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Abstract
Fix α > 0, and sample N integers uniformly at random from

{
1, 2, . . . ,

⌊
eαN

⌋}
.

Given η > 0, the probability that the maximum of the pairwise GCDs lies between
N2−η and N2+η converges to 1 as N → ∞. More precise estimates are obtained.
This is a Birthday Problem: two of the random integers are likely to share some
prime factor of order N2

/
log(N). The proof generalizes to any arithmetical semi-

group where a suitable form of the Prime Number Theorem is valid.

1. Main Result

The distribution of the sizes of the prime divisors of a random integer has been
well studied—see portions of Billingsley [1]. Diaconis and Erdös [3] compute the
probability distribution of the GCD of two random integers; moments of this dis-
tribution were estimated earlier by Cesàro [2]; the GCD of k random integers was
treated by Nymann [5]. However the authors are unaware of any published results
on the pairwise Greatest Common Divisors (GCD) among a large collection of ran-
dom integers. Theorem 1 establishes probabilistic upper and lower bounds for the
maximum of these pairwise GCDs.

Theorem 1. Suppose α > 0, and T1, . . . , TN is a random sample, drawn with
replacement, from the integers

{
n ∈ N : n ≤ eαN

}
. Let Γj,k denote the Greatest

Common Divisor of Tj and Tk. For any η > 0,

lim
N→∞

P
[
N2−η < max

1≤j<k≤N
{Γj,k} < N2+η

]
= 1. (1)

Indeed there are more precise estimates: for all s ∈ (0, 1), and b > 0, the right side
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of (2) is finite, and

P
[

max
1≤j<k≤N

{Γj,k} ≥ N2/sb1/s

]
≤ 1

2b

∏

p∈P

(
1 +

ps − 1
p2 − ps

)
, (2)

where P denotes the rational primes; while if Λj,k denotes the largest common prime
factor of Tj and Tk, then for all θ > 0,

lim
N→∞

P
[

max
1≤k<j≤N

{Λj,k} <
N2

log (Nθ)

]
≤ e−θ/8. (3)

Remark. There is an upper bound, similar to (2), for the radical (i.e the largest
square-free divisor) rad (Γj,k) of the GCD:

P
[

max
1≤j<k≤N

{rad (Γj,k)} ≥ N2/sb1/s

]
≤ 1

2b

∏

p∈P

(
1− p−2 + ps−2

)
. (4)

The proof, which is omitted, uses methods similar to those of Proposition 2, based
upon a Bernoulli model for occurrence of prime divisors, instead of a Geometric
model for prime divisor multiplicities. For example, when s = 0.999, the prod-
uct on the right side of (4) is approximately 12.44; for the right side of (2), it is
approximately 17.64.

1.1. Overview of the Proof of Theorem 1

Let Zk
i be a Bernoulli random variable, which takes the value 1 when prime pi

divides Tk. As a first step towards the proof, imagine proving a comparable result in
the case where

{
Zk

i , 1 ≤ k ≤ N, i ≥ 1
}

were independent, and P
[
Zk

i = 1
]

= 1/pi .
The harder parts of the proof arise in dealing with the reality that, for fixed k,{
Zk

i , i ≥ 1
}

are negatively associated, and change with N . Convergence of the
series ∑

p∈P
p−2 log(p) < ∞

ensures that the parameter α, which governs the range of integers being sampled,
appears in none of the bounds (1), (2), nor (3). However the proof for the lower
bound depends crucially on an exponential (in N) rate of growth in the range, in
order to moderate the dependence among

{
Zk

i , i ≥ 1
}

for fixed k.
Consider primes as labels on a set of urns; the random variable Tj contributes

a ball to the urn labelled p if prime p divides Tj . The lower bound comes from
showing that, with asymptotic probability at least 1−e−θ/8 , some urn with a label
p > N2/ log

(
Nθ

)
contains more than one ball; in that case prime p is a common

divisor of two distinct members of the list T1, . . . , TN . The upper bound comes from
a first moment estimate: multiply the number of pairs by the probability that a
specific pair has a GCD above some threshold.
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If T1, . . . , TN were sampled uniformly without replacement from the integers from
1 to N2, the lower bound (3) would fail; see the analysis in [1] of the distribution of
the largest prime divisor of a random integer. In the case of sampling from integers
from 1 to Nr, where r ≥ 3, the upper bound (2) remains valid, but we do not know
whether the lower bound (3) holds or not.

1.2. Generalizations to Arithmetical Semigroups

Although details will not be given, the techniques used to prove Theorem 1 will
be valid in the more general context of a commutative semigroup G with identity
element 1, containing a countably infinite subset P = {p1, p2, . . .} called the primes
of G, such that every element a '= 1 of G has a unique factorization of the form

a =
∏

i≥1

pei
i , (e1, e2, . . .) ∈ Z∞+

where all but finitely many (ei) are zero. Assume in addition that G is an arith-
metical semigroup in the sense of [4], meaning that there exists a real-valued norm
| · | on G such that:

• |1| = 1, |pi| > 1 for all pi ∈ P.

• |ab| = |a||b| for all a, b ∈ G.

• The set πG(x) = {i ≥ 1 : |pi| ≤ ex} is finite, for each real x > 0.

The only analytic condition needed is an abstract form of the Prime Number The-
orem (see [4, Chapter 6]):

lim
x→∞

xe−x |πG(x)| = 1,

used in the proof of Proposition 5. This in turn will imply convergence of series
such as: ∑

p∈P
log

(
1 + |p|s−2

)
, s < 1,

which appear (in an exponentiated form) in the bound (2). For example, Landau’s
Prime Ideal Theorem provides such a result in the case where G is the set of integral
ideals in an algebraic number field, P is the set of prime ideals, and |a| is the norm
of a. Knopfmacher [4] also studies a more general setting where, for some δ > 0,

lim
x→∞

xe−δx |πG(x)| = δ.

The authors have not attempted to modify Theorem 1 to fit this case.
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1.3. Future Lines of Enquiry

Test of Arithmetic Randomness. The authors do not know whether

N−2 max
1≤j<k≤N

{Γj,k}

has a limit in distribution as N →∞. An anonymous referee points out that, if it
does, then a test for the arithmetic randomness of a sequence of N integers would
result: namely, compute the maximum of the pairwise GCDs, divide by N2, and
compute a p-value.

Efficient Computation. How might the maximum of the pairwise GCDs of N
large random integers be computed efficiently? Perhaps smaller prime factors could
be removed by a sieve. Is there an efficient way to detect a squared prime of size
about N2

/
log(N) in the product of all the integers? To detect the largest common

prime factor among all pairs of integers, is it better to compute for k = 1, . . . , N −1
the GCD of the product T1T2 · · ·Tk with Tk+1, rather than to compute each of the
pairwise GCDs?

2. Pairwise Minima in a Geometric Probability Model

2.1. Geometric Random Vectors

Let P = {p1, p2, . . .} denote the rational primes {2, 3, 5, . . .} in increasing order. Let
I denote the set of non-negative integer vectors (e1, e2, . . .) for which

∑
ei < ∞.

Let X1,X2, . . . be (possibly dependent) positive integer random variables, whose
joint law has the property that, for every k ∈ N, and every (e1, e2, . . .) ∈ I for
which ek = 0,

P
[
Xk ≥ m |

⋂
i'=k

{Xi = ei}
]
≤

(
1
pk

)m

. (5)

Consider X1,X2, . . . as a general model for prime multiplicities in the prime
factorization of a random integer, without specifying exactly how that integer will
be sampled. Let ζ denote the random vector:

ζ = (X1,X2, . . .) ∈ NN. (6)

Let ζ(1), ζ(2), . . . , ζ(N) be independent random vectors, all having the same law
as ζ in (6). Write ζ(k) as

(
Xk

1 ,Xk
2 , . . .

)
. Then

Lj,k =
∑

i

min
{
Xk

i ,Xj
i

}
log (pi)
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is a model for the log of the GCD of two such random integers. We shall now derive
an upper bound for

∆N = max
1≤k<j≤N

{Lj,k} ,

which models the log maximum of the pairwise GCD among a set of N “large,
random” integers.

Proposition 2. Assume the joint law of the components of ζ satisfies (5). Then

(i) For every s ∈ (0, 1), the following expectation is finite:

E
[
esLk,j

]
<

∏

i

(
1 +

ps
i − 1

p2
i − ps

i

)
= Cs < ∞. (7)

(ii) For any s ∈ (0, 1) and b > Cs/ 2, with Cs as in (7), there is an upper bound:

P
[
∆N ≥ log(N2/s) + s−1 log(b)

]
≤ Cs

2b
< 1. (8)

Proof. Consider first the case where X1,X2, . . . are independent Geometric random
variables, and

P [Xk ≥ m] =
(

1
pk

)m

, m = 1, 2, . . .

It is elementary to check that, for s ∈ (0, 1), and any p ∈ P, if X ′′,X ′ are indepen-
dent Geometric random variables with

P [X ′′ ≥ m] = p−m = P [X ′ ≥ m] , m = 1, 2, . . . ,

then their minimum is also a Geometric random variable, which satisfies

E
[
ps min{X′′,X′}

]
= 1 +

ps − 1
p2 − ps

< 1 + ps−2.

It follows from the independence assumption that

E
[
esLk,j

]
= E

[
∏

i

p
s min{Xk

i ,Xj
i }

i

]
=

∏

i

(
1 +

ps
i − 1

p2
i − ps

i

)
= Cs.

This verifies the assertion (7).
Markov’s inequality aP [X ≥ a] ≤ E [X] shows that, for any s ∈ (0, 1),

Cs ≥ estP [Lk,j ≥ t] .

Furthermore

P
[

max
1≤k<j≤N

{Lk,j} ≥ t

]
= P

[
⋃

1≤k<j≤N
{Lk,j ≥ t}

]

≤
∑

1≤k<j≤N

P [Lk,j ≥ t] =
N(N − 1)

2
P [Lk,j ≥ t] .
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It follows that, for s ∈ (0, 1), b > 0, and t = s−1 log
(
bN2

)
,

P
[
∆N ≥ log(N2/s) + s−1 log(b)

]
≤ N2

2
e−stCs =

Cs

2b
.

It remains to consider the case where X1,X2, . . . satisfies (5) without the inde-
pendence assumption. This will be easy because, under (5), large values of the Xi

are less likely than in the independent Geometric case, so the same upper bound
remains valid. A coupling construction will be used to build dependent random vari-
ables on the same probability space as the one for independent random variables.
By taking products of probability spaces, construct a probability space (Ω,F , P)
on which independent Geometric random variables X ′

1,X
′
2, . . . and X ′′

1 ,X ′′
2 , . . . are

defined, such that for all i ≥ 1,

P [X ′′
i ≥ m] = p−m

i = P [X ′
i ≥ m] , m = 1, 2, . . . .

We propose to construct ζ(1) =
(
X1

1 ,X1
2 , . . .

)
and ζ(2) =

(
X2

1 ,X2
2 , . . .

)
by induc-

tion on this probability space (Ω,F , P), so that for each n ≥ 1,
{(

X1
i ,X2

i

)}
1≤i≤n

have the correct joint law, and

X1
i ≤ X ′

i, X2
i ≤ X ′′

i , i = 1, 2, . . . .

Once this is achieved, monotonicity implies

E
[
esL1,2

]
≤ E

[
∏

i

p
s min{X′

i,X
′′
i }

i

]
,

so the desired result will follow from the previous one for independent Geometric
random variables.

Since ζ(1) and ζ(2)are independent, it suffices to construct ζ(1) in terms of
X ′

1,X
′
2, . . . so that X1

i ≤ X ′
i for all i. Let (Ui,j , i ≥ 1, j ≥ 0) be independent

Uniform(0, 1) random variables. Suppose either i = 1, or else some values X1
1 =

e1,X1
2 = e2, . . . ,X1

i−1 = ei−1 have already been determined. By assumption, there
exist parameters

qi,k = P
[
Xi ≥ k |

⋂
j<i

{Xj = ej}
]
≤

(
1
pi

)k

, k = 1, 2, . . . .

Use these to construct X ′
i and X1

i as follows:

X ′
i = min

{
k : Ui,0Ui,1 . . . Ui,k >

(
1
pi

)k
}

X1
i = min {k : Ui,0Ui,1 . . . Ui,k > qi,k} ≤ X ′

i.

This completes the construction and the proof, giving the result (8).
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3. Lower Bound for Largest Collision

3.1. Random Vectors with Independent Components

Let P = {p1, p2, . . .} denote the rational primes {2, 3, 5, . . .} in increasing order, and
let aj = (log (pj)) 1/2. Instead of the Geometric model (5), switch to a Bernoulli
model in which Z1, Z2, . . . are independent Bernoulli random variables, with

P [Zj = 1] =
1
pj

. (9)

Let ξ denote the random vector

ξ = (a1Z1, a2Z2, . . .) ∈ [0,∞)N (10)

under this new assumption, and let ξ(1), ξ(2), . . . , ξ(N) be independent random vec-
tors, all having the same law as ξ. Note that ξ(1) · ξ(2) is not a suitable model
for the GCD of two random integers, because the independence assumption (9) is
not realistic. However it is a useful context to develop the techniques which will
establish the lower bound in Theorem 1.

Write ξ(k) =
(
a1Zk

1 , a2Zk
2 , . . .

)
. Informally, we seek a lower bound on the log

∆′N of the largest prime pi at which a “collision” occurs; collision means that
Zj

i = 1 = Zk
i for some j, k. Formally,

∆′N = max
1≤k<j≤N

{
max

i

{
Zj

i Zk
i log (pi)

}
≤ max

1≤k<j≤N

{
ξ(k) · ξ(j)

}
.

Proposition 3. Given δ ∈ (0,∞), and N such that N2 > 8δ, we may define
ϕN = ϕN (δ) implicitly by the identity

2ϕN∫

ϕN

N2dx

2x2 log(x)
= δ. (11)

Under the assumption of independence of the components of the random vector (10),

lim
N→∞

P [∆′N ≥ log (ϕN (δ))] ≥ 1− e−δ. (12)

Remark. Existence of such a ϕN is assured by the fact that the integral of
x−2/ log x from 2 to 4 is greater than 1/4. From the integration bounds

1
2ϕN log (2ϕN )

=
1

log (2ϕN )

2ϕN∫

ϕN

dx

x2
<

2δ
N2

<
1

log (ϕN )

2ϕN∫

ϕN

dx

x2
=

1
2ϕN log (ϕN )

,
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it follows that ϕN , defined in (11), satisfies ϕN log (ϕN ) /N2 → 0.25/δ. Hence for
all sufficiently large N , ϕN < N2

/
2, and

ϕN >
N2

4δ log (2ϕN )
>

N2

8δ log(N)
. (13)

The proof uses the following technical lemma, which the reader may treat as a
warm-up exercise for the more difficult Proposition 5.

Lemma 4. Let PN denote the set of primes p such that ϕN < p ≤ 2ϕN . Let{
Zk

p , p ∈ PN , 1 ≤ k ≤ N
}

be independent Bernoulli random variables, where
P

[
Zk

p = 1
]

= 1/p. Take Dp = Z1
p + . . . + ZN

p . Then

lim
N→∞

P
[

⋃
p∈PN

{Dp ≥ 2}
]

= 1− e−δ. (14)

Proof. Binomial probabilities give:

P [Dp ≤ 1] =
(

1− 1
p

)N

+
N

p

(
1− 1

p

)N−1

=
(

1− 1
p

)N (
1 +

N

p− 1

)

=
(

1− N

p
+

N(N − 1)
2p2

− . . .

)(
1 +

N

p− 1

)

= 1− N2

2p2
+ O

(
N

ϕ2
N

)
+ O

((
N

ϕN

)3
)

.

Independence of
{
Zk

p , p ∈ PN , 1 ≤ k ≤ N
}

implies independence of {Dp, p ∈ PN},
so

log P
[

⋂
p∈PN

{Dp ≤ 1}
]

=
∑

p∈PN

log (P [Dp ≤ 1])

=
∑

p∈PN

log
(

1− N2

2p2

)
+ O

(
N |PN |

ϕ2
N

)
+ O

(
N3 |PN |

ϕ3
N

)
.

Using the estimates ϕN log ϕN = O
(
N2

)
, |PN | = O (ϕN/ log ϕN ), and p/ϕN ≤ 2,

the last expression becomes

= −
∑

p∈PN

N2

2p2
+ O

(
N2

ϕ2
N

)
+ O

(
N

ϕN log (ϕN )

)
+ O

(
N3

ϕ2
N log (ϕN )

)
.

All terms but the first vanish in the limit, while the Prime Number Theorem ensures
that

lim
N→∞

∑

p∈PN

N2

2p2
= δ.
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Therefore

lim
N→∞

P
[

⋂
p∈PN

{Dp ≤ 1}
]

= e−δ,

and the limit (14) follows.

Proof of Proposition 3. According to our model, if Dp ≥ 2 for some p = pi ∈ PN ,
then there are indices 1 ≤ k < j ≤ N for which Zj

i = 1 = Zk
i . Since log (pi) ≥

log (ϕN (δ)),

lim
N→∞

P [∆′N ≥ log (ϕN (δ))] ≥ lim
N→∞

P
[

⋃
p∈PN

{Dp ≥ 2}
]

= 1− e−δ.

This verifies (12).

4. Application: Pairwise GCDs of Many Uniform Random Integers

We shall now prove an analogue of Lemma 4 which applies to random integers, drop-
ping the independence assumption for the components of the random vector (10).

Proposition 5. Suppose α > 0, and T1, . . . , TN is a random sample, drawn with
replacement, from the integers

{
n ∈ N : n ≤ eαN

}
. Given δ ∈ (0,∞), define ϕN =

ϕN (δ) implicitly by the identity (11). Let PN denote the set of primes p such that
ϕN < p ≤ 2ϕN ; for p ∈ PN let Dp denote the number of elements of {T1, . . . , TN}
which are divisible by p. Then

lim
N→∞

P
[

⋃
p∈PN

{Dp ≥ 2}
]

= 1− e−δ. (15)

Proof. As noted above, the Prime Number Theorem ensures that

lim
N→∞

∑

p∈PN

N2

2p2
= δ.

More generally, the alternating series for the exponential function ensures that there
is an even integer d ≥ 1 such that, given ε ∈ (0, 1), for all sufficiently large N ,

1− e−δ/(1+ε) <
d∑

r=1

(−1)r+1Ir < 1− e−δ/(1−ε)

where, for {p1, . . . , pr} ⊂ PN

Ir =
∑

p1<...<pr

N2r

2r (p1 . . . pr) 2
, r = 1, 2, . . . , d.
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Because ϕN/N2 → 0, it follows that, for every {p1, . . . , pd} ⊂ PN ,

p1 . . . pd

eαN
<

(ϕN )d

eαN
< e2d log(N)−αN → 0.

Suppose that, for this constant value of d, we fix some {p1, . . . , pd} ⊂ PN ; in-
stead of sampling T1, . . . , TN uniformly from integers up to eαN , sample T ′1, . . . , T

′
N

uniformly from integers up to

p1 . . . pd

⌊
eαN/ (p1 . . . pd)

⌋
.

From symmetry considerations, the Bernoulli random variables B′1, . . . , B
′
d are in-

dependent, with parameters 1 /p1 , . . . , 1 /pd , respectively, where B′i is the indicator
of the event that pi divides T ′1. By elementary reasoning,

P [Dp ≥ 2] =
N2

2p2
+ O

(
(N/ϕN )3

)
;

P [Dp1 ≥ 2, . . . ,Dpr ≥ 2] =
N2r

2r (p1 . . . pr) 2
+ O

(
(N /ϕN ) 2r+1

)
,

for r = 1, 2, . . . , d.
If we were to sample T1, . . . , TN instead of T ′1, . . . , T

′
N , the most that such a

probability could change is

P
[

N⋃
i=1

{Ti '= T ′i}
]
≤ Np1 . . . pd

eαN
< e(2d+1) log(N)−αN .

The same estimate holds for any choice of {p1, . . . , pd} ⊂ PN . By the inclusion-
exclusion formula, taken to the first d terms,

P
[

⋃
p∈PN

{Dp ≥ 2}
]
≥

∑

p∈PN

P [Dp ≥ 2]−
∑

p1<p2

P [Dp1 ≥ 2,Dp2 ≥ 2]

+ . . .−
∑

p1<...<pd

P [Dp1 ≥ 2, . . . ,Dpd ≥ 2]

=
d∑

r=1

(−1)r+1Ir + O
(
(N /ϕN ) 3

)
+

(
N

d

)
e(2d+1) log(N)−αN .

So under this simplified model, the reasoning above combines to show that, for all
sufficiently large N ,

1− e−δ/(1+ε) < P
[

⋃
p∈PN

{Dp ≥ 2}
]

< 1− e−δ/(1−ε).

Since ε can be made arbitrarily small, this verifies the result.
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4.1. Proof of Theorem 1

Suppose α > 0, and T1, . . . , TN is a random sample, drawn with replacement, from
the integers

{
n ∈ N : n ≤ eαN

}
. Let Λj,k denote the largest common prime factor

of Tj and Tk. Take
∆′N = max

1≤k<j≤N
{log (Λj,k)} .

In the language of Proposition 5, if Dp ≥ 2 for some p ∈ PN , then there are
indices 1 ≤ k < j ≤ N for which Λj,k > ϕN . So inequality (13) and Proposition 5
imply that, for any θ = 8δ > 0

lim
N→∞

P
[
∆′N ≥ 2 log(N)− log

(
log

(
Nθ

))]
≥ lim

N→∞
P [∆′N ≥ log (ϕN [θ/8])]

≥ lim
N→∞

P
[

⋃
p∈PN

{Dp ≥ 2}
]

= 1− e−θ/8.

This is precisely the lower bound (3). For any η > 0, the lower bound in (1) follows
from:

lim
N→∞

P [∆′N > (2− η) log(N)] = 1.

Let Γj,k ≥ Λj,k denote the Greatest Common Divisor of Tj and Tk. To obtain
the upper bound (2) on Γj,k, it suffices by Proposition 2 to check that condition (5)
is valid, when Xi denotes the multiplicity to which prime pi divides T1. Take any
positive integer r ≥ 1, any prime pk coprime to r, and any m ≥ 1. The conditional
probability that pm

k divides T1, given that r divides T1, is
⌊
eαN/ (rpm

k )
⌋

)eαN/ r* ≤
(

1
pk

)m

.

So condition (5) holds. Thus (8) holds, which is equivalent to (2).
Finally we derive the upper bound in (1), for an arbitrary η > 0. Fix ε ∈ (0, 1)

and η > 0. Select s ∈ (0, 1) to satisfy 2/s = 2 + η/2. Then choose b = C′s/ ε.
According to (8),

P
[
∆N ≥ (2 + η/2) log(N) + s−1 log(b)

]
≤ ε/2.

For any N sufficiently large so that (η/2) log(N) > s−1 log(b),

P [∆N ≥ (2 + η) log(N)] ≤ ε/2.

This yields the desired bound (1).
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