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Abstract
We solve a family of quadratic Diophantine equations associated with a simple kind
of game. We show that the ternary case, in many ways, is the most interesting and
the least arbitrary member of the family.

1. The Matching Games

An (n, d)-matching game (n, d ≥ 2) is a game in which the player draws d balls
from a bag of balls of n different colors. The player wins if and only if the balls
drawn are all of the same color. A game is non-trivial if there are at least d balls in
the bag. It is faithful if there are balls in each of the n colors. A game is fair if the
player has an equal chance of winning or losing the game. In this article, we only
study the (n, 2)-matching games or simply the n-color games, leaving the study of
the higher d case to [10].

An n-tuple (a1, . . . , an), where ai is the number of balls in the bag having the ith

color, represents an n-color game. For m ≤ n, an m-color game (a1, . . . , am) can
be regarded as the n-color game (a1, . . . , am, 0, . . . , 0). The only trivial n-color fair
games, are the zero game (0, . . . , 0) and, up to permutation, the game (0, 0, . . . , 1).

By considering the number of ways for the player to win the game, one sees that
the n-color fair games are exactly the non-negative integral solutions of

(∑n
i=1 xi

2

)
= 2

(
n∑

i=1

(
xi

2

))
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or equivalently,

Fn(x1, . . . , xn) :=
(∑n

i=1
xi

)2
−
∑n

i=1
xi − 4

∑
i!=j

xixj = 0. (1)

The paper will be organized in the following way: We give a brief treatment of
the 2-color games in Section 2. The results there illustrate the kind of questions
that we try to answer in the general case. In Section 3, we give a “parametric”
solution to Equation (1). It is unclear, however, from this method which choice
of the parameters will yield the fair games. We tackle this problem in Section 4
by giving a graph structure to the solutions. We show that the components of
this graph are trees and give an algorithm for finding their roots. This yields all
solutions recursively. Furthermore, we characterize the components containing the
fair games. For n = 3, we show that the graph consists of two trees with the
nontrivial 3-color fair games forming a full binary tree. We then study what are
the possible coordinates of fair games in Section 5. In Section 6, we establish
some partial results concerning the asymptotic behavior of 3-color fair games. We
conclude the article with some odds and ends of our study in Section 7.

The following conventions will be used throughout this article:

• All variables and unknowns range over the integers unless otherwise stated.

• The cardinality of a set A is denoted by |A|.

• For a ∈ Zm, the (Euclidean) norm of a is denoted by ‖a‖. For A ⊆ Zm and
k ≥ 0, A(k) denotes the set of elements of A with norm at most k. We define
the height of a to be |1 +

∑
ai|.

• For any integer d and a, b ∈ Zm, we say that a and b are congruent modulo
d, written as a ≡ b mod d, if ai ≡ bi mod d for all 1 ≤ i ≤ m.

• Denote by Sn and Fn the set of integral and non-negative integral solutions,
identified up to permutations, of Equation (1) respectively. Elements of Fn

are the n-color fair games. We often use an increasing (or decreasing) tuple
to represent an element of Sn. Denote by Cn the set of coordinates of Fn.

• For any n-tuple x = (x1, . . . , xn) and I a subset of the indices, we write xI for
the tuple obtained from x by omitting the variables indexed by the elements
of I. We write xi for x{i} and xij for x{i,j}, etc.

• Let s(x) and p(x) be the symmetric polynomials of degree 1 and 2, respec-
tively, i.e.,

s(x) =
∑n

i=1
xi, p(x) =

∑
1≤i<j≤n

xixj .

We often omit writing out the variables explicitly, so we write si for s(xi), sij
for s(xij), etc. We understand s ≡ 0 on zero variables and p ≡ 0 on either 0
or 1 variable.
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2. The 2-Color Games

As a warm-up, we analyze the 2-color games first. In this case, Equation (1) becomes
(x1 − x2)2 − (x1 + x2) = 0 and is easy to solve: let m = x2 − x1 ≥ 0, and then
x1 = m(m− 1)/2 and so x2 = (m+ 1)m/2. This shows that

Theorem 1. The 2-color fair games are pairs of consecutive triangular numbers.
In particular, C2 is the set of triangular numbers.

Using Theorem 1, a few simple computations tell us the number of fair 2-color
games of norm bounded by a given number.

Corollary 2. For k ≥ 0,

1. |F2(k)| = [
√
r(k)] + 1. Hence |F2(k)| is asymptotic to 21/4

√
k.

2. |C2(k)| = [r(
√
k)]. Hence |C2(k)| is asymptotic to

√
2k.

Here r(k) = (−1 +
√
1 + 8k2)/2 and [x] is the largest integer ≤ x.

3. Solving Equation (1)

It would be nice to know in advance that Equation (1) is solvable. The following
simple observation tells us just that.

Theorem 3. There are infinitely many faithful n-color fair games.

Proof. Regarding the polynomial Fn in (1) as a quadratic in xk, we have

Fn(x) = x2
k − (2sk + 1)xk + Fn−1(xk). (2)

Thus if (a1, . . . , ak, . . . , an) is a solution then so is (a1, . . . , bk, . . . , an) where bk =
2sk(a) + 1 − ak. In particular, if (a1, . . . , an−1) is a fair game, then so are the
tuples (a1, . . . , an−1, 0) and (a1, . . . , an−1, 1 + 2

∑
i<n ai). The latter game is faith-

ful if (a1, . . . , an−1) is. Since there are infinitely many faithful 2-color fair games
(Theorem 1), the theorem follows by induction on n.

1They are used in teaching 3rd and 4th graders in California about probability.
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Since the two roots of (2) sum to 2sk + 1, they can be expressed as sk +m+ 1
and sk −m for some m ≥ 0. Thus, solving

(sk +m+ 1)(sk −m) = Fn−1(xk) = s2k − sk − 4pk

2sk + 4pk = m2 +m
(3)

will solve (1) and vice versa. After adding 1 + 4s2ijk + 2sijk − 4pijk (i, j, k pairwise
distinct) to both sides of (3), the left-hand side factors:

(2xi + 2sijk + 1)(2xj + 2sijk + 1) = m2 +m+ 1 + 4s2ijk + 2sijk − 4pijk

= m2 +m+ 1 + 2(s2ijk + sijk + ‖xijk‖2).
(4)

Equation (4) gives us a way to solve Equation (1): Denote by J(xijk,m) the right-
hand side of (4). Choose a ∈ Zn−3 and m ≥ 0 arbitrarily2. According to (4), we
can solve for xi and xj by factoring the odd number J(a,m) into a product two
odd numbers. By (2), we can then solve for xk and hence obtain a solution of (1).
Moreover, it is clear from the discussion above that any solution of (1) arises from
such a factorization. For the record, we have

Theorem 4. Fix n ≥ 3. For any a ∈ Zn−3, m ≥ 0 and 0 ≤ b ≤ c such that
J(a,m) = (2b+ 1)(2c+ 1), the following are solutions to Equation (1):

(b− s(a), c− s(a), b+ c+ 1− s(a) +m, a)

(b− s(a), c− s(a), b+ c− s(a)−m, a)

(−(c+ 1)− s(a), −(b+ 1)− s(a), −(b+ c+ s(a) + 1) +m, a)

(−(c+ 1)− s(a), −(b+ 1)− s(a), −(b+ c+ s(a) + 2)−m, a).

Moreover, up to a permutation every solution of Equation (1) is in one of these
forms.

There is a less tricky way to derive Equation (4). We give the idea here but leave
the details to the reader. Equation (3) can be viewed as a curve on the xixj-plane
(i, j, k pairwise distinct). One can express the curve having an integral point by
expressing that the corresponding quadratic in xi is solvable in terms of xijk and
d := xj − xi. The expression 1 + 4s2ijk + 2sijk − 4pijk then flows out naturally.

Even though the method above solves Equation (1), it is unclear which choice of
the parameters will produce fair games. For example, J(2, 3) = 33 does not produce
any 4-color fair game. We will take up this issue in the next section.

4. Solutions as a Graph

Starting from a solution (a1, . . . , an) of Equation (1), we obtain another one by
replacing ak with bk := 2

∑
i!=k ai + 1 − ak (see Theorem 3). This suggests that

2When n = 3, we only need to choose m.
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we can view Sn as a graph by putting an edge between two elements of Sn if they
differ at only one coordinate3. An immediate question would be: can we generate
every fair game from some fixed game, say the zero game? In other words, is Fn

connected as a graph? We have seen that F2 is connected (Theorem 1) and we will
show that the same is true for F3. However, Fn fails to be connected for n ≥ 4.

Let us begin with a crucial observation. For any a ∈ Sn and any three pairwise
distinct indices i, j, k, according to (4), for some m ≥ 0,

(2sjk(a) + 1)(2sik(a) + 1) = 2(sijk(a)
2 + sijk(a) + ‖aijk‖2) +m2 +m+ 1.

Since the right-hand-side is always positive, we conclude that

Proposition 5. For any a ∈ Sn, the numbers 2sij(a) + 1 (1 ≤ i < j ≤ n) all
have the same sign. In particular, the coordinates of an element of S3 are either all
non-negative or all negative.

We define the sign of a as the common sign of the 2sij(a) + 1 (1 ≤ i < j ≤ n).
Note that it is the same of the sign of s(a)+1 since

∑
i<j sij =

(n−1
2

)
s. Let S+

n and
S−
n be the sets of positive and negative elements of Sn, respectively. Since any two

neighbors in Sn share n− 1 coordinates, they must have the same sign, therefore

Proposition 6. Both S+
n and S−

n are a disjoint union of components of Sn.

Our next result shows how height varies among neighbors.

Proposition 7. At most one neighbor of any vertex of Sn can have a smaller height.
Moreover, any two neighbors must have different height.

Proof. Fix any a ∈ Sn. Let bk = (a1, . . . , bk, . . . , an) where bk = 2sk(a) + 1 − ak
(1 ≤ k ≤ n) be its neighbors. Rearranging the coordinates if necessary, we assume
a1 ≤ a2 ≤ · · · ≤ an.

Case 1: a ∈ S+
n . Then for k )= n,

bk = 2skn(a) + (an − ak) + an + 1 > an ≥ ak

so s(bk) > s(a) ≥ 0.

Case 2: a ∈ S−
n . Then for k )= 1,

bk = 2s1k(a) + (a1 − ak) + a1 + 1 < a1 ≤ ak

so s(bk) < s(a) < 0.

This completes the proof of the first statement since in both cases we have ht(bk) >
ht(a) for all but perhaps one k. The second statement follows readily from the fact
that each ak + bk is an odd number.

3Incidentally, this is the same graph structure that was put on the solutions on the Markoff
Equation [5, 9].
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(-1,1,2,2)

(-1,1,2,3)

(-1,1,3,5)

(-1,2,3,8)

(1,2,3,14)

(-1,2,2,6)

(-1,2,6,13)

(2,2,6,22)

(1,2,2,12)

(1,2,12,29)

(2,2,12,32)

(-1,-1,-1,0)

(-1,-1,0,-2)

(-1,-1,-2,-7)

(-1,0,-2,-4)

(-1,-1,-1,-5) (-1,-1,-5,-12)

Figure 1: A positive tree and a negative tree in S4

We say that a vertex of Sn is a root if all its neighbors have a greater height. We
would like to point out that replacing height by norm in the definition of root will
yield the same concept since Equation (1) can be rewritten as

(
s+ 1

2

)
= ‖x‖2. (5)

Theorem 8. The components of Sn are rooted trees.

Proof. Proposition 7 implies that for any subgraph H of Sn, a vertex of maximal
height in H cannot have two neighbors in H . This shows that Sn must be acyclic.
Moreover, every component of Sn has a unique vertex of minimal height. If not,
take a path with two vertices of minimal height as endpoints. Since neighbors in Sn

have different heights, the path has length at least 2 but then a vertex of maximal
height in the path will have two neighbors, a contradiction.

Fair games are positive solutions of (1) and yet a positive solution, for example
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(-1,1,2,2), need not even represent a game. However, for any a ∈ S+
n , a neighbor of

a greater in height will have the different coordinate non-negative (see the proof of
Proposition 7). Thus by going up in height along any branch, we see that

Proposition 9. Every component of S+
n contains fair games.

Similarly, by going down in height, we see that every component of S−
n contains

solutions with all negative coordinates.

Our next goal is to locate the roots of Sn. Once this is achieved, we will have an
effective way of generating all fair games since each of them is connected to some
positive root.

Proposition 10. Suppose r ∈ S+
n (S−

n , resp.) is a root and i, j, k pairwise distinct
where k is the index of a maximal (resp., minimal) coordinate of r. Then r is
obtained from a factorization of J(rijk,m) for some 0 ≤ m ≤ B(rijk) where B(rijk)
is an explicit bound give in terms of rijk.

Proof. We argue for S+
n only. The proof for S−

n is similar. According to (4), for
some m ≥ 0,

(2sik + 1)(2sjk + 1) = 2(s2ijk + sijk + ‖rijk‖2) +m2 +m+ 1.

Since r is a root, rk is the smaller root of Equation (2), i.e., rk = sk−m. And since
rk ≥ r! (! )= k), so s!k ≥ s!k + r! − rk = m. Thus

(2m+ 1)2 ≤ 2(s2ijk + sijk + ‖rijk‖2) +m2 +m+ 1

3m2 + 3m ≤ 2(s2ijk + sijk + ‖rijk‖2).

That means 0 ≤ m ≤ B(rijk) where B(rijk) expresses the larger root of the
quadratic 3x2 + 3x− 2(s2ijk + sijk + ‖rijk‖2).

Let us summarize how to find the roots of Sn: for each a ∈ Zn−3, we compute
the finite set consisting of those solutions given by the factorizations of J(a,m)
where 0 ≤ m ≤ B(a). We then check which element in this finite set is a root.
While Proposition 10 guarantees that every root of Sn can be found this way, our
next result shows that we do have to check for every a ∈ Z3.

Proposition 11. Every (n − 3)-tuple of integers can be extended to a root in Sn.
More precisely, for any a ∈ Zn−3, n-tuples

r+ := (s(a)2 + ‖a‖2, s(a)2 + ‖a‖2, −s(a), a) and

r− := (−(s(a) + 1)2 − ‖a‖2, −(s(a) + 1)2 − ‖a‖2, −(s(a) + 1), a)

are a positive and a negative root of Sn, respectively.
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Proof. First by Theorem 4, they are solutions corresponding to the trivial factoriza-
tion of J(a, 0) (in the notation there, b = s(a)2+s(a)+‖a‖2 and c = 0.). Clearly, r+

is positive while r− is negative. The neighbor of r+ obtained by varying its largest
coordinate s(a)2 + ‖a‖2 has an even larger coordinate, namely s(a)2 + ‖a‖2 + 1.
Thus r+ is indeed a root (see the proof of Theorem 7). A similar argument shows
that r− is a root as well.

Since each component of Sn has exactly one root, an immediate consequence of
Proposition 11 is that

Theorem 12. For n ≥ 4, both S+
n and S−

n have infinitely many components.

On the contrary, by examining the proof of Proposition 10, one readily checks
that (0, 0, 0) is the only root of S+

3 . By Theorem 4, the map a *→ −(a + 1) where
1 = (1, 1, 1) is a graph isomorphism between S+

3 and S−
3 . Moreover, every element

of S+
3 is actually a fair game according to Proposition 5. Thus,

Theorem 13. S+
3 and S−

3 are the two components of S3. Moreover, S+
3 = F3.

A straightforward computation shows that every vertex of S3 with distinct co-
ordinates has two distinct children (i.e., neighbors with a bigger norm). Moreover,
each of its children also has distinct coordinates. Hence,

Theorem 14. The non-trivial 3-color fair games form an infinite full binary tree
with (0, 1, 3) as root.

5. The Set Cn

Proposition 15. For n ≥ 4, Cn is the set of non-negative integers.

Proof. For any a ≥ 0, let a be the (n− 3)-tuple with all coordinates equal a. Then
the child (4(s(a)2 + ‖a‖2)+ 3s(a)+ 1, s(a)2 + ‖a‖2, s(a)2 + ‖a‖2,a) of the positive
root r+ in Proposition 11 is a fair game with a as a coordinate. Incidentally, this
also shows that for n ≥ 4, every natural number is a coordinate of some faithful
n-color fair game.

This leaves us only C3 to study. It turns out that our analysis of C3 will yield
another way of finding the 3-color fair games (Theorems 17 and 18 ). First, note
that C3 is the set of c ≥ 0 such that the curve defined by

(x1 − x2)
2 − (2c+ 1)(x1 + x2) + c(c− 1) = 0 (6)

has a non-negative point. Arguing mod 2, one sees that any integral point on the
parabola

u2 − (2c+ 1)v + c(c− 1) = 0 (7)
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(0,0,0) (0,0,1) (0,1,3)

(0,3,6)

(0,6,10)

(0,10,15)

(6,10,33)

(3,6,19)

(3,19,39)

(6,19,48)

(1,3,9)

(1,9,18)

(1,18,30)

(9,18,54)

(3,9,24)

(3,24,46)

(9,24,64)

Figure 2: Part of F3

must have coordinates with the same parity. Thus, the transformation u = x1 −
x2, v = x1 + x2 is a 1-to-1 correspondence between the integral points of these
curves. Moreover, those (x1, x2)’s with x1, x2 ≥ 0 correspond to the (u, v)’s with
u ≤ v. However, the inequality is automatic:

Proposition 16. Solutions of Equation (7) are of the form

(u, v) =

(
u,

u2 + c(c− 1)

2c+ 1

)

where u2 ≡ −c(c − 1) mod (2c + 1). In particular, (7) is solvable if and only if
−c(c− 1) is a quadratic residue mod (2c+ 1). Moreover, |u| ≤ v for every integral
solution (u, v).

Proof. The first statement is clear by considering Equation (7) mod (2c+1). Note
that for any u,

−8c+ 1

4
≤ u2 ± (2c+ 1)u+ c(c− 1).

Since c ≥ 0,

±u− 8c+ 1

8c+ 4
≤ u2 + c(c− 1)

2c+ 1
.

So in particular

|u| ≤ u2 + c(c− 1)

2c+ 1
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if both sides are integers. Therefore, |u| ≤ v for any integral solution of (7).

Solving for x1, x2 in terms of u, v yields a parametrization of F3.

Theorem 17. The 3-color fair games are of the form
(
u2 + (2c+ 1)u+ c(c− 1)

2(2c+ 1)
,

u2 − (2c+ 1)u+ c(c− 1)

2(2c+ 1)
, c

)
(8)

where c ∈ C3 and u2 ≡ −c(c− 1) mod (2c+ 1).

For i = −1, 0, 1, let Pi be the set of primes that are congruent to i mod 3. Let
P≥0
i be the set of natural numbers whose prime factors are all in Pi. With this

notation, we have

Theorem 18. C3 = {c : c ≥ 0, 2c+ 1 ∈ P≥0
1 ∪ 3P≥0

1 }.

Proof. By Proposition 16 and the discussion preceding it, C3 is the set of all c such
that −c(c − 1) is a quadratic residue mod 2c + 1. Since 2c + 1 is odd, −c(c − 1)
and −4c(c− 1) are either both squares or both non-squares mod 2c+ 1. Note that
−4c(c − 1) is congruent to −3 mod 2c + 1. Therefore c ∈ C3 if and only if −3 is
a square mod 2c + 1. This condition is equivalent to: for every prime p, −3 is a
square mod pvp where vp is the exponent of p in 2c + 1. That means v3 = 0 or 1
and −3 is a quadratic residue mod p for p )= 3. The law of quadratic reciprocity
then yields (

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

1
2 (p−1)

(
3

p

)
=

(p
3

)
.

So the last condition is equivalent to p ≡ 1 mod 3. This completes the proof.

With the binary tree structure of F3 in mind, it is tempting to establish some
relation between the equation for fair 3-color games and the Markoff equation (see [5]
and [9] for more information on the Markoff equation), unfortunately we could not
find any. However the naive analog of the Markoff conjecture (that the solution is
uniquely determined by its largest coordinate) fails in our case, more precisely:

Theorem 19. For c ∈ C3 and c > 1, the number of fair games with c as the largest
coordinate is 2m−1 where m is the number of distinct prime factors of 2c+ 1 other
than 3.

Proof. The coordinates of nontrivial 3-color fair games are distinct, so it follows
from (8) that c is the largest coordinate if and only if

c ≥ u2 + (2c+ 1)|u|+ c(c− 1)

2(2c+ 1)
+ 1. (9)

The above inequality implies |u| cannot exceed the positive root of the quadratic
polynomial x2+(2c+1)x−(c−1)(3c+2). From this it follows easily that |u| ≤ c. On
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the other hand, if |u| ≤ c, then the right-hand side of (9) is an integer strictly less
than c+1 and hence the inequality follows. Thus, proving the theorem boils down to
counting the number of solutions to the congruence u2 ≡ −c(c−1) mod (2c+1), or
equivalently u2 ≡ −3 mod (2c+ 1) in a complete set of representatives (−c ≤ u ≤
c). By Theorem 18, the prime factorization of 2c + 1 is of the form 3v0pv11 · · · pvmm
where v0 = 0 or 1 and pj ≡ 1 mod 3 (1 ≤ j ≤ m). Note that m ≥ 1 since
c > 1. The Chinese remainder theorem yields a 1-to-1 correspondence between
solutions of u2 ≡ −3 mod (2c+1) and the solutions of the system u2 ≡ −3 mod p

vj
j

(1 ≤ j ≤ m) together with the congruence u2 ≡ −3 ≡ 0 mod 3 depending on
whether v = 1 or not. But the last congruence has only one solution and hence its
presence will not affect the total number of solutions which is the product of the
number of solutions of each congruence in the system. Since pj )= 3 (1 ≤ j ≤ m),
the number of solutions for u2 ≡ −3 mod p

vj
j is the same as that for u2 ≡ −3

mod pj which is precisely two since pj ≡ 1 mod 3. Therefore, we conclude that
the system has exactly 2m solutions. Finally, it is clear from (8) that ±u give rise
to the same fair game except with the first two coordinates permuted. Thus, up to
permutation of coordinates, there are 2m/2 = 2m−1 fair games with c as the largest
coordinate.

We conclude this section by computing the natural density of C3. The natural
density of a set of natural numbers A is defined to be limk→∞ |A(k)|/k whenever
the limit exists. Statement 2 of Corollary 2 states that C2 has density zero. The
description of C3 in Theorem 18 allows us to show that the same phenomenon occurs
in the case n = 3 as well.

Theorem 20. The natural density of C3 is zero.

Proof. The map a *→ 2a+1 is a bijection between C3 and P≥0
1 ∪3P≥0

1 . Therefore, the
density of C3 is twice the density of P≥0

1 ∪ 3P≥0
1 if the latter exists. Since P≥0

1 and
3P≥0

1 are disjoint and the density of 3P≥0
1 , if it exists, is one-third that of P≥0

1 , it
suffices to show that P≥0

1 has density 0. Applying Proposition 9.64 and Lemma 11.8
in [3] to the set P≥0

1 = P≥0
1 P 0

0P
0
−1, we see that it is enough to show that the series∑

p∈P−1
1/p diverges. But this assertion is an immediate consequence of Dirichlet’s

theorem of primes in arithmetic progressions [12, Chapter VI Theorem 2]) which,
in particular, asserts that

lim
s→1+

∑
p∈P−1

1/ps

log(1/(s− 1))
=

1

φ(3)
=

1

2
.
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6. Asymptotic Behavior

Compared to the binary case, determining the asymptotic behavior of |Fn(k)|
(n ≥ 3) seems to be a much harder problem. In fact, we will only show that
|F3(k)| is Θ(k). Our strategy is to relate the equation for 3-color fair games to the
Lorentzian form L3(w) = w2

1 + w2
2 − w2

3 , and then apply the results from [11] (for
more information on distribution of integral points on affine homogenous varieties,
see [6] and [2]). Let W be the set of integral solutions of L3(w) = −3.

Lemma 21. For any (w1, w2, w3) ∈ W, we have

1. |w3| > |w1|, |w2|.

2. Exactly one of the wi is odd; moreover, it must be either w1 or w2.

3. If w2 is the odd coordinate then w1 + w3 ≡ w1 − w3 ≡ 2 mod 4.

4. w1 )= w2.

Proof. The first statement is immediate. The second statement is clear by arguing
mod 8. Since w2 is odd, w2

1 −w2
3 ≡ 0 mod 4. Since w3 is even, w1 +w3 ≡ w1 −w3

mod 4. They must both be congruent to 2 mod 4; otherwise w2
1 − w2

3 ≡ 0 mod 8
making −3 a square mod 8, a contradiction. This establishes the third statement.
The last statement is true since 2w2

1 − w2
3 = −3 is not solvable mod 3.

Let ≈ be the equivalence relation on W identifying the elements (w1, w2, w3) and
(w2, w1, w3). It follows from part 4 of Lemma 21 that the canonical map from W
to W/≈ is 2-to-1. If we identify the equivalence classes with those elements of W
with an odd second coordinate, then we obtain

Proposition 22. The map given by

w1 = 2(x2 − x3), w2 = 2(x1 − x2 − x3)− 1, w3 = 2(x2 + x3 + 1) (10)

is a 1-to-1 correspondence between S3 and W/≈. Moreover, if the coordinates of
the elements of S3 are listed in ascending order, then the elements of F3 correspond
to those elements of W/≈ with w1, w2 ≤ 0 and w3 ≥ 0.

Proof. The rational inverse of the map in (10) is given by

x1 =
w2 + w3 − 1

2
, x2 =

w1 + w3 − 2

4
, x3 =

w3 − w1 − 2

4
. (11)

By Lemma 21, parts 2 and 3, it actually preserves integral points. This establishes
that the map in (10) is a 1-to-1 correspondence between S3 andW/≈. Moreover, the
images of elements of F3 (as ascending triples) under (10) clearly satisfy w1, w2 ≤ 0
and w3 ≥ 0. Conversely, by part 1 of Lemma 21, |w3| ≥ |w2|+1 and |w3| ≥ |w1|+2
since both w1 and w3 are odd (Lemma 21, part 2). Therefore, if (w1, w2, w3) ∈ W
with w1, w2 ≤ 0 and w3 ≥ 0 then the corresponding (x1, x2, x3) is in F3.
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Theorem 23. There exist positive constants c1, c2 such that c1k ≤ |S3(k)| ≤ c2k
for k sufficiently large, i.e., |S3(k)| = Θ(k). Similarly, |F3(k)| = Θ(k).

Proof. The idea is simple: the sphere of radius k centered at the origin maps to an
ellipsoid (centered at (0,−1, 2)) under (10). For k sufficiently large, it is enveloped
between spheres centered at the origin. Clearly, the radii of these spheres can be
chosen as linear functions of the length of the axes of the ellipsoid which are in turn
linear in k since the transformation given in (10) is affine. So by Proposition 22,
the proof is complete once we show that |W(k)| is asymptotic to a linear function
in k. And this last statement follows from Formula (3) in [11] which asserts that
|W3(k)| ∼ (4

√
6/3)k.

Remarks

(i) Since the maps and the equations are all explicit, one can provide the constants
c1 and c2 in Theorem 23 explicitly. However, we will leave the computation
for the interested readers.

(ii) In a sense, one gets a cleaner result without extra efforts if one is satisfied
by counting the number of solutions inside the ellipsoids that are the images
of spheres under the map given in (11). To be more precise, let S ′

3(k) and
F ′

3(k) be the set elements of S3 and F3 inside the image of the sphere of
radius k centered at the origin under the map given in (11). Then again using
Formula (3), Table (1) in [11] and Proposition 22, one gets

|S ′
3(k)| =

1

2
|W(k)| ∼ 2

√
6

3
k, |F ′

3(k)| ∼
6

8

1

2
|W(k)| =

√
6

2
k.

(iii) Here is how we arrive to the map in (10): There is a general method of solving
quadratic Diophantine equations given by Grunewald and Segal in [7] and [8]4.
The first step transforms the fair game equation into the equivalent system

Qn(z) = −n(n− 2), zi ≡ 1 mod 2(n− 2). (1 ≤ i ≤ n) (12)

where Qn is the quadratic form in n-variables with diagonal entries 1 and off-
diagonal entries -1. When n = 3, one checks readily that congruences in (12)
are implied by Q3(z) = −3. And the Lorentzian form L3(w) is obtained by
diagonalizing Q3. Taking the composition of these transformations yields the
map in (10).

(iv) In the ternary case, the description of the solution set given by Grunewald and
Segal’s method relates quite beautifully to ours. We encourage the reader to
pursuit their original papers (see [4] for the necessary backgrounds). Just to

4However, their method is not uniform in the number of variables.
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give a little enticement, let us remark that S3 will correspond to a single orbit
under the integral orthogonal group of a suitable quadratic form. While S+

3

(i.e., F3) and S−
3 will correspond to two orbits of a subgroup of the orthogonal

group.

(v) Using the same idea to study |Fn(k)| for n ≥ 4 becomes more problematic.
First, it is not clear to us how to take into account the congruences in (12).
Moreover, even though Qn and the Lorentzian form in n-variables have the
same signature, namely n − 2, the transformation taking one to the other in
general does not preserve integral points.

7. Odds and Ends

The last section is dedicated to various results that do not quite fit in previous
sections.

Proposition 24. The sum of coordinates of any element of Sn is congruent to
either 0 or 1 mod 4.

Proof. Equation (1) is simply s2 − s = 4p.

Proposition 25. Every vertex in the connected component of 0 in Sn is congruent
mod 3 to either 0 or ej := (0, . . . , 1, . . . , 0) for some 1 ≤ j ≤ n.

Proof. The proposition is clearly true for 0. Now suppose it is true for every vertex
of distance m from 0. Let a′ = (a1, . . . , a′i, . . . , an) be a vertex of distance m + 1
from 0 and adjacent to a = (a1, . . . , ai, . . . , an) which is of distance m from 0. By
the induction hypothesis, a is congruent to either 0 or ej mod 3 for some 1 ≤ j ≤ n.
Since ai + a′i = 1 + 2si(a) ≡ 1− si(a) mod 3, we have the following 3 cases

1. a′ ≡ ei mod 3 if a ≡ 0 mod 3,

2. a′ ≡ ej mod 3 if a ≡ ej mod 3 and i )= j, or

3. a′ ≡ 0 mod 3 if a ≡ ej mod 3 and i = j.

This establishes the proposition by induction.

Recall that for n ≥ 4 any natural number, in particular 2, can be a coordinate
of an n-color fair game (Proposition 15). Thus, Proposition 25 gives another proof
of the fact that Fn is disconnected for n ≥ 4.

The nontrivial 3-color fair games form a full binary tree with the nontrivial 2-
color fair games embedded as a branch. It is easy to see that among the nodes of
distance k from the root (0, 1, 3), the one with the smallest norm is

(
0,
(k+2

2

)
,
(k+3

2

))
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and the one with the largest norm is (mk,mk+1,mk+2) where (mi) is the sequence
defined recursively by (m0,m1,m2) = (0, 1, 3) and mi+3 = 2(mi+1+mi+2)+1−mi

for i ≥ 0. It turns out that the mi’s have an intimate relationship with the Fibonacci
numbers.

Proposition 26. Let fi be the i-th Fibonacci number. Then for any k ≥ 0

mk =

{
f2
k if k is odd

f2
k − 1 if k is even.

Proof. The Fibonacci numbers are defined inductively by f0 = f1 = 1, and fi+2 =
fi + fi+1 (i ≥ 0). Note that

2fi+1fi+2 = fi+1(fi+2 + fi + fi+1) = fi+1(fi+2 + fi) + f2
i+1

= (fi+2 − fi)(fi+2 + fi) + f2
i+1

= f2
i+2 + f2

i+1 − f2
i .

Therefore,

f2
i+3 = (fi+1 + fi+2)

2 = f2
i+1 + 2fi+1fi+2 + f2

i+2

= 2f2
i+1 + 2f2

i+2 − f2
i .

The proposition now follows from an easy induction. The base cases are immediate.
Suppose k ≥ 3 and the proposition is true for all 0 ≤ i < k. When k is odd, we
have

mk = 2(mk−2 +mk−1) + 1−mk−3

= 2(f2
k−2 + f2

k−1 − 1) + 1− (f2
k−3 − 1)

= 2f2
k−2 + 2f2

k−1 − f2
k−3

= f2
k .

A similar computation shows that mk = f2
k − 1 when k is even.

We end the article with another curious “by-product” of our results.

Proposition 27. For m ≥ 0,

1. m2 +m+ 1 ∈ P≥0
1 ∪ 3P≥0

1 .

2. 2f2
m − (−1)m ∈ P≥0

1 ∪ 3P≥0
1 .

Proof. Triangular numbersm(m+1)/2 (m ≥ 0) appear as coordinates of the 2-color
(Theorem 1) and hence 3-color fair games. By Theorem 18, we have m2 +m+1 =
2(m(m+1)/2)+1 ∈ P≥0

1 ∪3P≥0
1 . Similarly, Statement 2 follows from Proposition 26

and Theorem 18.
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