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Abstract
Recall that an integer is t-free if and only if it is not divisible by pt for some
prime p. We give a method to check Robin’s inequality, σ(n) < eγn log log n, for
t-free integers n and apply it for t = 6, 7. We introduce Ψt, a generalization of the
Dedekind Ψ function defined for any integer t ≥ 2, by

Ψt(n) := n
∏

p|n

(
1 + 1/p + · · · + 1/pt−1

)
.

If n is t-free then the sum of divisor function σ(n) is ≤ Ψt(n). We characterize
the champions for x #→ Ψt(x)/x, as primorial numbers. Define the ratio Rt(n) :=

Ψt(n)
n log log n . We prove that, for all t, there exists an integer n1(t), such that we have
Rt(Nn) < eγ for n ≥ n1, where Nn =

∏n
k=1 pk. Further, by combinatorial argu-

ments, this can be extended to Rt(N) ≤ eγ for all N ≥ Nn, such that n ≥ n1(t).
This yields Robin’s inequality for t = 6, 7. For t varying slowly with N , we also
derive Rt(N) < eγ .

1. Introduction

The Riemann Hypothesis (RH), which describes the non trivial zeroes of the Rie-
mann ζ function has been deemed the Holy Grail of Mathematics by several authors
[1, 7]. There exist many equivalent formulations in the literature [5]. The one of
concern here is that of Robin [13], which is given in terms of the sum of divisor
function σ(n) as

σ(n) < eγn log log n,
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for n ≥ 5041. Recall that an integer is t-free if and only if it is not divisible by
pt for some prime p. The above inequality was checked for many infinite families
of integers in [3], for instance 5-free integers. In the present work we introduce a
method to check the inequality for t-free integers for larger values of t and apply
it to t = 6, 7. The idea of our method is to introduce the generalized Dedekind Ψ
function defined for any integer t ≥ 2, by

Ψt(n) := n
∏

p|n

(
1 + 1/p + · · · + 1/pt−1

)
.

If t = 2, this is just the classical Dedekind function which occurs in the theory
of modular forms [4], in physics [10, 11], and in analytic number theory [9]. By
construction, if n is t-free then the sum of divisors function σ(n) is ≤ Ψt(n). To see
this, note that the multiplicative function σ satisfies for any integer a in the range
t > a ≥ 2

σ(pa) = 1 + p + · · · + pa,

when the multiplicative function Ψt satisfies

Ψt(pa) = pa + · · · + 1 + · · · + 1/pt−1−a.

It turns out that the structure of champion numbers for the arithmetic function
x #→ Ψt(x)/x is much easier to understand than that of x #→ σ(x)/x, the super
abundant numbers. They are exactly the so-called primorial numbers (product
of first consecutive primes). We prove that, in order to maximize the ratio Rt

it is enough to consider its value at primorial integers. Once this reduction is
made, bounding above unconditionally Rt is easy by using classical lemmas on
partial Eulerian products. We conclude the article by some results on t-free integers
N ≥ Nn, valid for t varying slowly with N.

2. Reduction to Primorial Numbers

Define the primorial number Nn of index n as the product of the first n primes

Nn =
n∏

k=1

pk,

so that N0 = 1, N1 = 2, N2 = 6, · · · and so on. The primorial numbers (OEIS
sequence A002110 [12]) play the role of superabundant numbers in [13] or primorials
in [8]. They are champion numbers (i.e., left to right maxima) of the function
x #→ Ψt(x)/x :

Ψt(m)
m

<
Ψt(n)

n
for any m < n. (1)

We give a rigorous proof of this fact.
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Proposition 1. The primorial numbers and their multiples are exactly the cham-
pion numbers of the function x #→ Ψt(x)/x.

Proof. The proof is by induction on n. The induction hypothesis Hn is that the
statement is true up to Nn. The Sloane sequence A002110 begins 1, 2, 4, 6 . . . so
that H2 is true. Assume Hn true. Let Nn ≤ m < Nn+1 denote a generic integer.
The prime divisors of m are ≤ pn. Therefore Ψt(m)/m ≤ Ψt(Nn)/Nn with equality
if and only if m is a multiple of Nn. Further Ψt(Nn)/Nn < Ψt(Nn+1)/Nn+1. The
proof of Hn+1 follows.

In this section, we reduce the maximization of Rt(n) over all integers n to the
maximization over primorials.

Proposition 2. Let n be an integer ≥ 2. For any m in the range Nn ≤ m < Nn+1

one has Rt(m) < Rt(Nn).

Proof. As in the preceding proof we have

Ψt(m)/m ≤ Ψt(Nn)/Nn,

and, since 0 < log log Nn ≤ log log m, the result follows.

3. Ψt at Primorial Numbers

We begin with an easy application of Mertens formula.

Proposition 3. For n going to ∞ we have

limRt(Nn) =
eγ

ζ(t)
.

Proof. Writing 1 + 1/p = (1 − 1/p2)/(1 − 1/p) in the definition of Ψ(n), we can
combine the Eulerian product for ζ(t) with Mertens formula

∏

p≤x

(1− 1/p)−1 ∼ eγ log x

to obtain

Ψ(Nn) ∼ eγ

ζ(t)
log pn.
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Now the Prime Number Theorem [6, Th. 6, Th. 420] shows that x ∼ θ(x) for x
large, where θ(x) stands for Chebyshev’s first summatory function:

θ(x) =
∑

p≤x

log p.

This shows that, taking x = pn we have

pn ∼ θ(pn) = log Nn.

The result follows.

This motivates the search for explicit upper bounds on Rt(Nn) of the form
eγ

ζ(t) (1 + o(1)). In that direction we have the following bound.

Proposition 4. For n large enough to have pn ≥ 20000, we have

Ψt(Nn)
Nn

≤ exp(γ + 2/pn)
ζ(t)

(
log log Nn +

1.1253
log pn

)
.

We prepare for the proof of the preceding Proposition by some lemmas. First an
upper bound on a partial Eulerian product from [14, (3.30) p.70].

Lemma 5. For x ≥ 2, we have

∏

p≤x

(1− 1/p)−1 ≤ eγ

(
log x +

1
log x

)
.

Next an upper bound on the tail of the Eulerian product for ζ(t).

Lemma 6. For n ≥ 2 we have
∏

p>pn

(
1− 1/pt

)−1 ≤ exp (2/pn) .

Proof. Use Lemma 6.4 in [3] with x = pn. Bound t
t−1x1−t above by 2/x.

Lemma 7. For n ≥ 2263, we have

log pn < log log Nn +
0.1253
log pn

.

Proof. If n ≥ 2263, then pn ≥ 20000. By [14], we know then that

log Nn > pn

(
1− 1

8pn

)
.
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By taking logs we obtain

log log Nn > log pn −
0.1253

pn
,

where we used
log

(
1− x

8

)
> −0.1253 x,

for x small enough. In particular, it is enough to assume x < 1/20000.

We are now ready for the proof of Proposition 4.

Proof. Write

Ψt(Nn)
Nn

=
n∏

k=1

1− 1/pk
t

1− 1/pk
=

∏
p>pn

(1− 1/pt)−1

ζ(t)

∏

p≤pn

(1− 1/p)−1

and use both lemmas to derive

Ψt(Nn)
Nn

≤ exp(γ + 2/pn)
ζ(t)

(
log pn +

1
log pn

)
.

Now we get rid of the first log in the right hand sise by Lemma 3 and the result
follows.

So, armed with this powerful tool, we derive the following significant corollaries.
For convenience let

f(n) = 1 +
1.1253

log pn log log Nn
.

Corollary 8. Let n0 = 2263. Let n1(t) denote the least n ≥ n0 such that e2/pnf(n) <
ζ(t). For n ≥ n1(t) we have Rt(Nn) < eγ .

Proof. Let n ≥ n0. We need to check that

exp(2/pn)
(

1 +
1.1253

log pn log log Nn

)
≤ ζ(t),

which, for fixed t, holds for n large enough. Indeed ζ(t) > 1 and the left hand side
goes monotonically to 1+ for n large.

A numerical illustration of Corollary 1 is found in Table 1.
We can extend this Corollary to all integers ≥ n0 by using the reduction of

preceding section.

Corollary 9. For all N ≥ Nn such that n ≥ n1(t) we have Rt(N) < eγ .

Proof. Combine Corollary 8 with Proposition 2 .
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t n1(t) Nn1(t)

3 10 6.5× 109

4 24 2.4× 1034

5 79 4.1× 10163

6 509 5.8× 101551

7 10 596 2.5× 1048337

Table 1: The numbers in Corollary 8 .

We are now in a position to derive the main result of this note.

Theorem 10. If N is a 7-free integer, then σ(N) < Neγ log log N.

Proof. If N is ≥ Nn with n ≥ n1(7), then the above upper bound holds for Ψ7(N)
by Corollary 2 , hence for σ(N) by the remark in the Introduction. Note that by
[13, Proposition 1] it is enough to check Robin’s inequality for colossally abundant
numbers. If we denote by R(n) the ratio σ(n)/n log log n, the cited result says that
if m is an integer between two successive CA numbers N < N ′, then R(m) ≤
max (R(N), R(N ′)) . Therefore, the results of [2, p.253, left column, line 12] imply
that Robin’s inequality holds for 5040 < N ≤ 101010

. The result follows then upon
observing that all 7-free integers are > 5040.

The case of 6-free integers follows either in the same way, or by noticing that
they are in particular 7-free.

4. Varying t

We begin with an easy lemma.

Lemma 11. Let t be a real variable. For t large, we have ζ(t) = 1 + 1
2t + o( 1

2t ).

Proof. By definition, for t > 1 we may write

ζ(t) =
∞∑

n=1

1
nt

so that
ζ(t) ≥ 1 +

1
2t

.

In the other direction, we write

ζ(t) = 1 +
1
2t

+
1
3t

+
∞∑

n=4

1
nt

,
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and compare the remainder of the series expansion of the ζ function with an integral:

∞∑

n=4

1
nt

<

∫ ∞

3

du

ut
=

3
(t− 1)3t

= O(
1
3t

).

The result follows.

We can derive a result when t grows slowly with n.

Theorem 12. Let Sn be a sequence of integers such that Sn ≥ Nn for n large, and
such that Sn is t-free with t = o(log log n). For n large enough, Robin’s inequality
holds for Sn.

Proof. For Corollary 2 to hold we need

e2/pnf(n) < ζ(t)

or, taking logs, the exact bound

2/pn + log f(n) < log ζ(t),

so that, up to o(1) terms

2/pn +
1.1253

log pn log log Nn
≤ log ζ(t).

In the left hand side, the dominant term is of order 1/(log pn)2, since, as in the
proof of Proposition 3 , we may write pn ∼ log Nn . Now pn ∼ n log n by [6, Th. 8],
entailing log pn ∼ log n and (log pn)2 ∼ (log n)2. In the right hand side, with the
hypothesis made on t we have, by Lemma 4 , the estimate log ζ(t) ∼ 1

2t . The result
follows after comparing logarithms of both sides.

5. Conclusion

In this article we have proposed a technique to check Robin’s inequality for t-free
integers for some values of t. The main idea has been to investigate the complex
structure of the divisor function σ though the sequence of Dedekind psi functions
ψt. The latter are simpler to study for the following reasons

• Ψt(n) solely depends on the prime divisors of n and not on their multiplicity

• the champions of Ψt are the primorials instead of the colossally abundant
numbers

• Ψt is easier to bound for n large because of connections with Eulerian products
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Further, σ(n) ≤ Ψt(n) for t-free integers n. We checked Robin’s inequality for
t-free integers for t = 6, 7 and t = o(log log n). It is an interesting and difficult open
problem to apply Theorem 2 to superabundant numbers or colossally abundant
numbers for instance. We do not believe it is possible. New ideas are required to
prove Robin’s inequality in full generality.
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