GENERALIZED NONAVERAGING INTEGER SEQUENCES

Dennis Tseng
Massachusetts Institute of Technology, Cambridge, Massachusetts
dennisctseng@gmail.com

Received: 2/9/10, Revised: 8/22/11, Accepted: 10/17/11, Published: 10/21/11

Abstract

Let the sequence S_{m} of nonnegative integers be generated by the following conditions. Set the first term $a_{0}=0$, and for all $k \geq 0$, let a_{k+1} be the least integer greater than a_{k} such that no element of $\left\{a_{0}, \ldots, a_{k+1}\right\}$ is the average of $m-1$ distinct other elements. Szekeres gave a closed-form description of S_{3} in 1936, and Layman provided a similar description for S_{4} in 1999. We first find closed forms for some similar greedy sequences that avoid averages in terms not all the same. Then, we extend the closed-form description of S_{m} from the known cases when $m=3$ and $m=4$ to any integer $m \geq 3$. With the help of a computer, we also generalize this to sequences that avoid solutions to specific weighted averages in distinct terms. Finally, from the closed forms of these sequences, we find bounds for their growth rates.

1. Introduction

Often in combinatorial number theory, we wish to find the maximum number of integers that can be chosen from $\{0,1, \ldots, n-1\}$ without creating a solution to some linear equation in the chosen integers. Ruzsa initiated a systematic study of this problem over all linear equations [7, 8], and the problem has also been extended to systems of linear equations [4, 9]. A couple of well-studied examples include constructing sets of integers without three-term arithmetic progressions, which corresponds to avoiding solutions to $x_{1}+x_{2}-2 x_{3}=0$, and constructing Sidon sets, which are defined by having no nontrivial solutions to $x_{1}+x_{2}-x_{3}-x_{4}=0$. One way to approach this problem is through the use of a greedy algorithm.

Given an integer $m \geq 3$, define the sequence S_{m} of nonnegative integers by the following conditions:
(i) $a_{0}=0$
(ii) Having chosen $a_{0}, a_{1}, \ldots, a_{k}$, let a_{k+1} be the least integer greater than a_{k}
such that there are no distinct $x_{1}, x_{2}, \ldots, x_{m} \in\left\{a_{0}, a_{1}, \ldots, a_{k+1}\right\}$ with

$$
x_{1}+\cdots+x_{m-1}=(m-1) x_{m} .
$$

These two conditions construct a sequence S_{m} of integers that avoids solutions to $x_{1}+\cdots+x_{m-1}=(m-1) x_{m}$ using a greedy algorithm. Generating S_{3}, which avoids three-term arithmetic progressions, we obtain
$0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40,81 \ldots$
There is an alternative definition for S_{3}. An integer is in S_{3} if and only if there is no 2 in its representation in base 3 . This follows from a more general result, as Erdős and Turán [3] wrote that Szekeres showed the use of the greedy algorithm to avoid m-term arithmetic progressions, for m prime, results in a sequence that contains the integers that do not contain the digit $m-1$ when expressed in base m.

The nice closed-form description suggests that we can extend this to more general averages. The sequence S_{4} has a similar closed-form description as S_{3}. The following theorem is due to Layman [5].

Theorem 1. An integer is in S_{4} if and only if it can be written in the form $M+r$, where the base 4 representation of M has only 3's and 0's and ends with a 0, and r is any integer in $[0,4]$.

Extending this generalization will form the basis of the rest of our investigation. In Section 2, we present the closed forms of some related sequences that avoid solutions to weighted averages in terms not all the same. Then in Section 3, we prove a result that can be used to find the closed forms of S_{m} for all $m \geq 3$ and the closed forms of sequences that avoid solutions to specific weighted averages. Finally in Section 4, given the closed forms, we can derive bounds that allows us to show how efficient the greedy algorithm is asymptotically.

1.1. Definitions

We make some definitions to simplify the notation for the rest of the paper. Unless otherwise stated, for an ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, we will assume throughout the paper that $1 \leq d_{1} \leq d_{2} \ldots \leq d_{m-1}$, i.e., the components are arranged in nondecreasing order. Let the ordered tuple $E_{m}=(1,1, \ldots, 1)$, where there are $m-1$ components in the tuple.

Definition 2. Given an ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, let

$$
d(E)=d_{1}+\cdots+d_{m-1}
$$

When the choice of E is obvious, we will simply denote $d(E)$ as d.
Definition 3. Call an ordered tuple of positive integers $E=\left(d_{1}, \ldots, d_{m-1}\right)$ valid if and only if the following conditions are satisfied:
(i) $1=d_{1}$.
(ii) $d_{2} \leq d_{1}, d_{3} \leq d_{1}+d_{2}, \ldots, d_{m-1} \leq d_{1}+\ldots+d_{m-2}$.

In particular, this implies that $d_{1}=d_{2}=1$.
For example $E_{3}=(1,1)$. Also, E_{m}, for all $m \geq 3$, and $(1,1,2,4,8)$ are valid ordered tuples, while $(1,1,3)$ is not a valid ordered tuple.

1.2. Definition of Sequences

In this paper, we will focus on finding closed forms for the following sequences.
Definition 4. Given an ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, define the sequence A_{E} of nonnegative integers by the following conditions:
(i) $a_{0}=0$
(ii) Having chosen $a_{0}, a_{1}, \ldots, a_{k}$, let a_{k+1} be the least integer greater than a_{k} such that there are no terms $x_{1}, x_{2}, \ldots, x_{m} \in\left\{a_{0}, \ldots, a_{k+1}\right\}$, not all the same, that satisfy $d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m}$.

Definition 5. Given an ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, define the sequence S_{E} of nonnegative integers by the following conditions:
(i) $a_{0}=0$
(ii) Having chosen $a_{0}, a_{1}, \ldots, a_{k}$, let a_{k+1} be the least integer greater than a_{k} such that there are no distinct terms $x_{1}, x_{2}, \ldots, x_{m} \in\left\{a_{0}, \ldots, a_{k+1}\right\}$ that satisfy $d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m}$.

To simplify notation, we will refer to the sequences $S_{E_{m}}$ and $A_{E_{m}}$ for integer $m \geq 3$ as simply S_{m} and A_{m} respectively.

2. Analysis of the Sequences \boldsymbol{A}_{E}

2.1. A Property of Valid Ordered Tuples

We will prove a property of valid ordered tuples that we will use throughout the paper.

Proposition 6. An ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$ is valid if and only if, for every integer $0 \leq j \leq d-1$, there exists a subset H_{j} of $\{2, \ldots, m-1\}$ such that $\sum_{k \in H_{j}} d_{k}=j$.

Proof. We will show that, given a valid ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, there exists a subset $H_{j} \subset\{2, \ldots, m-1\}$ for every integer $0 \leq j \leq d-1$ by induction. For the base case, $H_{0}=\{ \}$ and $H_{1}=\{2\}$. Now, assume that for some integer
$3 \leq l \leq m-1$, we have found a subset H_{j} of $\{2, \ldots, l-1\}$ for all $0 \leq j \leq \sum_{k=2}^{l-1} d_{k}$.
Let j be an integer with $1+\sum_{k=2}^{l-1} d_{k} \leq j \leq \sum_{k=2}^{l} d_{k}$.
Then, let $H_{j}=H_{j-d_{l}} \cup\{l\}$. Since $d_{l} \leq \sum_{k=1}^{l-1} d_{k} \leq j \leq \sum_{k=2}^{l} d_{k}, 0 \leq j-d_{l} \leq \sum_{k=2}^{l-1} d_{k}$ and $H_{j-d_{l}}$ must exist by induction. Our induction is complete.

Now to prove the other direction, let $E=\left(d_{1}, \ldots, d_{m-1}\right)$ be any ordered tuple of positive integers such that for every $0 \leq j \leq d-1$, there exists a subset H_{j} of $\{2, \ldots, m-1\}$ with $\sum_{k \in H_{j}} d_{k}=j$. In order for H_{1} to exist, $d_{2}=1$, which means $d_{1}=1$. Now, assume for the sake of contradiction that there is some integer $3 \leq l \leq m-1$ such that $d_{l}>\sum_{k=1}^{l-1} d_{k}$. Then, we cannot create the subset $H_{d_{l}-1}$, because the subset $H_{d_{l}-1}$ cannot contain any integers greater than $l-1$, or else $\sum_{k \in H_{d_{l}-1}} d_{k}>d_{l}-1$. Also, by assumption, $\sum_{k=2}^{l-1} d_{k}<d_{l}-1$, so the subset $H_{d_{l}-1}$ cannot contain only integers less than or equal to $l-1$, which is a contradiction.

2.2. Closed Form of \boldsymbol{A}_{E}

Theorem 7. Given a valid ordered tuple E, an integer is in A_{E} if and only if it contains only 0's and 1's in its base d +1 representation.

Proof. Let the sequence B_{E} be the nonnegative integers with only 0's and 1's in their base $d+1$ representation in increasing order. We show that B_{E} is the same as A_{E}. Let $E=\left(d_{1}, \ldots, d_{m-1}\right)$. We need the following two lemmas.
Lemma 8. It is impossible to choose m integers $x_{1}, x_{2}, \ldots, x_{m}$, not all the same, that are terms of the sequence B_{E} such that

$$
\begin{equation*}
d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m} \tag{1}
\end{equation*}
$$

Proof. Assume for the sake of contradiction that there are x_{1}, \ldots, x_{m}, not all equal, that satisfy equation (1). Let $t_{0, k}, t_{1, k}, \ldots$ be the digits of x_{k} in base $d+1$, i.e., $x_{k}=\sum_{i=0}^{\infty} t_{i, k}(d+1)^{i}$ for all $1 \leq k \leq m$. From equation (1),

$$
\sum_{k=1}^{m-1} \sum_{i=0}^{\infty} d_{k} t_{i, k}(d+1)^{i}=d \sum_{i=0}^{\infty} t_{i, m}(d+1)^{i}
$$

There is no carrying in base $d+1$ when we add $\sum_{k=1}^{m-1} d_{k} x_{k}$ because x_{k} contains only 0's and 1's in its base $d+1$ representation for all $1 \leq k \leq m$ and $\sum_{k=1}^{m-1} d_{k}<d+1$. Therefore, if $t_{i, m}=0$, then $t_{i, k}=0$ for all $1 \leq k \leq m-1$. If $t_{i, m}=1$, then $t_{i, k}=1$ for all $1 \leq k \leq m-1$. But then $x_{1}=x_{2}=\ldots=x_{m}$ contradicting the condition that $x_{1}, x_{2}, \ldots, x_{m}$ cannot all be the same.

Now we show it is impossible to insert terms into B_{E}, which means B_{E} satisfies the "greedy" condition of A_{E}.

Lemma 9. Given any integer x_{1} that is not in B_{E}, we can find terms $x_{2}, x_{3}, \ldots, x_{m}$ of B_{E}, each less than x_{1} such that $d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{m-1} x_{m-1}=d x_{m}$.

Proof. Since E is a valid ordered tuple, by Proposition 6, for every $0 \leq j \leq d-1$, there exists a set $H_{j} \subset\{2, \ldots, m-1\}$ such that $\sum_{k \in H_{j}} d_{k}=j$. Let $t_{0, k}, t_{1, k}, \ldots$ be the digits of x_{k} in base $d+1$, i.e., $x_{k}=\sum_{i=0}^{\infty} t_{i, k}(d+1)^{i}$ for all $1 \leq k \leq m$. For every $i \geq 0$, if $t_{i, 1}=0$, we let $t_{i, k}=0$ for all $2 \leq k \leq m-1$. If $t_{i, 1}>0$, let $t_{i, k}=1$ for all $k \in H_{d-t_{i, 1}}$ and $t_{i, k}=0$ for all $k \notin H_{d-t_{i, 1}}$ so that $\sum_{k=1}^{m-1} d_{k} t_{i, k}=d$. Then, the sum $\sum_{k=1}^{m-1} d_{k} x_{k}$ has only 0's and d 's when written in base $d+1$. When we divide the sum $\sum_{k=1}^{m-1} d_{k} x_{k}$ by d, we obtain an integer that has only 0 's and 1 's when written in base $d+1$, which is in B_{E}. Note that $t_{i, 1}$ must be greater than 1 for some $i=i_{0}$ as x_{1} is not a term of B_{E}. Then, $t_{i_{0}, 1}>t_{i_{0}, k}$ for all $2 \leq k \leq m$. Since $t_{i, 1} \geq t_{i, k}$ for all $2 \leq k \leq m$ and $i \geq 0, x_{1}>x_{2}, \ldots, x_{m}$ as desired.

Since we have proven no m terms in B_{E} satisfy the equation $d_{1} x_{1}+\cdots+$ $d_{m-1} x_{m-1}=d x_{m}$ and no terms can be inserted into B_{E} without creating a solution to the equation, B_{E} is the same sequence as A_{E}.

2.3. A Property of the Sequence A_{E}

By Theorem 7, the term a_{n} of A_{E} can be found by writing n in binary and reading it in base $d+1$. Then, the following result quickly follows.

Proposition 10. The number of 1's in the base 2 representation of n is congruent modulo d to the $n^{\text {th }}$ term of A_{E}.

Proof. Write $n=\sum_{i=0}^{\infty} t_{i} 2^{i}$, with t_{0}, t_{1}, \ldots as its digits in base 2 . Then, $a_{n}=$ $\sum_{i=0}^{\infty} t_{i}(d+1)^{i} \equiv \sum_{i=0}^{\infty} t_{i}(\bmod d)$.
Corollary 11. The terms of A_{3} modulo 2 is the Thue-Morse sequence, where the $n^{\text {th }}$ term is a 0 if n has an even number of 1 's in its binary expansion and a 1 otherwise by Proposition 1 in [1].

3. Analysis of the Sequences S_{E}

We first give an alternative way to represent the nonnegative integers.
Proposition 12. Given positive integers $M \geq 2$ and c, every nonnegative integer x can be expressed in the form $x=c \sum_{i=0}^{\infty} t_{i} M^{i}+r$ in exactly one way, with integer $0 \leq r<c$ and sequence t_{0}, t_{1}, \ldots such that $t_{i} \in\{0, \ldots, M-1\}$ for all $i \geq 0$.

Proof. Given a positive integer x, let r_{0} and m_{0} be the remainder and quotient when x is divided by c. So $x=r_{0}+c m_{0}$ and r_{0} and m_{0} are uniquely defined. Then $r=r_{0}$, and the digits of m_{0} in base M is the sequence t_{0}, t_{1}, \ldots, which also must be uniquely defined.

We now present our main result, which can be used to find closed forms of the sequences S_{E} for specific choices of E.

Theorem 13. For some positive integer z and some sequence S_{E} with E a valid ordered tuple, let the set R_{E} be $\left\{a_{0}, \ldots, a_{z}\right\}$ and the constant $c_{E}=a_{z+1}$.
Let $\max \left(R_{E}\right)$ denote the maximum element a_{z}. Suppose the following conditions are satisfied:
(i) $c_{E}=1+d \max \left(R_{E}\right)-\sum_{k=2}^{m-1} d_{k}(m-k-1)$.
(ii) For every integer $0 \leq r_{1} \leq c_{E}-1$ and every integer $0 \leq j \leq d-2$, there exists a subset H_{j} of $\{2, \ldots, m-1\}$ and terms $r_{2}, \ldots, r_{m} \in R_{E}$ such that $\sum_{k \in H_{j}} d_{k}=j$, $\sum_{k=1}^{m-1} d_{k} r_{k}=d r_{m}$, all elements of $\left\{r_{k}: k \in H_{j}\right\} \cup\left\{r_{m}\right\}$ are distinct, and all elements of $\left\{r_{k}: k \notin H_{j} \cup\{1, m\}\right\}$ are distinct.
Then all terms in the sequence S_{E} can be expressed in the form

$$
\begin{equation*}
c_{E} \sum_{i=0}^{\infty} t_{i}(d+1)^{i}+r \tag{2}
\end{equation*}
$$

such that $t_{i}=0$ or 1 for all i and $r \in R_{E}$.
We make a few notes before presenting the proof. First, in order to simply notation, we will drop the subscripts on c_{E} and R_{E} when the choice of E is obvious. Also, we will denote $c_{E_{m}}$ and $R_{E_{m}}$ for all integer $m \geq 3$ as simply c_{m} and R_{m}.

Next, Theorem 1 is a special case of Theorem 13. As we will show in Section 3.1, if $E=(1,1,1)$, then we can have $c_{4}=12$ and $R_{4}=\{0,1,2,3,4\}$. If $N=\sum_{i=0}^{\infty} t_{i} 4^{i}$ is a nonnegative integer with 0 's and 1 's as digits when expressed in base 4 , then $c_{4} N$ has 0 's and 3 's as digits and ends in a 0 in base 4 . As N ranges over all nonnegative integers with 0 's and 1's as digits when expressed in base 4 and r ranges over all elements of $R_{4}, c_{4} N+r$ ranges over exactly the same values as described by Layman in Theorem 1.

Also, given E, the choice of c and R is not unique. Using the example where $E=$ $(1,1,1)$ above, we could also let $c_{4}=48$ and $R_{4}=\{0,1,2,3,4,12,13,14,15,16\}$, where Theorem 13 would still predict the same terms for the sequence S_{4}. Therefore, given E, we will use the minimum value of c that satisfies Theorem 13.

Proof. Let \mathcal{B}_{E} be the sequence of all integers that can be expressed in the form $c \sum_{i=0}^{\infty} t_{i}(d+1)^{i}+r$, with $t_{i}=0$ or 1 for all $i \geq 0$ and $r \in R$, arranged in increasing order. We prove that \mathcal{B}_{E} is the same sequence as S_{E}. We need the following two lemmas.

Lemma 14. There are not distinct terms $x_{1}, x_{2}, \ldots, x_{m}$ in \mathcal{B}_{E} such that $d_{1} x_{1}+$ $\cdots+d_{m-1} x_{m-1}=d x_{m}$.

Proof. We prove this by contradiction. Assume there are m distinct numbers $x_{1}, x_{2}, \ldots, x_{m}$ in \mathcal{B}_{E} such that

$$
\begin{equation*}
d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m} \tag{3}
\end{equation*}
$$

Because $x_{1}, x_{2}, \ldots, x_{m}$ are in \mathcal{B}_{E}, we can express $x_{k}=c \sum_{i=0}^{\infty} t_{i, k}(d+1)^{i}+r_{k}$, with $t_{i}=0$ or 1 for all $i \geq 0$ and $r \in R$, for all $1 \leq k \leq m$. Let $X=d x_{m}$ and express X as $c \sum_{i=0}^{\infty} T_{i}(d+1)^{i}+\mathcal{R}$ such that $T_{i}=d t_{i, m}$ for all $i \geq 0$ and $\mathcal{R}=d r_{m}$. Because of equation (3),

$$
\begin{equation*}
c \sum_{i=0}^{\infty} T_{i}(d+1)^{i}+\mathcal{R}=c\left(\sum_{k=1}^{m-1} \sum_{i=0}^{\infty} d_{k} t_{i, k}(d+1)^{i}\right)+\sum_{k=1}^{m-1} d_{k} r_{k} \tag{4}
\end{equation*}
$$

If $\mathcal{R} \neq \sum_{k=1}^{m-1} d_{k} r_{k}$, then $\mathcal{R}-\sum_{k=1}^{m-1} d_{k} r_{k}$ is a multiple of c or equation (4) cannot be satisfied. Since both \mathcal{R} and $\sum_{k=1}^{m-1} d_{k} r_{k}$ are bounded above and below by $d \max (R)$ and 0 , the difference between \mathcal{R} and $\sum_{k=1}^{m-1} d_{k} r_{k}$ is at $\operatorname{most} d \max (R)$.

We show that $d \max (R)<2 c$. By condition (i), $2 c>2 d \max (R)-2 \sum_{k=2}^{m-1} d_{k}(m-k-1)$. Then, since $\max (R) \geq m-2$ and $\left(\sum_{k=2}^{m-1} d_{k}\right)\left(\frac{0+m-3}{2}\right) \geq \sum_{k=2}^{m-1} d_{k}(m-k-1)$ by the rearrangement inequality,

$$
\begin{aligned}
& 2 c>2 d \max \left(R_{E}\right)-2 \sum_{k=2}^{m-1} d_{k}(m-k-1) \\
& 2 c>d \max \left(R_{E}\right)+d(m-2)-2\left(\sum_{k=2}^{m-1} d_{k}\right)\left(\frac{0+m-3}{2}\right) \\
& 2 c>d \max \left(R_{E}\right) .
\end{aligned}
$$

Since $d \max (R)<2 c, \mathcal{R}$ and $\sum_{k=1}^{m-1} d_{k} r_{k}$ can differ only by c.
Therefore, we have 3 cases to consider.
Case 1: $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}$. In this case we have $\sum_{i=0}^{\infty} T_{i}(d+1)^{i}=\sum_{k=1}^{m-1} \sum_{i=0}^{\infty} d_{k} t_{i, k}(d+1)^{i}$, which means $T_{i}=\sum_{k=1}^{m-1} d_{k} t_{i, k}$ for all i by the same argument we used in Lemma 8 . If $T_{i}=0$, then $t_{i, k}=0$ for all $1 \leq k \leq m-1$. If $T_{i}=d$, then $t_{i, k}=1$ for all $1 \leq k \leq m-1$. Then, for $x_{1}, x_{2}, \ldots, x_{m}$ to be distinct, there must be m distinct values $r_{1}, r_{2}, \ldots, r_{m}$ that satisfy equation $\mathcal{R}=d r_{m}=\sum_{k=1}^{m-1} d_{k} r_{k}$. However, this is impossible because $r_{1}, r_{2}, \ldots, r_{m}$ are terms of S_{E}.
Case 2: $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}+c$. Let i_{0} be the minimum nonnegative integer such that $T_{i_{0}}=0$. Subtract c from \mathcal{R}, add 1 to $T_{i_{0}}$ and set $T_{i}=0$ for all $i<i_{0}$ so that $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}$ and the value of X is unchanged. This process is similar to the process of carrying digits upon addition. Therefore, $T_{i_{0}}=1$ and T_{i} is 0 or d for all
$i \neq i_{0}$. Since $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}, T_{i}=\sum_{k=1}^{m-1} d_{k} t_{i, k}$ for all i. For all $i \neq i_{0}$, if T_{i} is 0 , then $t_{i, k}=0$ for all $1 \leq k \leq m-1$. If $T_{i}=d$, then $t_{i, k}=1$ for all $1 \leq k \leq m-1$. Finally, $t_{i_{0}, k}=0$ for all $1 \leq k \leq m-1$ except when $k=k_{0}$ for some k_{0}, where $d_{k_{0}}=1$ and $t_{i_{0}, k_{0}}=1$.

Since $d_{k_{0}}=1$, without loss of generality, we can let $k_{0}=1$. Then, r_{2}, \ldots, r_{m-1} must be distinct for x_{2}, \ldots, x_{m-1} to be distinct. So by the rearrangement inequality, the minimum value of $\sum_{k=1}^{m-1} d_{k} r_{k}$ is $0 \cdot d_{1}+\sum_{k=2}^{m-1} d_{k}(m-k-1)$. Also, since $\mathcal{R} \leq$ $d \max (R)$ and we subtracted c from $\mathcal{R}, \mathcal{R} \leq d \max (R)-c$. Since $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}$, we have $d \max (R)-c \geq \sum_{k=2}^{m-1} d_{k}(m-k-1)$. However, this contradicts condition (i). Case 3: $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}-c$. Let $T_{i_{0}}$ be the minimum nonnegative integer such that $T_{i_{0}}=d$. Add c to \mathcal{R}, subtract 1 from $T_{i_{0}}$ and set $T_{i}=d$ for all $i<i_{0}$ so that $R_{E}=\sum_{k=1}^{m-1} d_{k} r_{k}$ and the value of X is unchanged. This process is similar to carrying digits upon subtraction. So $T_{i_{0}}=d-1$ and T_{i} is 0 or d for all $i \neq i_{0}$. Since $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}, T_{i}=\sum_{k=1}^{m-1} d_{k} t_{i, k}$ for all i. For all $i \neq i_{0}$, if T_{i} is 0 , then $t_{i, k}=0$ for all k. If $T_{i}=d$, then $t_{i, k}=1$ for all k. Also $t_{i_{0}, k}=1$ for all $1 \leq k \leq m-1$ except when $k=k_{0}$ for some k_{0} where $d_{k_{0}}=1$ and $t_{i_{0}, k_{0}}=0$.

Since $d_{k_{0}}=1$, without loss of generality, we can let $k_{0}=1$. Then, r_{2}, \ldots, x_{m-1} must be distinct so that x_{2}, \ldots, r_{m-1} are distinct. Hence, by the rearrangement inequality, the value of $\sum_{k=1}^{m-1} d_{k} r_{k}$ is at $\operatorname{most} d_{1} \max (R)+\sum_{k=2}^{m-1} d_{k}(\max (R)-m+1+k)$. Also, since $\mathcal{R} \geq 0$ and we added c to $\mathcal{R}, \mathcal{R} \geq c$. Since $\mathcal{R}=\sum_{k=1}^{m-1} d_{k} r_{k}$, we have

$$
\begin{aligned}
& c \leq d_{1} \max (R)+\sum_{k=2}^{m-1} d_{k}(\max (R)-m+1+k) \\
& c \leq d \max (R)-\sum_{k=2}^{m-1} d_{k}(m-k-1)
\end{aligned}
$$

which contradicts condition (i).
To finish the proof of Theorem 13, we need to show that no additional elements
can be inserted into \mathcal{B}_{E}.
Lemma 15. Given any value y_{1} not a term of \mathcal{B}_{E}, there are distinct terms $y_{2}, y_{3}, \ldots, y_{m}$ of \mathcal{B}_{E}, each less than y_{1}, such that there is a permutation x_{1}, \ldots, x_{m} of y_{1}, \ldots, y_{m} such that $d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m}$.
Proof. By Proposition 12, we can express y_{1} in the form $y_{1}=c \sum_{i=0}^{\infty} t_{i, 1}(d+1)^{i}+r_{1}$, where $t_{i, 1}$ is an integer in $[0, d]$ for all $i \geq 0$ and r_{1} is an integer in $[0, c-1]$.

Express y_{k}, for all $2 \leq k \leq m$, as $c \sum_{i=0}^{\infty} t_{i, k}(d+1)^{i}+r_{k}$, where $t_{i, k}$ is 0 or 1 and $r_{k} \in R$ for all i.

If $t_{i, 1}$ is 0 or 1 for all $i \geq 0$, let $t_{i, 1}=\cdots=t_{i, m}$ for all $i \geq 0$. Then, $r_{1} \notin R$ or else y_{1} is a term of \mathcal{B}_{E}. Therefore, we can find distinct r_{2}, \ldots, r_{m}, all less than r_{1}, such that there exists a permutation s_{1}, \ldots, s_{m} of r_{1}, \ldots, r_{m} that satisfies $d_{1} s_{1}+\cdots+d_{m-1} s_{m-1}=d s_{m}$. Finally, we can let $y_{k}=r_{k}+c \sum_{i=0}^{\infty} t_{i, 1}(d+1)^{i}$ and $x_{k}=s_{k}+c \sum_{i=0}^{\infty} t_{i, 1}(d+1)^{i}$ for all $1 \leq k \leq m$.

Now we consider the case when $t_{i, 1}>1$ for some $i \geq 0$. Let $x_{k}=y_{k}$ for all $1 \leq k \leq m$. For all $i \geq 0$, let $t_{i, k}=0$ for all $2 \leq k \leq m$ if $t_{i, 1}=0$. If $t_{i, 1} \geq 1$, then let $t_{i, k}=1$ for all $k \in H_{d-t_{i, 1}} \cup\{m\}$ and $t_{i, k}=0$ otherwise, where $H_{d-t_{i, 1}}$ is a subset of $\{2, \ldots, m-1\}$ such that $\sum_{k \in H_{d-t_{i, 1}}} d_{k}=d-t_{i, 1}$. Pick any i_{0} for which $t_{i_{0}, 1}>1$.

Let $j=d-t_{i_{0}, 1}$. By condition (ii), we can find a set H_{j} and terms $r_{2}, \ldots, r_{m} \in R$ such that $\sum_{k \in H_{j}} d_{k}=j, \sum_{k=1}^{m-1} d_{k} r_{k}=d r_{m}$, all elements of $\left\{r_{k}: k \in H_{j}\right\} \cup\left\{r_{m}\right\}$ are distinct, and all elements of $\left\{r_{k}: k \notin H_{j} \cup\{1, m\}\right\}$ are distinct.

Then, $x_{p} \neq x_{q}$ if $p \in H_{j} \cup\{m\}$ and $q \notin H_{j} \cup\{1, m\}$ because $t_{i_{0}, j} \neq t_{i_{0}, k}$. Also, all elements of $\left\{x_{k}: k \in H_{j}\right\} \cup\left\{x_{m}\right\}$ are distinct, and all elements of $\left\{x_{k}: k \notin\right.$ $\left.H_{j} \cup\{1, m\}\right\}$ are distinct. Therefore, x_{2}, \ldots, x_{m} are distinct.

Finally, since for all $i, t_{i, 1} \geq t_{i, k}$ and $t_{i_{0}, 1}>t_{i_{0}, k}$ for all $2 \leq k \leq m, x_{1}>x_{k}$ for all $2 \leq k \leq m$.

Then, since $\sum_{k=1}^{m-1} d_{k} t_{i, k}=d t_{i, m}$ for all i and $\sum_{k=1}^{m-1} d_{k} r_{k}=d r_{m}, d_{1} x_{1}+\cdots+$ $d_{m-1} x_{m-1}=d x_{m}$.

Since no m terms in \mathcal{B}_{E} satisfy the equation $d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m}$ and no additional terms can be inserted without creating a solution to the equation, \mathcal{B}_{E} is the same as S_{E} and our proof of Theorem 13 is complete.

This suggests a connection between the sequences A_{E} and S_{E}.
Corollary 16. Given a valid ordered tuple E, let \mathcal{A}_{E} be the set of the integers in the sequence A_{E}. Then, if the sequence S_{E} of terms a_{0}, a_{1}, \ldots satisfies conditions (i) and (ii) of Theorem 13 for some z, the set $\left\{c a+r: a \in \mathcal{A}_{E}, r \in R\right\}$ contains the integers in S_{E}, where $c=a_{z+1}$ and $R=\left\{a_{k}: 0 \leq k \leq z\right\}$.

3.1. Closed Form for S_{m}

Definition 17. Let $N=\{0,1, \ldots, 2 n-1\} \cup\{2 n+1\}$. For every integer $m \geq 3$, Table 1 gives the set of integers R_{m} and the integer c_{m}.

R_{m}	c_{m}	m
$\{0\}$	1	3
$\{0,1,2,3,5,7,13,26,27,28,29,31\}$	122	5
$\{0,1,2,3,4,5,7,10,33,34,35,36,37,38\}$	219	7
$\{0,1, \ldots, 2 n\}$	$2 n^{2}+3 n-2$	$2 n, n>1$
$N \cup\{3 n+1\} \cup\left\{c+2 n^{2}+5 n: c \in N\right\}$	$4 n^{3}+12 n^{2}+5 n$	$2 n+1, n>3$

Table 1: Definition of R_{m} and c_{m}

Theorem 18. An integer is in the sequence S_{m} if and only if it can be expressed in the form

$$
\begin{equation*}
c_{m} \sum_{i=0}^{\infty} t_{i} m^{i}+r \tag{5}
\end{equation*}
$$

where t_{i} can be either 0 or 1 for all $i \geq 0$ and $r \in R_{m}$.
Proof. We need to show that conditions (i) and (ii) of Theorem 13 are satisfied.
Lemma 19. The set $S_{m} \cap\left[0, c_{m}-1\right]$ is the same as R_{m}.
Proof. In the appendix, we prove the case $m=2 n$ in Lemma 22 and the case $m=2 n+1$, with integer $n>3$, in Lemma 24. The cases for when $m=3,5,7$ are verified with a computer using an exhaustive search.

Since $S_{m} \cap\left[0, c_{m}-1\right]=R_{m}$, we can easily check that condition (i) is satisfied.
Now, we show that condition (ii) is satisfied. We want to show that for every integer $0 \leq r_{1} \leq c_{m}-1$ and every integer $0 \leq j \leq m-3$, there exists a subset H_{j} of $\{2, \ldots, m-1\}$ and terms $r_{2}, \ldots, r_{m} \in R_{m}$ such that $\left|H_{j}\right|=j, \sum_{k=1}^{m-1} r_{k}=(m-1) r_{m}$, all elements of $\left\{r_{k}: k \in H_{j} \cup\{m\}\right\}$ are distinct, and all elements of $\left\{r_{k}: k \notin\right.$ $\left.H_{j} \cup\{1, m\}\right\}$ are distinct.

Let j be any integer in $[0, m-3]$. First, we consider the case when $r_{1} \notin R_{M}$. Since E_{m} is a valid ordered tuple, we can find a subset H_{j} of $\{2, \ldots, m-1\}$ such that $\left|H_{j}\right|=j$. Also, by the definition of the sequence S_{m}, for every $r_{1} \notin R_{m}$, we can find distinct $r_{2}, \ldots, r_{m}<r_{1}$ such that $\sum_{k=1}^{m-1} r_{k}=(m-1) r_{m}$, so that condition (ii) is satisfied. Now we consider the case for when $r_{1} \in R_{m}$.

Lemma 20. Given any $r_{1} \in R_{m}$, we can find $r_{2}, r_{3}, \ldots, r_{m} \in R_{m}$ such that r_{2}, \ldots, r_{m-1} are distinct and $\sum_{k=1}^{m-1} r_{k}=(m-1) r_{m}$.

Proof. The result follows immediately from Lemmas 25 and 27 in the Appendix, where we prove the cases when m is even and m is odd separately.

Let r_{1} be an element of R_{m}. By Lemma 20, let $r_{2}, \ldots, r_{m} \in R_{m}$ be chosen such that $\sum_{k=1}^{m-1} r_{k}=(m-1) r_{m}$ and r_{2}, \ldots, r_{m-1} are distinct. If there is some value $2 \leq k_{0} \leq m-1$ for which $r_{k_{0}}=r_{m}$, then let $k_{0} \notin H_{j}$. Otherwise, we can let any j integers between 2 and $m-1$ to be in H_{j}.

Since both conditions (i) and (ii) are satisfied, the proof is complete.

3.2. Closed Forms for Particular S_{E}

With a computer program, we tested the valid ordered tuples $E=\left(d_{1}, \ldots, d_{m-1}\right)$ for when $4 \leq m \leq 7$ until the terms exceeded 80,000 to identify closed forms for S_{E} for 129 choices of E. The 25 tuples the computer found when $4 \leq m \leq 6$ are given in Table 2, where $t_{i}=0$ or 1 for $i \geq 0$ for each of the closed forms.

4. Asymptotics

Let $g(n)$ be the number of terms of A_{E} that are less than n, for some positive real n and valid ordered tuple E. Similarly, let $h(n)$ be the number of terms of S_{E} that are less than n. We will derive bounds for $g(n)$ and $h(n)$ and growth rates of A_{E} and S_{E}.

For any valid ordered tuple E and nonnegative integer $i_{0}, g\left((d+1)^{i_{0}}\right)=2^{i_{0}}$ because there are $2^{i_{0}}$ numbers that, when expressed in base $d+1$, have at most i_{0} digits and only 0 's and 1's as digits. Therefore for a nonnegative integer n, we have

E	Closed Form	R_{E}
$(1,1,1)$	$12 \sum_{i=0}^{\infty} t_{i} 4^{i}+r$	$r \in\{0,1,2,3,4\}$
$(1,1,2)$	$16 \sum_{i=0}^{\infty} t_{i} 5^{i}+r$	$r \in\{0,1,2,3,4\}$
$(1,1,1,1)$	$122 \sum_{i=0}^{\infty} t_{i} 5^{i}+r$	$r \in\{0,1,2,3,5,7,13,26,27,28,29,31\}$
$(1,1,1,2)$	$103 \sum_{i=0}^{\infty} t_{i} 6^{i}+r$	$r \in\{0,1,2,3,4,14,18,19,20,21\}$
$(1,1,2,3)$	$81 \sum_{i=0}^{\infty} t_{i} 8^{i}+r$	$r \in\{0,1,2,3,4,14,17,31,130,131,132$,
		$133,134,144,147\}$
$(1,1,2,4)$	$29 \sum_{i=0}^{\infty} t_{i} 9^{i}+r$	$r \in\{0,1,2,3,4\}$
$(1,1,1,1,1)$	$25 \sum_{i=0}^{\infty} t_{i} 6^{i}+r$	$r \in\{0,1,2,3,4,5,6\}$
$(1,1,1,1,2)$	$31 \sum_{i=0}^{\infty} t_{i} 7^{i}+r$	$r \in\{0,1,2,3,4,5,6\}$
$(1,1,1,1,3)$	$30 \sum_{i=0}^{\infty} t_{i} 8^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,1,1,4)$	$51 \sum_{i=0}^{\infty} t_{i} 9^{i}+r$	$r \in\{0,1,2,3,4,6,7\}$
$(1,1,1,2,2)$	$106 \sum_{i=0}^{\infty} t_{i} 8^{i}+r$	$r \in\{0,1,2,3,4,14,15,16\}$
$(1,1,1,2,3)$	$1170 \sum_{i=0}^{\infty} t_{i} 9^{i}+r$	$r \in\{0,1,2,3,4,14,17,31,130,131,132$,
		$133,134,144,147\}$
$(1,1,1,3,3)$	$38 \sum_{i=0}^{\infty} t_{i} 10^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,1,3,4)$	$43 \sum_{i=0}^{i=0} t_{i} 11^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,1,3,5)$	$48 \sum_{i=0}^{\infty} t_{i} 12^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,1,3,6)$	$653 \sum_{i=0}^{\infty} t_{i} 13^{i}+r$	$r \in\{0,1,2,3,4,12,34,42,48,55\}$
$(1,1,2,2,2)$	$32 \sum_{i=0}^{\infty} t_{i} 9^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,2,2,3)$	$208 \sum_{i=0}^{\infty} t_{i} 10^{i}+r$	$r \in\{0,1,2,3,4,18,19,20,24\}$
$(1,1,2,2,5)$	$3622 \sum_{i=0}^{\infty} t_{i} 12^{i}+r$	$r \in\{0,1,2,3,4,19,22,28,50,300,301$,
		$302,303,304,319,322,330\}$
$(1,1,2,2,6)$	$52 \sum_{i=0}^{\infty} t_{i} 13^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,2,3,3)$	$401 \sum_{i=0}^{\infty} t_{i} 11^{i}+r$	$r \in\{0,1,2,3,4,8,37,38,39,40,41\}$
$(1,1,2,3,4)$	$420 \sum_{i=0}^{\infty} t_{i} 12^{i}+r$	$r \in\{0,1,2,3,4,23,35,37,39\}$
$(1,1,2,3,7)$	$61 \sum_{i=0}^{\infty} t_{i} 15^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,2,4,4)$	$50 \sum_{i=0}^{\infty} t_{i} 13^{i}+r$	$r \in\{0,1,2,3,4,5\}$
$(1,1,2,4,7)$	$80 \sum_{i=0}^{\infty} t_{i} 16^{i}+r$	$r \in\{0,1,2,3,4,5,6\}$

Table 2: Closed Forms for S_{E}

$$
\begin{aligned}
2^{\left\lfloor\log _{d+1}(n)\right\rfloor} & \leq g(n)
\end{aligned} \leq 2^{\left\lceil\log _{d+1}(n)\right\rceil}, ~=2 \cdot 2^{\log _{d+1}(n)}, 2^{\log _{d+1}(n)} \leq g(n) \leq n^{\log _{d+1}(2)} .
$$

From these bounds, $g(n)=\Theta\left(n^{\log _{d+1}(2)}\right)$. Also, from these bounds, we can derive bounds for the growth rate of A_{E}. Let the terms of A_{E} be a_{0}, a_{1}, \ldots. Since $g\left(a_{n}\right)=$ n,

$$
\begin{aligned}
\frac{1}{2} a_{n}^{\log _{d+1}(2)} & \leq n \leq 2 a_{n}^{\log _{d+1}(2)} \\
2^{\log _{2}(d+1)} n^{\log _{2}(d+1)} & \geq a_{n} \geq 2^{-\log _{2}(d+1)} n^{\log _{2}(d+1)}
\end{aligned}
$$

Therefore, $a_{n}=\Theta\left(n^{\log _{2}(d+1)}\right)$.
Now, we bound $h(n)$. Suppose that all terms of S_{E} can be expressed in the form

$$
\begin{equation*}
r+c \sum_{i=0}^{\infty} t_{i}(d+1)^{i} \tag{6}
\end{equation*}
$$

where t_{i} is 0 or 1 for all $i \geq 0, c$ is a constant, and $r \in R$ for a set R that contains nonnegative integers that are all less than c. Then, for any positive integer multiple $k_{0} c$ of c, we have $h\left(k_{0} c\right)=|R| g\left(k_{0}\right)$ because there are $g\left(k_{0}\right)$ ways to choose the sequence t_{0}, t_{1}, \ldots and $|R|$ ways to choose r. Therefore, for a nonnegative integer n, we have

$$
\begin{aligned}
& |R| g\left(\left\lfloor\frac{n}{c}\right\rfloor\right) \leq h(n) \leq|R| g\left(\left\lceil\frac{n}{c}\right\rceil\right), \\
& |R| g\left(\frac{n}{c}-1\right) \leq h(n) \leq|R| g\left(\frac{n}{c}+1\right), \\
& |R| \frac{1}{2}\left(\frac{n}{c}-1\right)^{\log _{d+1}(2)} \leq h(n) \leq|R| 2\left(\frac{n}{c}+1\right)^{\log _{(d+1)}(2)}, \\
& \frac{1}{2}|R| c^{-\log _{d+1}(2)}(n-c)^{\log _{d+1}(2)} \leq h(n) \leq 2|R| c^{-\log _{d+1}(2)}(n+c)^{\log _{d+1}(2)} \text {. }
\end{aligned}
$$

From these bounds, we get $h(n)=\Theta\left(n^{\log _{d+1}(2)}\right)$. Also, from these bounds, we can derive a bound for the growth rate of S_{E}. Let the terms of S_{E} be a_{0}, a_{1}, \ldots Since $h\left(a_{n}\right)=n$,

$$
\begin{aligned}
|R| \frac{1}{2}\left(\frac{a_{n}}{c}-1\right)^{\log _{d+1}(2)} & \leq n \leq|R| 2\left(\frac{a_{n}}{c}+1\right)^{\log _{d+1}(2)}, \\
c\left(\frac{2}{|R|}\right)^{\log _{2}(d+1)} n^{\log _{2}(d+1)}+c & \geq a_{n}
\end{aligned} \frac{\geq c\left(\frac{1}{2|R|}\right)^{\log _{2}(d+1)} n^{\log _{2}(d+1)}-c .}{} .
$$

Therefore, $a_{n}=\Theta\left(n^{\log _{2}(d+1)}\right)$.
Given a valid ordered tuple $E=\left(d_{1}, \ldots, d_{m-1}\right)$, let $f(n)$ be the maximum cardinality over all subsets of $\{0, \ldots, n-1\}$ that do not contain a solution to $d_{1} x_{1}+\cdots+d_{m-1} x_{m-1}=d x_{m}$ in elements not all the same. Milenkovic, Kashyap, and Leyba [6] showed that Behrend's construction [2] can be modified to show that $f(n) \geq \gamma_{1} n e^{-\gamma_{2} \sqrt{\ln (n)}-\frac{1}{2} \ln (\ln (n))}(1+o(1))$ for $n>d^{2}$, where $\gamma_{1}=d^{2} \sqrt{\frac{1}{2} \ln (d)}$, $\gamma_{2}=2 \sqrt{2 \ln (d)}$, and $o(1)$ vanishes as $n \rightarrow \infty$. Since $f(n)$ is asymptotically greater than $g(n)$, for all valid ordered tuples E, and $h(n)$, for all tuples E for which we have a closed form of S_{E}, we have shown that the greedy algorithm is not optimal in these cases.

However, it should be noted that Behrend's construction, while much stronger asymptotically, is less efficient for small values of n. For example, if we let $E=E_{4}$ and $n=10^{10}$, the bound obtained by Milenkovic, Kashyap, and Leyba shows that $f\left(10^{10}\right) \geq 3187$. The bounds obtained by the greedy algorithm show $h\left(10^{10}\right) \geq$ $\left\lceil|R| \frac{1}{2}\left(\frac{10^{10}}{c}-1\right)^{\log _{d+1}(2)}\right\rceil=15360$ and $f\left(10^{10}\right) \geq g\left(10^{10}\right) \geq\left\lceil\frac{1}{2}\left(10^{10}\right)^{\log _{d+1}(2)}\right\rceil=$
10133.

5. Conclusion

We have found the closed forms of all sequences A_{E}, given any valid ordered tuple E. Also, we have found the closed forms of S_{E} for specific choices of E, including E_{m} for all $m \geq 3$. Possible future work include simplifying the condition needed to be satisfied in Theorem 13 or extending Theorem 13 to cover more tuples E for when S_{E} has a closed form. Also, generating the sequences and plotting them suggests that there are sequences that cannot be described in a similar way to our closed forms. Further research can also be done include in bounding the rates of growth of these sequences. For example, given an ordered tuple of positive integers $E=\left(d_{1}, \ldots, d_{m-1}\right)$, it appears that S_{E} grows at least as fast asymptotically as S_{m}.

Acknowledgments. I would like to thank the Center for Excellence in Education, the Research Science Institute, and Akamai for funding me in the summer. I would also like to thank Nan Li for mentoring me, Professor Richard Stanley for the project idea, and my tutor Dr. John Rickert. I am also grateful for the guidance of Professor Jake Wildstrom, Professor John Layman, and Dr. Tanya Khovanova during the research process, for the help of an anonymous referee, Scott Kominers, Wei Lue, Dr. Johnothon Sauer, and Professor David Vogan during the publication process, and for the advice of Travis Hance in improving the algorithm of my computer program.

A. Appendix

We present proofs of the Lemmas that were omitted in the main paper.
Definition 21. Let the set $S_{m}(k)$ contain the terms of S_{m} that are less than or equal to k.

A.1. Method

We present a method that will be used repeatedly in the proofs following Lemmas.
Given integers α and z, we need to determine whether there exist $x_{2}, x_{3}, \ldots, x_{m} \in$ $S_{m}(z)$ such that $\alpha+\sum_{k=2}^{m-1} x_{k}=(m-1) x_{m}$.

Let the set $W=\left\{w_{1}, w_{2} \ldots, w_{s}\right\}$ be the set $S_{m}(z) \backslash\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}$. Then, $\alpha+\sum_{k=2}^{m-1} x_{k}=(m-1) x_{m}$ is equivalent to

$$
\begin{equation*}
\alpha+\sum_{k=0}^{\left|S_{m}(z)\right|-1} a_{k}-\sum_{k=1}^{s} w_{k}=(m-1) x_{m} \tag{7}
\end{equation*}
$$

A.2. Proofs

Lemma 22. If $m=2 n$ for any integer $n>1$, the the only terms of S_{m} less than $2 n^{2}+3 n-2$ is in $\{0,1, \ldots, 2 n\}$.

Proof. To prove Lemma 22, we prove two claims.
Claim 1: The first $2 n+1$ terms of $S_{2 n}$ are the integers in $[0,2 n]$.
The first $2 n-1$ terms of $S_{2 n}$ are the integers in [$0,2 n-2$] because there are not enough distinct terms less than $2 n-1$ to satisfy the equation $\sum_{k=1}^{2 n-1} x_{k}=(2 n-1) x_{2 n}$.

If we substitute $\alpha=2 n-1, m=2 n, z=2 n-2$, and $W=\left\{x_{2 n}\right\}$ into equation (7), we obtain $x_{2 n}=\frac{2 n-1}{2}$, which is not an integer.

If we substitute $\alpha=2 n, m=2 n, z=2 n-1$, and $W=\left\{x_{2 n}, x\right\}$ into equation (7), we obtain $n\left(2 n+1-2 x_{2 n}\right)=x$. The value of x is between 0 and $2 n$ only if $0 \leq 2 n+1-2 x_{2 n} \leq 2$. But since $2 n+1-2 x_{2 n}$ is odd, $x=n=x_{2 n}$ which is a contradiction.

Claim 2: For every value of $2 n+1 \leq \alpha \leq 2 n^{2}+3 n-3$, there are distinct $x_{2}, x_{3}, \ldots, x_{2 n} \in S_{2 n}(2 n)$ such that $\alpha+\sum_{k=2}^{2 n-1} x_{k}=(2 n-1) x_{2 n}$.

We find an explicit construction for all $2 n+1 \leq \alpha \leq 2 n^{2}+3 n-3$. If $2 n+1 \leq$ $\alpha \leq 2 n^{2}+n-1$, we let $\alpha=p n+q$, where $0 \leq q \leq n-1$. Plug in $m=2 n, z=\alpha-1$, $W=\left\{a, b, x_{2 n}\right\}$, and $x_{2 n}=n+c$ in equation (7), we obtain $(p+1) n+q=2 n c+a+b$. Let $a=0$ if p is odd and $a=n$ if p is even. Let $b=q$ and $c=\lfloor(p+1) / 2\rfloor$ so that $(p+1) n=2 n c+a$ and $q=b$, which satisfies $(p+1) n+q=2 n c+a+b$.

We will show that $x_{2 n}, a$ and b are distinct.
If p is even, then $a=n>q=b$ and $x_{2 n}=n=a$ only if $c=0$. But $p \geq 2$ so $c=\lfloor(p+1) / 2\rfloor>0$.

If p is odd, then $x_{2 n}=n+c>q=b$. Also $a=b=0$ only if $q=0$, in which case we need to redefine our values of $x_{2 n}, a$ and b to ensure their distinctness. If p is odd and $q=0$, let $a=2 n, b=0$ and $c=\lfloor(p+1) / 2\rfloor-1$. Then, $a>x_{2 n}>b$.

If $2 n^{2}+n \leq \alpha \leq 2 n^{2}+3 n-3$, let $x_{2 n}=2 n, b=2 n-1$ and $a=\alpha-\left(2 n^{2}+n-1\right)$. Since $a<b<x_{2 n}, a, b$ and $x_{2 n}$ are distinct.

From Claim 1 and Claim 2, we have proven that the integers in $[0,2 n]$ are in $S_{2 n}$ and that the integers in $\left[2 n+1,2 n^{2}+3 n-3\right]$ are not, finishing the proof for Lemma 22.

To help prove Lemma 24, we prove Lemma 23.
Lemma 23. Given the $2 \leq k \leq 2 n-2$ consecutive integers $y_{1}<y_{2}<\cdots<y_{k}$ between $2 n-k-1$ and $2 n-2$ and an integer p, we can find a set of k integers that does not contain p and is a subset of $S_{2 n+1}(2 n+1)$ such that the sum of its elements equal to the sum of the original k consecutive integers.

Proof. If p is not one of the integers y_{1}, \ldots, y_{k}, we are done. If not, let $y_{i_{0}}$ be the median of $\left\{y_{1}, \ldots, y_{k}\right\}$. If $p<y_{i_{0}}$, decrement the $p-y_{1}+1$ smallest integers and increment the $p-y_{1}+1$ largest integers in $\left\{y_{1}, \ldots, y_{k}\right\}$.

If $p>y_{i_{0}}$, increment the $y_{k}-p+1$ largest integers and decrement the $y_{k}-p+1$ smallest integers in $\left\{y_{1}, \ldots, y_{k}\right\}$.

If $p=y_{i_{0}}$, then k must be odd, which means $k<2 n-2$ and $y_{1} \geq 2$. Then, decrement the $i_{0}-1$ smallest integers and increment the i_{0} largest integers in $\left\{y_{1}, \ldots, y_{k}\right\}$. Then decrement the smallest integer y_{1} again so $\left\{y_{1}, \ldots, y_{k}\right\} \subset S_{2 n+1}(2 n+1)$.
Lemma 24. If $n>3$, then $S_{2 n+1}\left(4 n^{3}+12 n^{2}+5 n-1\right)=N \cup\{3 n+1\} \cup\left\{c+2 n^{2}+5 n\right.$: $c \in N\}$, where $N=\{0,1, \ldots, 2 n-1\} \cup\{2 n+1\}$.

Proof. We start with $a_{0}=0$ and generate the terms to show they are the terms listed in Lemma 24.

The integers $0,1, \ldots, 2 n-1$ must be in the $S_{2 n+1}$ because there are not $2 n+$ 1 distinct terms in the sequence, which means there cannot be distinct terms $x_{1}, x_{2}, \ldots, x_{2 n+1}$ that satisfy

$$
\begin{equation*}
\sum_{k=1}^{2 n} x_{k}=2 n x_{2 n+1} \tag{8}
\end{equation*}
$$

Now we show $2 n$ cannot be a term of $S_{2 n+1}$. If $2 n$ were a term of $S_{2 n+1}$, we can find a solution for equation (8) by letting $x_{2 n+1}=n$ and $x_{k}=k-1$ if $k \leq n$ and $x_{k}=k$ if $k \geq n+1$.

We use contradiction to prove that $2 n+1$ is the next term. If we let $\alpha=2 n+1$, $m=2 n+1, z=2 n$ and $W=\left\{x_{2 n+1}\right\}$ in equation (7), we obtain $x_{2 n+1}=$ $n+1 /(2 n+1)$, which is not an integer.

We show $3 n+1$ is the next term in $S_{2 n+1}$. In (7), let $\alpha=2 n+x$ where $2 \leq x \leq n$, $m=2 n+1, z=\alpha-1$ and $W=\left\{x, x_{2 n+1}\right\}$. Then, we obtain $x_{2 n+1}=n+1$, which is in $S_{2 n+1}(\alpha-1)$.

To prove that $3 n+1$ is the next term, we again use contradiction. In equation (7), let $\alpha=3 n+1, m=2 n+1, z=3 n$ and $W\left\{x, x_{2 n+1}\right\}$. Then, we obtain $n+1+(n+1-x) /(2 n+1)=x_{2 n+1}$.

Since $0 \leq x<2 n+1$, the only way $n+1-x$ can be a multiple of $2 n+1$ is if $x=n+1$. But then $x_{2 n+1}=n+1=x$, which is a contradiction.

Now, we show that given any $3 n+2 \leq \alpha<2 n^{2}+5 n-1$, we can find distinct $x_{2}, x_{3}, \ldots, x_{2 n+1} \in S_{2 n+1}(3 n+1)$ such that $\alpha+\sum_{k=2}^{2 n} x_{k}=2 n x_{2 n+1}$.

In equation (7), let $m=2 n+1, z=\alpha-1$, and $W=\left\{x, y, x_{2 n+1}\right\}$. Then we obtain $n+1+\frac{n+1+\alpha-x-y}{2 n+1}=x_{2 n+1}$. For every $3 n+2 \leq \alpha \leq 2 n^{2}-2 n-2$, let $\alpha=(2 n+1) A+B$, where $2 \leq A \leq n-2$ and $-n \leq B \leq n$. We present the solutions for $x_{2 n+1}, x$ and y given α in Table 3. For every $2 n^{2}-2 n+1 \leq \alpha \leq 2 n^{2}+5 n-1$,

α	$x_{2 n+1}$	x	y	
$A(2 n+1)+B$	$n+1+A$	0	$n+1+B$	$B \leq n-2, B \neq A$
$A(2 n+1)+B$	$n+1+A$	1	$n+B$	$B=A, B \leq n-2$
$A(2 n+1)+B$	$n+1+A$	$B-n+2$	$2 n-1$	$n-1 \leq B \leq n, A<n-2$
$A(2 n+1)+B$	$n+1+A$	$B-n+3$	$2 n-2$	$n-1 \leq B \leq n, A=n-2$

Table 3: If $3 n+2 \leq \alpha \leq 2 n^{2}-2 n-2$
let $\alpha=2 n^{2}+C$, where $-2 n+1 \leq C \leq 5 n-1$. We present the solutions in Table 4.

We show that $2 n^{2}+5 n, 2 n^{2}+5 n+1, \ldots, 2 n^{2}+7 n-1,2 n^{2}+7 n+1$ are the next terms in $S_{2 n+1}$ by contradiction. Let $\alpha \in\left\{2 n^{2}+5 n+c: 0 \leq c \leq 2 n-1\right\} \cup\left\{2 n^{2}+7 n+1\right\}$. Assume that there are terms $x_{2}, x_{3}, \ldots, x_{2 n+1}$ in the sequence, each less than α such that

$$
\begin{equation*}
\alpha+\sum_{k=2}^{2 n} x_{k}=2 n x_{2 n+1} \tag{9}
\end{equation*}
$$

We prove that $x_{2 n+1} \geq 2 n^{2}+5 n$, also by contradiction. Assume that $x_{2 n+1}<$ $2 n^{2}+5 n$. If α is the only integer among $\alpha, x_{2}, x_{3}, \ldots, x_{2 n}$ that is greater than or

α	$x_{2 n+1}$	x	y	
$2 n^{2}+C$	$2 n-1$	$C+2 n+5$	$2 n-2$	$-2 n-1 \leq C \leq-8$
$2 n^{2}+C$	$2 n-1$	$2 n-5$	$2 n+1$	$C=-7$
$2 n^{2}+C$	$2 n-1$	$C+n+2$	$3 n+1$	$-6 \leq C \leq n-4$
$2 n^{2}+C$	$2 n+1$	0	$C+1$	$n-3 \leq C \leq 2 n-2$
$2 n^{2}+C$	$2 n+1$	$C-2 n+2$	$2 n-1$	$2 n-1 \leq C \leq 4 n-4$
$2 n^{2}+C$	$2 n+1$	$C-3 n$	$3 n+1$	$4 n-3 \leq C \leq 5 n-1$

Table 4: If $2 n^{2}-2 n-1 \leq \alpha \leq 2 n^{2}+5 n-1$
equal to $2 n^{2}+5 n$, then the minimum value for $x_{2 n+1}$ is $x_{2 n+1} \geq \frac{2 n^{2}+5 n+\sum_{k=0}^{2 n-2} k}{2 n}=$ $2 n+1+\frac{1}{2 n}$, which is greater than $2 n+1$. So $x_{2 n+1}$ can only be $3 n+1$. But since $x_{2}, x_{3}, \ldots, x_{2 n}$ cannot be $3 n+1$, by equation (9), $3 n+1 \leq \frac{\left(2 n^{2}+7 n+1\right)+(2 n+1)+\sum_{k=2}^{2 n-1} k}{2 n}$ $=2 n+4+\frac{1}{2 n}$, which is a contradiction because $n>3$. If at least one of the integers $x_{2}, x_{3}, \ldots, x_{2 n}$ are greater than or equal to $2 n^{2}+5 n$, then by equation (9) $x_{2 n+1} \geq \frac{\left(2 n^{2}+5 n\right)+\left(2 n^{2}+5 n+1\right)+\sum_{k=0}^{2 n-3} k}{2 n}=3 n+2+\frac{n+4}{2 n}$, which cannot occur because there are no terms in $\left[3 n+2,2 n^{2}+5 n-1\right]$. Therefore $x_{2 n+1} \geq 2 n^{2}+5 n$.

Let $\alpha=M+r$ such M is $2 n^{2}+5 n$ and $r \in S_{2 n+1}(2 n+1)$ and $x_{i}=M_{i}+r_{i}$, where M_{i} is 0 or $2 n^{2}+5 n$ and $r_{i} \in S_{2 n+1}(3 n+1)$. Also, r_{i} can be $3 n+1$ only if $M_{i}=0$. Then,

$$
M+r+\sum_{k=2}^{2 n} M_{k}+\sum_{k=2}^{2 n} r_{k}=2 n M_{2 n+1}+2 n r_{2 n+1}
$$

Since $x_{2 n+1} \geq 2 n^{2}+5 n, M_{2 n+1}=2 n^{2}+5 n$. The maximum value of $r+\sum_{k=2}^{2 n} r_{k}-$ $2 n r_{2 n+1}$ is less or equal to than twice the sum of the n largest elements of $S_{2 n+1}(3 n+$ 1), since the minimum value of $2 n r_{2 n+1}$ is 0 and no three elements of $\left\{r, r_{2}, \ldots, r_{2 n}\right\}$ can be pairwise equal. Otherwise, two elements of $\left\{\alpha, x_{2}, \ldots, x_{2 n}\right\}$ must be equal.

So the maximum value of the difference is $2\left((3 n+1)+(2 n+1)+\sum_{k=n+2}^{2 n-1} k\right)-$ $2 n \cdot 0=3 n^{2}+5 n+2$.

Since $3 n^{2}+5 n+2<2\left(2 n^{2}+5 n\right)$, at most one of elements of $\left\{M_{k}: 2 \leq k \leq 2 n\right\}$ can be 0 , or else the difference $r+\sum_{k=2}^{2 n} r_{k}-2 n r_{2 n+1}$ is less than $2 n M_{2 n+1}-M-\sum_{k=2}^{2 n} M_{k}$. If $\alpha<2 n^{2}+7 n-1$, there are not $2 n-1$ distinct integers in $\left[2 n^{2}+5 n, \alpha-1\right]$, which means α is in $S_{2 n+1}$. If $\alpha=2 n^{2}+7 n-1$ and not all $\left\{M_{k}: 2 \leq k \leq 2 n\right\}$ are equal to $2 n^{2}+5 n$, then the maximum value for $x_{2 n+1}$ would be $x_{2 n+1} \leq \frac{\sum_{k=1}^{2 n-1} 2 n^{2}+5 n+k+(3 n+1)}{2 n}=$ $2 n^{2}+5 n-\frac{3 n-1}{2 n}$, which is less than $2 n^{2}+5 n$, contradicting the assumption that
$x_{2 n+1} \geq 2 n^{2}+5 n$.
The integer $2 n^{2}+7 n$ is not in $S_{2 n+1}$ because equation (8) is satisfied if we let $x_{2 n+1}=2 n^{2}+6 n$ and $x_{k}=2 n^{2}+5 n+k-1$ if $k \leq n$ and $x_{k}=2 n^{2}+5 n+k$ if $k \geq n+1$.

If $\alpha=2 n^{2}+7 n+1$ and not all elements of $\left\{M_{k}: 2 \leq k \leq 2 n\right\}$ are $2 n^{2}+5 n$, then the maximum value for $x_{2 n+1}$ is $x_{2 n+1} \leq \frac{\left(2 n^{2}+7 n+1\right)+\left(\sum_{k=2}^{2 n-1} 2 n^{2}+5 n+k\right)+(3 n+1)}{2 n}=$ $2 n^{2}+5 n-\frac{n-1}{2 n}$, which is less than $2 n^{2}+5 n$, contradicting $x_{2 n+1} \geq 2 n^{2}+5 n$. If all $M_{2}, M_{3}, \ldots, M_{2 n} \in\left\{2 n^{2}+5 n\right\}$, then by assumption (9),

$$
\begin{align*}
M+r+\sum_{k=2}^{2 n} M_{k}+\sum_{k=2}^{2 n} r_{k} & =2 n M_{2 n+1}+2 n r_{2 n+1} \\
r+\sum_{k=2}^{2 n} r_{k} & =2 n r_{2 n+1} \tag{10}
\end{align*}
$$

But $r, r_{2}, r_{3}, \ldots, r_{2 n+1}$ are distinct elements of $S_{2 n+1}(2 n+1)$, so equation (10) has no solutions and $2 n^{2}+7 n+1$ is in the sequence.

We now show that $\left\{c: 2 n^{2}+7 n+2 \leq c \leq 4 n^{3}+12 n^{2}+5 n-1\right\} \cap S_{2 n+1}\left(4 n^{3}+\right.$ $\left.12 n^{2}+5 n-1\right)=\emptyset$. So given any $2 n^{2}+7 n+2 \leq \alpha \leq 4 n^{3}+12 n^{2}+5 n-1$, we show that there are distinct $x_{2}, x_{3}, \ldots, x_{2 n+1}$ in the sequence such that $\alpha+\sum_{k=2}^{2 n} x_{k}=2 n x_{2 n+1}$.

For ease of notation, we represent the integers $x_{2}, x_{3}, \ldots, x_{2 n}$ with the two sets $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$. The set U contains the elements of $\left\{x_{2}, x_{3}, \ldots, x_{2 n}\right\}$ that are greater than or equal to $2 n^{2}+5 n$, with $2 n^{2}+5 n$ subtracted from each those integers. The set V contains the elements of $\left\{x_{2}, x_{3}, \ldots, x_{2 n}\right\}$ that are less than $2 n^{2}+5 n$. All elements in set U must be in $S_{2 n+1}(2 n+1)$ and all elements in set V must be in $S_{2 n+1}(3 n+1)$. We can express

$$
\begin{equation*}
\alpha+\sum_{k=2}^{2 n} x_{k}=\alpha+\sum_{k=1}^{p} u_{k}+\sum_{k=1}^{q} v_{k}+|U|\left(2 n^{2}+5 n\right) \tag{11}
\end{equation*}
$$

which implies that

$$
x_{2 n+1}=\frac{\alpha+\sum_{k=1}^{p} u_{k}+\sum_{k=1}^{q} v_{k}+|U|\left(2 n^{2}+5 n\right)}{2 n} .
$$

The solutions for $\left\{x_{k}: 2 \leq k \leq 2 n+1\right\}$ for all $2 n^{2}+7 n+2 \leq \alpha \leq 2 n^{2}+11 n-1$ are displayed in Table 5. By Lemma 23, we can define $G(k, p)$ as a subset of k elements of $S_{2 n+1}(2 n+1)$ that has the same sum as the consecutive integers in [2n-k-1, $2 n-2$] and does not contain the integer p. Since Lemma 23 only applies to when $2 \leq k \leq 2 n-2$, we need to define $G(k, p)$ for when $k=0$ or 1 . Let $G(0, p)=\{ \}, G(1, p)=2 n-2$ for all $p \neq 2 n-2$, and $G(1,2 n-2)$ be undefined.

α	U	V	$x_{2 n+1}$	
$2 n^{2}+7 n+2$	$S_{2 n+1}(2 n+1) \backslash\{0,1,3\}$	$\{2 n+1\}$	$2 n^{2}+5 n$	
$2 n^{2}+7 n+3$	$S_{2 n+1}(2 n+1) \backslash\{0,1,2\}$	$\{2 n-1\}$	$2 n^{2}+5 n$	
$2 n^{2}+7 n+4$	$S_{2 n+1}(2 n+1) \backslash\{0,1,3\}$	$\{2 n-1\}$	$2 n^{2}+5 n$	
$2 n^{2}+C$	$S_{2 n+1}(2 n+1) \backslash$	$\{2 n-1\}$	$2 n^{2}+5 n$	$7 n+5 \leq C$
	$\{0,2, C-7 n-2\}$			$\leq 9 n+1$
$2 n^{2}+C$	$S_{2 n+1}(2 n+1) \backslash$	$\{2 n-1\}$	$2 n^{2}+5 n$	$9 n+2 \leq C$
	$\{0, C-9 n-1,2 n+1\}$			

Table 5: If $2 n^{2}+7 n+2 \leq \alpha \leq 2 n^{2}+11 n-1$

Also, if $T=\left\{t_{i}: 0 \leq i \leq j\right\}$ is a set of distinct nonnegative integers arranged in increasing order, we define $H(T)$ to take the smallest value of $t_{i}>i$ and decrement it. Let $H^{(k)}(T)$ denote applying the function H to $T k$ times and $[n]$ be the set containing the integers in $[1, n]$.

The solutions for $\left\{x_{k}: 2 \leq k \leq 2 n+1\right\}$ for all $2 n^{2}+11 n \leq \alpha \leq 4 n^{3}+$ $12 n^{2}+n-1$ are displayed in Table 6. There may be multiple ways to express α as $2 n^{2}+11 n+\left(2 n^{2}+5 n\right) A+2 n B+C$, in which case there are multiple solutions shown. Notice that we cannot have $A=2 n-3$ and $B=2 n-2$ at the same time, as $G(1,2 n-2)$ is undefined. To correct this, we let $A=2 n-2, B=n-4$, and let $V=H^{(C+n)}(\{2, \ldots, 2 n-1\} \cup\{2 n+1\})$.

α	U	V	$x_{2 n+1}$	
$2 n^{2}+11 n$	$G(2 n-$	$H^{(C)}([A] \cup$	$2 n^{2}+5 n$	$0 \leq B \leq 2 n-1$,
$+\left(2 n^{2}+5 n\right) A$	$2-A, B)$	$\{2 n-1\})$	$+B$	$0 \leq C \leq 2 n-1$,
$+2 n B+C$			$0 \leq A \leq 2 n-2$	

Table 6: If $2 n^{2}+11 n \leq \alpha \leq 4 n^{3}+12 n^{2}+n-1$ and $A=2 n-3$ and $B=2 n-2$ are not true at the same time

We now present Table 7 giving a solution for every $4 n^{3}+12 n^{2}+n \leq \alpha \leq$ $4 n^{3}+12 n^{2}+5 n-1$.

α	U	V	$x_{2 n+1}$	
$4 n^{3}+12 n^{2}+n+C$	\emptyset	$S_{2 n+1}(2 n+1) \backslash\{0, C+1\}$	$2 n^{2}+7 n+1$	$0 \leq C \leq 2 n-2$
$4 n^{3}+12 n^{2}+n+C$	\emptyset	$S_{2 n+1}(2 n+1) \backslash\{1,2 n-1\}$	$2 n^{2}+7 n+1$	$C=2 n-1$
$4 n^{3}+12 n^{2}+n+C$	\emptyset	$S_{2 n+1}(2 n+1) \backslash\{C-2 n, 2 n+1\}$	$2 n^{2}+7 n+1$	$2 n \leq C \leq 4 n-1$

Table 7: If $4 n^{3}+12 n^{2}+n \leq \alpha \leq 4 n^{3}+12 n^{2}+5 n-1$
Since we have worked from 0 to $4 n^{3}+12 n^{2}+5 n-1$, tested if each integer in that range is in $S_{2 n+1}$, and found that the results match the statement in Lemma 24, our proof is complete.

To prove Lemma 20, we need to prove Lemma 25 and Lemma 27.
Lemma 25. If $m=2 n$, given any $\alpha \in\{0,1, \ldots, 2 n\}$, we can find distinct $x_{2}, x_{3}, \ldots, x_{2 n} \in$ $S_{2 n} 2 n$ such that $\alpha+\sum_{k=2}^{2 n-1} x_{k}=(2 n-1) x_{2 n}$.

Proof. In equation (7), let $m=2 n, z=2 n$, and $W=\{a, b\}$. Then, we obtain $\alpha=n\left(2 x_{2 n}-2 n-1\right)+a+b$.

We display the solutions for $0 \leq \alpha \leq 2 n$ in Table 8 .

a	b	$x_{2 n}$	
n	$2 n$	$n-1$	$\alpha=0$
0	$n+\alpha$	n	$1 \leq \alpha \leq n$
0	$\alpha-n$	$n+1$	$n+1 \leq \alpha \leq 2 n$

Table 8: If $0 \leq \alpha \leq 2 n$
Since we have covered all the values for α in $[0,2 n]$, we are done with the proof of Lemma 25 .

To prove Lemma 27, we use of the following result.
Lemma 26. Given any $\alpha \in S_{2 n+1}(2 n+1)$, we can find $x_{2}, x_{3}, \ldots, x_{2 n+1} \in S_{2 n+1}(2 n+$ 1) such that $x_{2}, x_{3}, \ldots, x_{2 n}$ are distinct and $\alpha+\sum_{k=2}^{2 n} x_{k}=2 n x_{2 n+1}$.

Proof. In equation (7), let $m=2 n+1, z=2 n+1$ and $W=\{a, b\}$. Then, we obtain $\alpha=2 n x_{2 n+1}+a+b-2 n^{2}-n-1$.

Notice that $x_{2 n+1}$ does not necessarily have to be distinct from a and b. We display the solutions for $0 \leq \alpha \leq n-2$ in Table 9 . Since we have covered all the

a	b	$x_{2 n+1}$	
0	$n+1+\alpha$	n	$0 \leq \alpha \leq n-2$
1	$2 n-1$	n	$\alpha=n-1$
$\alpha-n$	$2 n+1$	n	$n \leq \alpha \leq 2 n-1$
$n+1$	$2 n+1$	n	$\alpha=2 n+1$

Table 9: If $\alpha \in S_{2 n+1}(2 n+1)$
cases when $r \in\{0,1, \ldots, 2 n-1\} \cup\{2 n+1\}$, the proof for Lemma 26 is complete.
Now we prove Lemma 20 for the case when m is odd.

Lemma 27. Given any $\alpha \in R_{2 n+1}$, we can find $x_{2}, x_{3}, \ldots, x_{2 n+1} \in R_{2 n+1}$ such that $x_{2}, x_{3}, \ldots, x_{2 n}$ are distinct and $\alpha+\sum_{k=2}^{2 n} x_{k}=2 n x_{2 n+1}$.

Proof. First we prove this for when $n>3$ and then deal with the special cases when $n \leq 3$.

If $n>3$ and $\alpha \in S_{2 n+1}(2 n+1)$, by Lemma 26 , we can select $x_{2}, x_{3}, \ldots, x_{2 n+1} \in$ $S_{2 n+1}(2 n+1)$ to satisfy the lemma.

Similarly, if $\alpha \in\left\{2 n^{2}+5 n+c: 0 \leq c \leq 2 n-1\right\} \cup\left\{2 n^{2}+7 n+1\right\}$, we see this is the same set as $S_{2 n+1}(2 n+1)$ with $2 n^{2}+5 n$ added to each element. Therefore, also by Lemma 26 , we can select $x_{2}, x_{3}, \ldots, x_{2 n+1}$ from the set $\alpha \in\left\{2 n^{2}+5 n+c\right.$: $0 \leq c \leq 2 n-1\} \cup\left\{2 n^{2}+7 n+1\right\}$ to satisfy the lemma.

If $\alpha=3 n+1$, then let $x_{2}=0, x_{k}=k-1$ for all $3 \leq k \leq 2 n$ and $x_{2 n+1}=n+1$. Then, $\alpha+\sum_{k=3}^{2 n} x_{k}=2 n x_{2 n+1}$.

If $n=1$, set $x_{2}=x_{3}=0$.
If $n=2$, then the cases for when $\alpha \in\{0,1,2,3,5\}$ and $\alpha \in\{26,27,28,29,31\}$ are covered in Lemma 26. If $\alpha=3 n+1=7,7+0+2+3=4 \cdot 3$. If $\alpha=13$, $13+3+5+7=4 \cdot 7$.

If $n=3$, then the only difference between R_{7} and the general definition for $R_{2 n+1}$ when $n>3$ is the the missing 40 , so we only need to consider if $\alpha \in$ $\{33,34,35,36,37,38\}$. The case for when $\alpha \in\{0,1,2,3,4,5,7\}$ is covered in Lemma 26 and if $\alpha=10,10+0+2+3+4+5=6 \cdot 4$.

The solutions for when $33 \leq \alpha \leq 38$ are presented in Table 10 below.

α	$\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$	x_{7}
33	$\{10,7,5,4,1\}$	10
34	$\{10,7,5,4,0\}$	10
35	$\{10,7,5,3,0\}$	10
36	$\{10,7,5,2,0\}$	10
37	$\{10,7,5,1,0\}$	10
38	$\{10,7,4,1,0\}$	10

Table 10: If $33 \leq \alpha \leq 38$ and $n=3$
Since we have covered all the cases when $m=2 n+1$ is odd, the proof for Lemma 27 is complete.

References

[1] Jean-Paul Allouche and Jeffrey Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In Sequences and their applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., pages 1-16. Springer, London, 1999.
[2] F. A. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331-332.
[3] Paul Erdős and Paul Turán. On some sequences of integers. J. London Math. Soc. 11 (1936), 261-264.
[4] Paul H. Koester. An extension of Behrend's theorem. Online J. Anal. Comb., (3), Article 4, 8, 2008.
[5] John W. Layman. Some properties of a certain nonaveraging sequence. J. Integer Seq. 2 (1999), Article 99.1.3 (HTML document) (electronic).
[6] Olgica Milenkovic, Navin Kashyap, and David Leyba. Shortened array codes of large girth. IEEE Trans. Inform. Theory 52 (2006), 3707-3722.
[7] Imre Z. Ruzsa. Solving a linear equation in a set of integers. I. Acta Arith. 65 (1993), 259-282.
[8] Imre Z. Ruzsa. Solving a linear equation in a set of integers. II. Acta Arith. 72 (1995), 385-397.
[9] Asaf Shapira. Behrend-type constructions for sets of linear equations. Acta Arith. 122 (2006), 17-33.

