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Abstract
Winquist’s identity plays a vital role in the proof of Ramanujan’s congruence p(11n+
6) ≡ 0 (mod 11). In this paper, we give a new proof of Winquist’s identity.

1. Introduction

In 1969, L. Winquist [15] found an elementary proof of the congruence p(11n+6) ≡ 0
(mod 11), which was first stated by Ramanujan in [12], where p(n) is the number
of partitions of the positive integer n. A certain identity, later named Winquist’s
identity, played an essential role in his proof.

Later, L. Carlitz and M. V. Subbarao [4] and M. D. Hirschhorn [8] discovered
four-parameter generalizations of Winquist’s identity. By multiplying two pairs of
quintuple product identities and adding them, S.-Y. Kang [9] gave another proof
of Winquist’s identity. Recently, new proofs have been given by P. Hammond, R.
Lewis and Z.-G. Liu [7], H. H. Chan, Z.-G. Liu and S. T. Ng [5], and S. Kongsiriwong
and Z.-G. Liu [10]. Winquist’s identity was generalized to affine root systems by I.
Macdonald in [11], and a proof of Macdonald’s identities for infinite families of root
systems was given by D. Stanton [13].

In this paper, we give a new proof of Winquist’s identity. In [14], K. Venkat-
achaliengar gave a proof of the quintuple product identity using a similar method.
Venkatachaliengar’s work is included in S. Cooper’s comprehensive survey [6].

We use the standard notation for q-products, defining

(a; q)∞ :=
∞∏

k=0

(1− aqk), |q| < 1.

The Jacobi triple product identity in its analytical form is given by [2, p. 10].
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Theorem 1. For z #= 0, |q| < 1,

∞∑

n=−∞
znqn2

= (−zq; q2)∞(−q/z; q2)∞(q2; q2)∞. (1)

2. Proof of Winquist’s Identity

Theorem 2. (Winquist’s Identity) For any nonzero complex numbers a, b and for
|q| < 1,

∞∑

m=−∞

∞∑

n=−∞
(−1)m+nqf(m,n)(a−3mb−3n−a−3mb3n+1−a−3n+1b−3m−1+a3n+2b−3m−1)

= (q; q)2∞(a; q)∞(a−1q; q)∞(b; q)∞(b−1q; q)∞(ab; q)∞

×(a−1b−1q; q)∞(ab−1; q)∞(a−1bq; q)∞, (2)

where f(m,n) = 3m2+3n2+3m+n
2

Proof. We begin with the left-hand side of (2) and denote it by L(a, b). By Jacobi’s
triple product identity (1),

L(a, b) =
∞∑

m=−∞
(−1)mq

3m2+3m
2 a−3m

∞∑

n=−∞
(−1)nq

3n2+n
2

(
b−3n − b3n+1

)

− a

b

∞∑

m=−∞
(−1)mq

3m2+3m
2 b−3m

∞∑

n=−∞
(−1)nq

3n2+n
2

(
a−3n − a3n+1

)

=
( q3

a3
; q3

)
∞(a3; q3)∞(q3; q3)∞

×
[
(
q2

b3
; q3)∞(b3q; q3)∞(q3; q3)∞− b(

q

b3
; q3)∞(b3q2; q3)∞(q3; q3)∞

]

− a

b
(
q3

b3
; q3)∞(b3; q3)∞(q3; q3)∞

×
[
(
q2

a3
; q3)∞(a3q; q3)∞(q3; q3)∞− a(

q

a3
; q3)∞(a3q2; q3)∞(q3; q3)∞

]
.

(3)

We can write (3) as

L(a, b) = g(a)h(b)− a

b
g(b)h(a), (4)
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where

g(z) := (
q3

z3
; q3)∞(z3; q3)∞(q3; q3)∞,

h(z) := (
q2

z3
; q3)∞(z3q; q3)∞(q3; q3)∞ − z(

q

z3
; q3)∞(z3q2; q3)∞(q3; q3)∞.

From the definition of L(a, b), it is easy to show that

L(aq, b)
L(a, b)

= − 1
a3

. (5)

Next we show that L(a, b) is zero when a, b, ab, or a/b is an integral power of q.
We consider the following cases.

Case 1. a = qm or b = qm, where m is integer. For the case a = qm, by the
functional equation (5), we only need to consider the case a = 1. Since g(1) =
h(1) = 0, we have L(1, b) = g(1)h(b) − 1

b g(b)h(1) = 0. The proof is similar for the
case b = qm.

Case 2.ab = qm, where m is integer. As above, we only need to consider the case
ab = 1. We have

g(a)
g(1/a)

= −a3,
h(a)

h(1/a)
= −a.

So L(a, b) = L(a, 1/a) = g(a)h(1/a)− a2g(1/a)h(a) = 0.

Case 3. a/b = qm, where m is integer. We only need to consider the case a/b = 1.
We have L(a, b) = L(a, a) = g(a)h(a)− g(a)h(a) = 0, so L(a, b) vanishes whenever
a, b, ab, or a/b is an integral power of q (the zeros of L(a, b) are not necessarily
simple, and it is possible for L(a, b) to have other zeros).

We construct another function

R(a, b)=(a−1q; q)∞(b; q)∞(b−1q; q)∞(ab; q)∞(a−1b−1q; q)∞(ab−1; q)∞(a−1bq; q)∞.
(6)

It is easy to see that R(a, b) is zero precisely when a, b, ab, or a/b is an integral
power of q, all the zeros of R(a, b) are simple, and

R(aq, b)
R(a, b)

= − 1
a3

.

We denote the domain of both L(a, b) and R(a, b) by A, where

A = {(a, b) : a, b ∈ C, a #= 0, b #= 0}.

Let B = {(a, b) : (a, b) ∈ A, where a or b is an integral power of q. Define, for
a, b ∈ A \ B,

Q(a, b) =
L(a, b)
R(a, b)

. (7)
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Note that Q(a, b) is analytic for 0 < |a| < ∞ for each fixed b and satisfies the
functional equation Q(aq, b) = Q(a, b). We denote the Laurent series for Q(a, b) by

Q(a, b) =
∞∑

n=−∞
an(b)an . (8)

Since Q(aq, b) = Q(a, b), (8) implies
∑∞

n=−∞ an(b)(1−qn)an = 0 . We have an(b) =
0 for n #= 0. Thus Q(a, b) = a0(b) is independent of a. From (4),

L(a, b) = (−a/b)L(b, a). (9)

From (6), it is easy to verify that

R(a, b) = (−a/b)R(b, a). (10)

By (7), (9), and (10), we have Q(a, b) = Q(b, a) . By the symmetry of Q(a, b) in a
and b, Q(a, b) is also independent of b. Thus Q(a, b) is a constant.

Let ω =exp(2πi/3). For any complex number x, (1−x)(1−xω)(1−xω2) = 1−x3.
Let a and q be complex number with |q| < 1. We have

(a; q)∞(aω; q)∞(aω2; q)∞ = (a3; q3)∞.

If b = ω in L(a, b) and R(a, b), we find that

L(a,ω) = (1− ω)(q; q)∞(
q3

a3
; q3)∞(a3; q3)∞(q3; q3)∞,

R(a,ω) = (1− ω)(
q3

a3
; q3)∞(a3; q3)∞(q3; q3)∞/(q; q)∞.

Thus, Q(a,ω) = (q; q)2∞. We conclude that Q(a, b) = (q; q)2∞ for arbitrary nonzero
complex numbers (a, b) ∈ A \ B. We also have L(a, b) = R(a, b) = 0 for (a, b) ∈ B.
So L(a, b) = (q; q)2∞R(a, b) for any nonzero complex numbers a and b, and this
completes the proof.

Certain other theta function identities can be derived by using the foregoing
analysis. For example, let a = q

1
3 and b = −1, then from (2) and (3), respectively,

we deduce a theta function identity due to Ramanujan [1, pp. 48–49]:

ψ(q) = f(q3, q6) + qψ(q9).

We can also verify that the constant value of Q(a, b) is (q; q)2∞ by choosing (a, b) =
(q 1

3 ,−1) in the proof of Winquist’s identity.
This method can also be applied to prove many theta function identities, for

example, an analogue of Winquist’s identity found by the author in [3].
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Theorem 3. For a, b nonzero and for |q| < 1,

(a; q)∞(a−1q; q)∞(b; q)∞(b−1q; q)∞(ab; q)∞(a−1b−1q; q)∞(q; q)2∞

= (−ab−1q; q2)∞(−a−1bq; q2)∞(q2; q2)∞

×
[
(−a3b3q; q6)∞(−a−3b−3q5; q6)∞(q6; q6)∞

− a2b2(−a3b3q5; q6)∞(−a−3b−3q; q6)∞(q6; q6)∞
]

+ (−ab−1q2; q2)∞(−a−1b; q2)∞(q2; q2)∞

×
[
a2b(−a3b3q4; q6)∞(−a−3b−3q2; q6)∞(q6; q6)∞

− a(−a3b3q2; q6)∞(−a−3b−3q4; q6)∞(q6; q6)∞
]
. (11)

The proof of Theorem 3 is similar to the proof of Winquist’s identity.
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