-(v-1)=2\left(5^{m_{2}}-2^{m_{2}-2}\right)>2
$$

a contradiction. Hence, $B_{1} \notin\{1,3,7,21\}$, therefore B_{1} has a prime factor $p_{3} \geq 11$.
Finally, let us consider the number A. Suppose first that $3 \nmid A$. In particular, 7 does not divide A either. Observe that $A \equiv 7(\bmod 8)$; therefore $A_{1} \equiv 7(\bmod 8)$, so A_{1} has a prime factor $p_{4} \equiv 3(\bmod 4)$. Now using Lemma 3 , we get

$$
\nu_{2}(\sigma(x)) \geq \sum_{\substack{p \mid M \\ \nu_{p}(M)=1(\bmod 2) \\ p \geq 11}} \nu_{2}(p+1) \geq \sum_{i=1}^{4} \nu_{2}\left(p_{i}+1\right) \geq 1+1+1+2=5
$$

Assume next that A is a multiple of 3 and write $m_{2}=3 m_{3}$. Then $m_{3} \geq 3$ and

$$
\begin{aligned}
& A=\frac{10^{3 m_{3}}-1}{9}=\left(\frac{10^{m_{3}}-1}{9}\right)\left(10^{2 m_{3}}+10^{m_{3}}+1\right)=: E F \\
& E=E_{1} \square, \quad F:=F_{1} \square
\end{aligned}
$$

where E_{1} and F_{1} are squarefree. The greatest common divisor of E and F is 1 or 3. Since $m_{3} \geq m_{2} / 3 \geq 3$, we have again that F and F_{1} are both congruent to 1 modulo 8 and since $3 \mid F_{1}$, one concludes as in previous arguments there exists a prime $q_{5} \geq 11$ dividing F. Returning to B, we have

$$
\begin{aligned}
& B=10^{3 m_{3}}+1=\left(10^{m_{3}}+1\right)\left(10^{2 m_{3}}-10^{m_{3}}+1\right)=: G H \\
& G=G_{1} \square, \quad H:=H_{1} \square
\end{aligned}
$$

where G_{1} and G_{2} are squarefree. The greatest common divisor of G and H is 1 or 3 , and since $m_{3} \geq 3$, it follows that $H \equiv 1(\bmod 8)$; therefore $H_{1} \equiv 1(\bmod 8)$. A previous argument shows that H is not a perfect square; therefore $H_{1} \notin\{1,3,7,21\}$,
so H_{1} is divisible by some prime $r_{6} \geq 11$. Finally, $G \equiv 1(\bmod 8)$ and therefore $G_{1} \equiv 1(\bmod 8)$. Furthermore, a previous argument shows that G is not a perfect square; therefore $G_{1} \notin\{1,3,7,21\}$, so G_{1} also has a prime factor $r_{7} \geq 11$. From the above analysis we get

$$
\begin{aligned}
& \nu_{2}(\sigma(x)) \geq \sum_{\substack{p \mid M \\
\nu_{p}(M) \equiv 1 \\
p \geq 11}} \nu_{2}(p+1) \\
& \geq \nu_{2}\left(p_{1}+1\right)+\nu_{2}\left(p_{2}+1\right)+\nu_{2}\left(q_{5}+1\right)+\nu_{2}\left(r_{6}+1\right)+\nu_{2}\left(r_{7}+1\right) \\
& \geq 1+1+1+1+1=5 .
\end{aligned}
$$

In all possible cases, we have obtained that $\nu_{2}(\sigma(x)) \geq 5$, which is impossible. Hence, m is coprime to 3 .

The next lemma is an easy consequence of Lemma 4.
Lemma 5. We have $\operatorname{gcd}(a, M)=1$. In particular, $\nu_{2}(\sigma(M)) \geq 3$.
Proof. Since M is coprime to both 2 and 5 , it follows that if a and M are not coprime, then M is a multiple of either 3 or 7 . In both cases, $3 \mid m$, which is not allowed by Lemma 4 . Since a and M are coprime, we have that $\sigma(x)=\sigma(a) \sigma(M)$. Furthermore, since $m \geq 3$, we have that $M \equiv 7(\bmod 8)$. Write $M:=M_{1} \square$, where M_{1} is squarefree. Since M is coprime to 3 and 7 , we get that either M_{1} has a prime factor (≥ 11) congruent to $7(\bmod 8)$, or M_{1} has at least two prime factors (both ≥ 11), one of which is congruent to 3 modulo 4 . The argument used to derive (1) based on Lemma 3 shows here that $\nu_{2}(\sigma(M)) \geq 3$, which is what we wanted to prove.

It is now time to continue with the proof of Theorem 1. Recall that $y=s(x)=$ $b\left(10^{n}-1\right) / 9$. We put $N=\left(10^{n}-1\right) / 9$. Lemma 5 tells us that $\nu_{2}(\sigma(N)) \geq 3$. Since we now know that $\nu_{2}(\sigma(x)) \geq \nu_{2}(\sigma(M)) \geq 3$, by Lemma 5 , we get that $a+b \in\{8,16\}$.

Suppose first that $a+b=16$. Then $\{a, b\}=\{7,9\}$, or $\{8,8\}$. In the first case, assuming say that $a=7$, we get $\nu_{2}(\sigma(x))=\nu_{2}(\sigma(7 M))=\nu_{2}(8 \sigma(M)) \geq 6$, which is impossible. In the second case, we get that $5|15=\sigma(8)| \sigma(x)=x+y$, therefore

$$
5 \left\lvert\, x+y=\frac{8\left(10^{m}+10^{n}\right)-16}{9}\right.
$$

which is also impossible.
Hence, $a+b=8$, therefore $\nu_{2}(\sigma(x))=3$. Since $\nu_{2}(\sigma(x))=\nu_{2}(\sigma(a))+\nu_{2}(\sigma(M))$, we get, by Lemma 5 , that $\sigma(a)$ is odd, therefore $a \in\{1,2,4,9\}$. A similar argument applies to b. Since $a+b=8$, the only possibility is $a=b=4$.

Let us now prove that m is odd. Indeed, if not, then $m=2 m_{0}$ and

$$
M=\frac{10^{2 m_{0}}-1}{10-1}=\left(\frac{10^{m_{0}}-1}{9}\right)\left(10^{m_{0}}+1\right):=A B
$$

The two factors above A and B are coprime and B is not a square by an argument from the proof of Lemma 4. Now Lemma 5 shows that since $m_{0} \geq 26$ and A is coprime to both 3 and 7 , we have that $\nu_{2}(\sigma(A)) \geq 3$. Hence, $\nu_{2}(\sigma(M))=$ $\nu_{2}(\sigma(A))+\nu_{2}(\sigma(B)) \geq 4$, which is a contradiction. A similar argument applies to n. Thus, both m and n are invertible modulo 6 .

Now

$$
7=\sigma(4) \left\lvert\, \sigma(x)=x+y=\frac{4\left(10^{m}+10^{n}\right)-8}{9}\right.
$$

giving that $10^{m}+10^{n} \equiv 2(\bmod 7)$. But m and n are congruent to $\pm 1(\bmod 6)$. The case $m \equiv n \equiv 1(\bmod 6)$ leads to $20 \equiv 2(\bmod 7)$, which is false. The case $m \equiv n \equiv-1(\bmod 6)$ leads to $2 \times 10^{-1} \equiv 2(\bmod 7)$, which is again false. Finally, the case when one of m and n is congruent to 1 and the other is congruent to -1 modulo 6 leads to $10+10^{-1} \equiv 2(\bmod 7)$, which is again false.

The theorem is therefore proved.

3. The Proof of Theorem 2

As in the proof of Theorem 1, we use $x=a\left(g^{m}-1\right) /(g-1)$ for some element of the aliquot cycle. We write c_{1}, c_{2}, \ldots for possive computable constants which depend on g. They are labelled increasingly in their order of appearance. We also use the Landau symbol O and the Vinogradov symbol \ll with their usual meaning. The constants implied by them also depend on g. For a positive integer m we use the standard notations $\tau(m), \omega(m)$ and $\Omega(m)$ for the total number of divisors of m, the number of distinct prime divisors of m, and the number of prime power (>1) divisors of m (or the number of primes appearing in the factorization of m counted with the appropriate multiplicity).

Assume that $\left\{n_{1}, \ldots, n_{k}\right\}$ is the set of components of an aliquot cycle \mathcal{C}, where we order these numbers as $n_{1}<n_{2}<\cdots<n_{k}$. By the result from [3], we may assume that $k \geq 2$. There exists $j \in\{1, \ldots, k-1\}$ such that $s\left(n_{j}\right)=n_{k}$. In particular, n_{j} is abundant. Put $x:=n_{j}$. Then it suffices to show that x is bounded by some constant c_{1}. We proceed as follows. As in the proof of Theorem 1 , put $y:=s(x)$. Then $y>x$, therefore if we write $y=b\left(g^{n}-1\right) /(g-1)$, then $n \geq m$. Put $c_{2}:=\lfloor\log (2(g-1)) /(\log 2)\rfloor+1$ and assume that $x>g^{c_{2}}$. Then $m \geq c_{2}$, so $n \geq c_{2}$. The equation $\sigma(x)=x+y$ together with the fact that $m \geq c_{2}, n \geq c_{2}$, and g is even, implies that

$$
(g-1) \sigma(x)=a\left(g^{m}-1\right)+b\left(g^{n}-1\right) \equiv-(a+b) \quad\left(\bmod 2^{c_{2}}\right)
$$

Since $a+b \leq 2(g-1)<2^{c_{2}}$, it follows that $\nu_{2}(\sigma(x)) \leq c_{3}:=c_{2}-1$. Lemma 3 in [2] shows that there exists a constant c_{4} depending on g, such that $\left(g^{m}-1\right) /(g-1)$ has in its prime factorization at least $\Omega(m)-c_{4}$ prime factors p appearing at odd exponents. Up to replacing c_{4} by $c_{4}+\pi(g)$, we may assume that all these primes are greater than g. In particular, there are at least $\Omega(m)-c_{4}$ prime factors appearing at odd exponents in the factorization of x. Together with the present Lemma 3, it follows that $\nu_{2}(\sigma(x)) \geq \Omega(m)-c_{4}$.

This inequality is a key part of the proof. Combining these two facts, we get that $\Omega(m) \leq c_{5}:=c_{3}+c_{4}$. Put again $M:=\left(g^{m}-1\right) /(g-1)$ and observe that

$$
\begin{equation*}
\frac{\sigma(x)}{x} \ll \frac{\sigma(M)}{M} \tag{2}
\end{equation*}
$$

Lemma 2 in [2], shows that

$$
\begin{equation*}
\frac{\sigma(M)}{M} \ll \log (e \omega(m))^{2} \tag{3}
\end{equation*}
$$

Since $\omega(m) \leq \Omega(m) \leq c_{5}$, it follows that $\sigma(x) / x \leq c_{6}$. Now

$$
c_{6} \geq \frac{\sigma(x)}{x}=1+\frac{y}{x}=1+\left(\frac{b}{a}\right)\left(\frac{g^{n}-1}{g^{m}-1}\right) \geq 1+\frac{g^{n-m}}{g-1}
$$

showing that $n-m \leq c_{7}$. Since all three parameters a, b and $n-m$ are at this point bounded, we may assume that a and b are fixed and that $n-m=c$ is also fixed. So, we need to study the equation

$$
\begin{equation*}
\sigma(x)=\sigma\left(a\left(\frac{g^{m}-1}{g-1}\right)\right)=\left(\frac{a+b g^{c}}{g-1}\right) g^{m}-\frac{a+b}{g-1} . \tag{4}
\end{equation*}
$$

To proceed, we use the information that $\Omega(m) \leq c_{5}$ and successively bound the possible prime factors of m. We first bound the smallest prime factor of m, let's call it $p(m)$. Well, let us assume that $p(m)>g$. It is easy to see, invoking Fermat's Little Theorem for example, that all prime factors p of M are congruent to 1 modulo some divisor $d>1$ of m. In particular, they are all $>p(m)>g$. Hence, a and M are coprime. We get

$$
\begin{equation*}
\frac{\sigma(x)}{M}=\sigma(a)\left(\frac{\sigma(M)}{M}\right)=\left(a+b g^{c}\right)\left(\frac{g^{m}}{g^{m}-1}\right)-\frac{a+b}{(g-1) M}=a+b g^{c}+O\left(\frac{1}{g^{m}}\right) . \tag{5}
\end{equation*}
$$

The proof of Lemma 2 in [2] shows that

$$
\log \left(\frac{\sigma(M)}{M}\right) \ll \sum_{\substack{d \mid m \\ d>1}} \frac{\log (e d)}{d} \ll \sum_{\substack{d \mid m \\ d>1}} \frac{\log d}{d}
$$

where the right-most inequality follows because $3 d \leq d^{3}$ for all $d \geq 2$ (hence, $\log (e d) \leq 3 \log d)$.

The function $d \mapsto(\log d) / d$ is decreasing for all $d \geq 3$ (note that $p(m) \geq 3$ since $p(m)>g \geq 2$). Furthermore, since all divisors $d>1$ of m are at least $p(m)$, we get that

$$
\sum_{\substack{d \mid m \\ d>1}} \frac{\log d}{d} \leq \frac{(\tau(m)-1) \log p(m)}{p(m)}<\frac{2^{\Omega(m)} \log p(m)}{p(m)} \leq \frac{c_{8} \log p(m)}{p(m)}
$$

where we can take $c_{8}:=2^{c_{5}}$. If $p(m)>c_{9}$, where $c_{9}>g$ is so large such that the inequality $c_{8} \log p(m) / p(m)<1 / 2$ holds, we then get that

$$
\frac{\sigma(M)}{M} \leq \exp \left(\frac{c_{8} \log p(m)}{p(m)}\right)<1+\frac{2 c_{8} \log p(m)}{p(m)}
$$

Returning to equation (5), we get that

$$
\sigma(a)+O\left(\frac{\log p(m)}{p(m)}\right)=a+b g^{c}+O\left(\frac{1}{g^{m}}\right)
$$

If $\sigma(a) \neq a+b g^{c}$, we see that the above estimate implies that $p(m)$ is bounded. Let us now treat the case when $\sigma(a)=a+b g^{c}$. If M is not a prime, then the smallest prime factor of M is $\leq M^{1 / 2} \ll g^{m / 2}$, and therefore

$$
\frac{\sigma(M)}{M} \geq 1+\frac{c_{10}}{g^{m / 2}}
$$

Hence, returning to equation (5), we get that

$$
\sigma(a)+\frac{c_{10}}{g^{m / 2}}<a+b g^{c}+O\left(\frac{1}{g^{m}}\right)
$$

which via the fact that $\sigma(a)=a+b g^{c}$ gives $g^{m / 2} \ll 1$, so m is bounded. Finally, assume that M is prime. Then equation (4) becomes

$$
\sigma(a)\left(1+\frac{1}{M}\right)=\left(a+b g^{c}\right)\left(1+\frac{1}{(g-1) M}\right)-\frac{a+b}{(g-1) M}
$$

giving

$$
\sigma(a)=\frac{a+b g^{c}}{g-1}-\frac{a+b}{g-1}
$$

Since also $\sigma(a)=a+b g^{c}$, we get

$$
\frac{a+b g^{c}}{g-1}-\frac{a+b}{g-1}=a+b g^{c}, \quad \text { or } \quad\left(a+b g^{c}\right)\left(1-\frac{1}{g-1}\right)=-\frac{a+b}{g-1}
$$

but this last relation is impossible since its left-hand side is ≥ 0 while its right-hand side is <0.

And so, we have bounded $p(m)$.

We next use induction to bound successively the other prime factors of m. Namely, fix some positive integer $s \leq c_{5}$ and assume that $m=p_{1} p_{2} \ldots p_{s}$, where $p_{1} \leq p_{2} \leq \cdots \leq p_{s}$. Assume further that we have showed that for some $j \in$ $\{1, \ldots, s-1\}$ the prime p_{j} is bounded by some constant depending on g. Observe that we have just shown such a statement with $j=1$. Write $m=p_{1} p_{2} \cdots p_{j} m_{1}$, assume that $p_{1} p_{2} \cdots p_{j}$ is fixed, and all we need to do is to bound p_{j+1}, which is now the smallest prime factor of m_{1}. We use a similar argument as before. Put $g_{1}:=g^{p_{1} \cdots p_{j}}, M_{1}:=\left(g_{1}^{m_{1}}-1\right) /\left(g_{1}-1\right), a_{1}:=a\left(g_{1}-1\right) /(g-1)$, and observe that relation (4) can be rewritten as

$$
\sigma\left(a_{1} M_{1}\right)=\left(\frac{a+b g^{c}}{g-1}\right) g_{1}^{m_{1}}-\frac{a+b}{g-1}
$$

Assume that $p_{j+1}>g_{1}$. Then, since all prime factors of $M_{1}=\left(g_{1}^{m_{1}}-1\right) /\left(g_{1}-1\right)$ are congruent to 1 modulo some divisor $d>1$ of m_{1}, it follows, in particular, that they are at least as large as $g_{1}>a_{1}$. Hence, M_{1} and a_{1} are coprime, and so we get that

$$
\begin{equation*}
\sigma\left(a_{1}\right)\left(\frac{\sigma\left(M_{1}\right)}{M_{1}}\right)=\left(\frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}\right)\left(\frac{g_{1}^{m_{1}}}{g_{1}^{m_{1}}-1}\right)-\frac{a+b}{(g-1) M_{1}} \tag{6}
\end{equation*}
$$

The right-hand side above is

$$
\begin{equation*}
\frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}+O\left(\frac{1}{g^{m}}\right) \tag{7}
\end{equation*}
$$

On the left-hand side in relation (6) above, we have again that

$$
\log \left(\frac{\sigma\left(M_{1}\right)}{M_{1}}\right) \ll \sum_{\substack{d \mid m_{1} \\ d>1}} \frac{\log d}{d} \ll \frac{\log p_{j+1}}{p_{j+1}}
$$

So, if $p_{j+1}>c_{11}$ is sufficiently large, then

$$
\begin{equation*}
\frac{\sigma\left(M_{1}\right)}{M_{1}}=\exp \left(\log \left(\frac{\sigma\left(M_{1}\right)}{M_{1}}\right)\right)=\exp \left(O\left(\frac{\log p_{j+1}}{p_{j+1}}\right)\right)=1+O\left(\frac{\log p_{j+1}}{p_{j+1}}\right) . \tag{8}
\end{equation*}
$$

Inserting estimates (7) and (8) into equation (6), we get

$$
\sigma\left(a_{1}\right)+O\left(\frac{\log p_{j+1}}{p_{j+1}}\right)=\frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}+O\left(\frac{1}{g^{m}}\right) .
$$

As before, if $\sigma\left(a_{1}\right) \neq\left(a+b g^{c}\right)\left(g_{1}-1\right) /(g-1)$, we then get that $p_{j+1} \ll 1$, which is what we wanted. So, assume that $\sigma\left(a_{1}\right)=\left(a+b g^{c}\right)\left(g_{1}-1\right) /(g-1)$. Again as before, if M_{1} is not prime, then $\sigma\left(M_{1}\right) / M_{1} \geq 1+c_{12} / g^{m / 2}$. Together with equation (6), we get that

$$
\sigma\left(a_{1}\right)+\frac{c_{12}}{g^{m / 2}} \leq \frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}+O\left(\frac{1}{g^{m}}\right)
$$

which implies, via the fact that $\sigma\left(a_{1}\right)=\left(a+b g^{c}\right)\left(g_{1}-1\right) /(g-1)$, that $g^{m / 2} \ll 1$, so $m \ll 1$. Finally, if M_{1} is prime, we then get that equation (6) is

$$
\sigma\left(a_{1}\right)\left(1+\frac{1}{M_{1}}\right)=\left(\frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}\right)\left(1+\frac{1}{\left(g_{1}-1\right) M_{1}}\right)-\frac{a+b}{(g-1) M_{1}},
$$

which implies via the fact that $\sigma\left(a_{1}\right)=\left(a+b g^{c}\right)\left(g_{1}-1\right) /(g-1)$, that the relation

$$
\sigma\left(a_{1}\right)=\frac{a+b g^{c}}{g-1}-\frac{a+b}{g-1}
$$

also holds. Since also $\sigma\left(a_{1}\right)=\left(a+b g^{c}\right)\left(g_{1}-1\right) /(g-1)$, we get that

$$
\frac{\left(a+b g^{c}\right)\left(g_{1}-1\right)}{g-1}=\frac{a+b g^{c}}{g-1}-\frac{a+b}{g-1},
$$

or

$$
\frac{\left(a+b g^{c}\right)\left(g_{1}-2\right)}{g-1}=-\frac{a+b}{g-1}
$$

However, this is impossible since its left-hand side is ≥ 0, while its right hand side is <0. This finishes the proof of the fact that $p_{j+1} \ll 1$, and of Theorem 2 .

We conclude with a couple of open problems.
Problem 6. Extend Theorem 2 to the case of an odd base g.
Problem 7. Show that if $g>1$ is fixed, then there are only finitely many repdigits in base g which are part of an amicable pair (with the other member of the amicable pair not necessarily a repdigit).

Acknowledgements. We thank the referee for a careful reading of the original manuscript and for suggestions which improved the quality of this paper. F. L. worked on this project during a visit to CWI in Amsterdam in October 2010 as a Beeger lecturer. During the preparation of this paper, F. L. was also supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508.

References

[1] W. Creyaufmuller, Aliquot Sequences, http://www.aliquot.de/aliquote.htm.
[2] F. Luca and P. Pollack, Multiperfect numbers with identical digits, J. Number Theory 131 (2011), 260-284.
[3] P. Pollack, Perfect numbers with identical digits, Integers 11A (2011), A18, Proceedings of the Integers Conference 2009 in Honor of the Birthdays of Melvyn Nathanson and Carl Pomerance.

