
#A67 INTEGERS 11 (2011)

A RECURRENCE RELATED TO THE BELL NUMBERS

Toufik Mansour
Department of Mathematics, University of Haifa, Haifa, Israel

toufik@math.haifa.ac.il

Mark Shattuck
Department of Mathematics, University of Haifa, Haifa, Israel

maarkons@excite.com

Received: 2/14/11, Revised: 7/4/11, Accepted: 10/18/11, Published: 10/31/11

Abstract
In this paper, we solve a general, four-parameter recurrence by both algebraic and
combinatorial methods. The Bell numbers and some closely related sequences are
solutions to the recurrence corresponding to particular choices of the parameters.

1. Introduction

It is well-known that there is no general procedure for solving recurrence relations,
which is why some might say it is an art; see, for example, [4, 8, 9, 17, 18]. In this
paper, we solve a seemingly new recurrence related to the Bell numbers involving a
single index and four parameters given by

Cn(a, b, c, d) = abCn−1(a, b, c, d) + cCn−1(a + d, b, c, d), n ≥ 1, (1)

where C0(a, b, c, d) = 1. Taking specific values of the parameters will yield the Bell
numbers and several related sequences. We provide both algebraic and combina-
torial arguments. In addition, we supply a new proof of an explicit formula for a
well-known q-generalization of the Stirling numbers by combining one of its combi-
natorial interpretations with the ideas used in our proofs of (1). By modifying our
arguments further, we also obtain a combinatorial proof of a related recurrence in
[6], which was established there by an algebraic method.

Let [n] = {1, 2, . . . , n} if n ≥ 1, with [0] = ∅. By a partition of [n], we will mean
any collection of non-empty, pairwise disjoint subsets, called blocks, whose union is
[n]. (If n = 0, then there is a single empty partition which has no blocks.) The set
of all partitions of [n] will be denoted by Pn and has cardinality given by the Bell
number Bn (see, e.g., p. 33 of [14]). Let Sn,k be the Stirling number of the second



INTEGERS: 11 (2011) 2

kind (see, e.g., p. 103 of [1]) which counts the set of partitions of [n] having exactly
k blocks, denoted by Pn,k. Throughout, we will express π ∈ Pn,k in the standard
form as π = E1/E2/ · · · /Ek, where min E1 < min E2 < · · · < min Ek. Recall that
the Bell numbers are given by the recurrence

Bn+1 =
n∑

k=0

(
n

k

)
Bk, n ≥ 0, (2)

with B0 = 1; see, e.g., p. 373 of [7].

2. Algebraic Solution

In order to solve (1), let F (x; a) =
∑

n≥0 Cn(a, b, c, d)xn be the generating function
for the sequence {Cn(a, b, c, d)}n≥0, where b, c, and d are fixed constants. Multi-
plying (1) by xn and summing over n ≥ 0, we obtain

F (x; a) = 1 + abxF (x; a) + cxF (x; a + d),

which implies

F (x; a) =
1

1− abx
+

cx

1− abx
F (x; a + d).

Applying this relation an infinite number of times yields

F (x; a) =
∑

i≥0

cixi

(1− bxy0)(1− bxy1) · · · (1− bxyi)
,

where yi = a + id. By partial fractions, we may write

xi

(1− bxy0)(1− bxy1) · · · (1− bxyi)
=

i∑

j=0

ai,j

1− bxyj
,

where ai,j = (−1)i−j

(bd)ii!

(i
j

)
. Hence, the coefficient of xn in the generating function

F (x; a) is given by

Cn(a, b, c, d) = [xn](F (x; a)) = [xn]




∑

i≥0

i∑

j=0

ai,jci

1− bxyj





=
∑

i≥0

i∑

j=0

(−1)i−jci

(bd)ii!

(
i

j

)
bn(a + jd)n.
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Now we convert the ordinary generating function F (x; a) to the exponential G(x; a)
and find an explicit formula for it:

G(x; a) =
∑

n≥0

Cn(a, b, c, d)
xn

n!
=

∑

i≥0

i∑

j=0

(−1)i−jci

(bd)ii!

(
i

j

) ∑

n≥0

(a + jd)nbn

n!
xn

=
∑

i≥0

i∑

j=0

(−1)i−jci

(bd)ii!

(
i

j

)
e(a+jd)bx = eabx

∑

i≥0

ci

(bd)ii!

i∑

j=0

(−1)i−j

(
i

j

)
ejbdx

= eabx
∑

i≥0

ci

(bd)ii!
(ebdx − 1)i,

which implies the following result.

Theorem 1. The exponential generating function for the sequence {Cn(a, b, c, d)}
defined in (1) is given by

G(x; a) =
∑

n≥0

Cn(a, b, c, d)
xn

n!
= eabx+ c

bd (ebdx−1).

Recall the Bell polynomials Bn(y) given by Bn(y) =
∑n

k=0 S(n, k)yk, which
reduce to the ordinary Bell numbers when y = 1 (see, e.g., p. 5 of [5]). They have
exponential generating function (see, e.g., 7.54 on p. 351 of [7]) given by

∑

n≥0

Bn(y)
xn

n!
= ey(ex−1).

Writing
G(x; a) = eabxe

c
bd (ebdx−1),

and collecting the coefficient of xn

n! in the convolution, yields the following explicit
formula for the polynomials Cn(a, b, c, d) and hence solution to recurrence (1).

Corollary 2. If n ≥ 0, then

Cn(a, b, c, d) = bn
n∑

j=0

an−jdj

(
n

j

)
Bj(c/bd). (3)

Remark 3. In particular, we have Cn(1, 1, 1, 1) = Bn+1, by (2), and Cn(0, 1, 1, 1) =
Bn for all n ≥ 0.

3. Combinatorial Solution

We will assume that the blocks of a partition are arranged in increasing order
according to the size of their minimal (i.e., smallest) elements. We define four
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statistics on Pn+1 as follows. Given π ∈ Pn+1, let s1(π) be the number of elements
r > 1 in the block of π containing 1, let s2(π) be the number of non-minimal elements
of π (which is also n + 1 − k, where k is the number of blocks of π), let s3(π) be
the number of minimal elements of π greater than 1 (i.e., k − 1), and let s4(π) be
the number of non-minimal elements of π in all the blocks, excluding the first one.
From the definitions, note that s2(π) + s3(π) = n and s1(π) + s4(π) = n + 1− k for
all π ∈ Pn+1, where k denotes the number of blocks.

Define the distribution polynomial Dn(a, b, c, d) on Pn+1 as

Dn(a, b, c, d) =
∑

π∈Pn+1

as1(π)bs2(π)cs3(π)ds4(π), n ≥ 0. (4)

The following proposition provides a combinatorial interpretation of Cn(a, b, c, d).

Proposition 4. If n ≥ 0, then Cn(a, b, c, d) = Dn(a, b, c, d).

Proof. Note first that Cn(1, 1, 1, 1) = Dn(1, 1, 1, 1) = Bn+1. Expanding formula
(3), we may write

Cn(a, b, c, d) =
n∑

j=0

an−j

(
n

j

) j∑

i=0

bn−icidj−iSj,i, n ≥ 0. (5)

Note that j corresponds to the number of elements of {2, 3, . . . , n + 1} not lying
in the block with 1 within a partition of [n + 1] and i corresponds to the number
of blocks in addition to the block containing 1. The result now follows from the
definition of Dn(a, b, c, d) and comparison with (5).

Note that (5) implies Cn(0, b, c, d) = (bd)nBn(c/bd), and Cn(a, b, c, 0) = (ab+c)n.
In particular, we have Cn(0, 1, 1, 1) = Bn and Cn(1, 1, 1, 0) = 2n. These formulas
may also be realized using the interpretation for Cn(a, b, c, d) in (4). On the other
hand, Cn(−1, 1, 1, 1) is the number of partitions of [n] having no singleton blocks (see
sequence A000296 of [13]). To show this using our combinatorial interpretation, we
construct a sign-reversing involution on a certain set of partitions. Consider those
numbers within a member of Pn+1 which are in the block with 1 or in a singleton
block. If the largest of these numbers is in a singleton, then put it in the block
containing 1, and if it is in the block containing 1, then put it in a singleton. Note
that this operation defines an involution which changes the parity of s1. It is not
defined on those partitions having the form {1} ∪ π′, where π′ is a partition of
{2, 3, . . . , n + 1} containing no singleton blocks. Note that all such partitions have
zero, hence even, s1 value.

Choosing other specific values for the parameters in Cn(a, b, c, d) yields addi-
tional previously studied sequences. For example, the specific cases Cn(1, 1, 2, 1)
and 2nCn(1/2, 1, 1, 1) correspond to sequences A035009 and A126390, respectively,
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in [13], which are certain transforms involving the Stirling and Bell numbers. The
sequence

2nCn(1, 1, 1/2, 1/2) =
n∑

j=0

2n−j

(
n

j

)
Bj = Bn+2 −Bn+1,

which occurs as A005493, counts, among other things, the number of blocks in all
the members of Pn+1, the number of elements of Pn+2 in which 1 and 2 belong to
different blocks, and the number of Boolean sublattices of the Boolean lattice of
subsets of [n]. See also sequence A005494, which is 3nCn(1, 1, 1/3, 1/3).

We now give a combinatorial proof showing that Cn(a, b, c, d) given by (5) satisfies
recurrence (1) using the interpretation given it in (4).

Combinatorial proof of (1). It is enough to show recurrence (1) in the case when a,
b, c and d are positive integers since both sides are polynomials in these variables.
Let (S1, S2, S3, S4) denote disjoint sets of colors having cardinalities a, b, c and d,
respectively. Given π ∈ Pn+1 and 1 ≤ i ≤ 4, we assign, in an independent fashion,
each of the elements of π counted by the statistic si a color from the set Si. For
example, each element r > 1 in the block containing 1 is assigned one of the a colors
from S1. Note that elements of π counted by two of the statistics si will receive
two colors (this occurs with the elements counted by the statistics s1 and s2 and
by s2 and s4). We will call partitions of [n] whose elements are assigned colors as
described colored partitions. By Proposition 4, the left side of (1) counts all of the
colored partitions of [n + 1].

We now argue that the right side of (1) also achieves this. Note that the first
term on the right side counts all colored partitions of [n + 1] in which the elements
1 and 2 belong to the same block. For one may first form a colored partition of
{2, 3, . . . , n + 1} and then add the element 1 to the block containing 2, noting that
we then must assign the element 2 a color from S1 (since it now belongs to the block
containing 1) as well as a color from S2 (since it is now a non-minimal element in
its block). Thus, there are abCn(a, b, c, d) possibilities in this case.

To complete the proof, we must show that cCn(a+d, b, c, d) counts all the colored
partitions of [n + 1] in which 1 and 2 belong to different blocks. First, we create
colored partitions λ of {2, 3, . . . , n + 1} using the sets (S1 ∪ S4, S2, S3, S4). Given
any λ, we then take any elements in the block containing 2 and marked with a
color from S1 and form a separate block together with 1. Any elements in the
block marked with a color from S4 remain in the block with 2. (In either case, the
original elements in the block of λ with 2 retain the color that they were assigned
from S2.) Furthermore, the element 2 must now be given a color from S3 since it
is a minimal element, but no longer the smallest; hence, there are cCn(a + d, b, c, d)
colored partitions in this case, which completes the proof.

One can also consider the comparable version of (1) in two indices corresponding
to partitions of [n + 1] having a fixed number k of blocks. We take b = c = 1 in
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what follows since the s2 and s3 statistics are constant on Pn+1,k for fixed n and k.
Define the distribution polynomial Cn,k(a, d) by

Cn,k(a, d) =
∑

π∈Pn+1,k

as1(π)ds4(π), n, k ≥ 0.

Then a similar combinatorial argument to the one above shows

Cn,k(a, d) = aCn−1,k(a, d) + Cn−1,k−1(a + d, d), n, k ≥ 1, (6)

where C0,k(a, d) = δk,1 for integers k ≥ 0.
Using either of the methods above, one can then show

Cn,k(a, d) =
n∑

j=k−1

an−jdj−k+1

(
n

j

)
Sj,k−1, n, k ≥ 1. (7)

From (7), we get Cn,k(0, 1) = Sn,k−1 and Cn,k(1, 1) = Sn+1,k, the latter by a
well-known recurrence for the Stirling numbers.

4. Applications

4.1. New Proof of a q-Stirling Number Formula

We first give a bit of notation that we use below. The letter q denotes an indeter-
minate, with 0q := 0, nq := 1 + q + · · · + qn−1 if n ≥ 1, 0q!:=1, nq! := 1q2q · · ·nq if
n ≥ 1, and

(n
k

)
q

:= nq!
kq!(n−k)q! if n ≥ 0 and 0 ≤ k ≤ n. The binomial coefficient

(n
k

)

is equal to zero if k is a negative integer or if 0 ≤ n < k.
In this section, we supply a new proof of an explicit formula for a well-known

q-generalization of Sn,k by combining one of its combinatorial interpretations with
the reasoning used in our proofs of (1). Perhaps the ideas could be extended to
finding comparable explicit formulas for other q-generalizations of the Stirling and
Bell numbers.

Let S̃n,k(q) denote the sequence of numbers determined by the relation

(xq)n =
n∑

k=0

S̃n,k(q)xq(x− 1)q · · · (x− k + 1)q, n ≥ 0,

where xq := (qx − 1)/(q − 1), or, equivalently, by the recurrence

S̃n,k(q) = S̃n−1,k−1(q) + kqS̃n−1,k(q), n, k ≥ 1,

with S̃0,k(q) = δk,0 for k ≥ 0. Note that S̃n,k(q) = Sn,k when q = 1. Starting with
the two relations above, Carlitz [2] derived the following beautiful explicit formula
for S̃n,k(q).
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Theorem 5. If n, k ≥ 0, then

S̃n,k(q) =
1

q(
k
2)kq!

k∑

j=0

(−1)jq(
j
2)

(
k

j

)

q

[(k − j)q]n. (8)

To do so, he used a sequence of difference operators defined, recursively, by

∆q,1f(x) = ∆f(x) = f(x + 1)− f(x)

and
∆q,k+1f(x) = ∆q,kf(x + 1)− qk∆q,kf(x),

where q is regarded as an arbitrary parameter.
Carlitz [3] later gave S̃n,k(q) a combinatorial interpretation as the distribution

polynomial on Pn,k for a statistic, denoted w̃, and defined as w̃(π) =
∑k

i=1(i −
1)(|Ei|− 1), where π = E1/E2/ · · · /Ek ∈ Pn,k is expressed in standard form. The
S̃n,k(q) were later given other combinatorial interpretations by Wachs and White
[15] and by Sagan [11] in terms of placement of rooks on Ferrers boards as well as
in terms of certain statistics on set partitions concerning the relative order of the
elements and the blocks (see also the related paper by Milne [10]). In [16] and [12],
algebraic and combinatorial proofs, respectively, are given which establish the value
of S̃n,k(q) when q = −1, along with three other closely related q-analogues.

We now recall a partition statistic considered in [10] and [11]. An inversion of π =
E1/E2/ · · · /Ek

∈ Pn,k, expressed in standard form, is a pair (a,Ej), where a ∈ Ei, i < j, and
a > min Ej . Let inv(π) denote the number of inversions of π. For example, the
partition

π = 14/27/359/68 = E1/E2/E3/E4

has inversions (4, E2), (4, E3), (7, E3), (7, E4) and (9, E4), so inv(π) = 5. The
distribution of the inv statistic on Pn,k is S̃n,k(q) since it is seen to satisfy the same
recurrence.

Let B̃n(q) given by
∑n

k=0 S̃n,k(q) denote the corresponding Bell numbers. We
consider a slight refinement of B̃n(q). Given π ∈ Pn+1, let s1(π) once again denote
the number of elements r > 1 in the block containing 1 and let ν(π) denote the
number of blocks of π. Define the polynomials En(q, t, u) by

En(q, t, u) =
∑

π∈Pn+1

qinv(π)tν(π)us1(π), n ≥ 0.

If n = 2, for example, then P3 = {123, 12/3, 13/2, 1/23, 1/2/3} and thus E2(q, t, u) =
tu2 + t2(u + qu + 1) + t3. Note the En(q, 1, 1) = B̃n+1(q).

The En(q, t, u) have a two-term recurrence analogous to (1) above.
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Proposition 6. The polynomials En(q, t, u) satisfy

En(q, t, u) = uEn−1(q, t, u) + tEn−1(q, t, qu + 1), n ≥ 1, (9)

with E0(q, t, u) = t.

Proof. We reason as in the combinatorial proof of (1) given in the prior section.
The first term on the right side of (9) accounts for the case when the elements 1
and 2 belong to the same block, while the second term accounts for the case when
they do not. In the second case, note that the elements r > 2 going in the block
with 2 which are subsequently moved to the block containing 1 all pick up an extra
inversion and also account for the s1 statistic value; hence, one must replace u with
qu+1 in the third argument of the second term. The factor t accounts for the block
which is added containing 1.

We now supply an alternate proof of the explicit formula for S̃n,k(q) in Theorem
5 by solving the recurrence in Proposition 6.

Proof of (8). In order to solve recurrence (9), we define the generating function

F (x; q, t, u) =
∑

n≥0

En(q, t, u)xn.

Multiplying (9) by xn and summing over n ≥ 1 yields

F (x; q, t, u)− t = uxF (x; q, t, u) + txF (x; q, t, qu + 1),

which we rewrite as

F (x; q, t, u) =
t

1− ux
+

tx

1− ux
F (x; q, t, qu + 1).

Iterating this relation yields

F (x; q, t, u) =
∑

k≥0

tk+1xk
k∏

j=0

1
1− x[(u− 1)qj + (j + 1)q]

. (10)

We seek the coefficient of tk+1xn in F (x; q, t, 1). By partial fractions, we may
write

k∏

j=0

1
1− x(j + 1)q

=
k∑

j=0

ak,j

1− x(j + 1)q
,

where

ak,j =
(−1)k−jq(

k−j
2 )−(k+1

2 )(k
j

)
q
[(j + 1)q]k

kq!
, 0 ≤ j ≤ k.
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Substituting this into (10) implies

[tk+1xn](F (x; q, t, 1)) = [tk+1xn]




∑

k≥0

tk+1xk
k∑

j=0

ak,j

1− x(j + 1)q





=
k∑

j=0

ak,j [(j + 1)q]n−k

=
1

q(
k+1
2 )kq!

k∑

j=0

(−1)k−jq(
k−j
2 )

(
k

j

)

q

[(j + 1)q]n

=
1

q(
k+1
2 )(k + 1)q!

k+1∑

j=0

(−1)jq(
j
2)

(
k + 1

j

)

q

[(k + 1− j)q]n+1.

Replacing n + 1 with n and k + 1 with k in the last expression yields (8).

4.2. Combinatorial Proof of a Recurrence

Let Gn be the sequence defined by the recurrence

Gn+1 =
n∑

j=0

(−1)jbn−j

(
n

j

)
Gj , n ≥ 0, (11)

with G0 = 1, where b is a fixed constant. Note that replacing −1 by a in (11)
and then taking a = b = 1 yields the Bell numbers, by (2). In [6], it was shown
algebraically that the Gn satisfy the two-term recurrence

Gn = bGn−1 −Gn−2, n ≥ 2, (12)

with G0 = G1 = 1. Here, we provide a combinatorial proof that the sequence Gn

defined by (11) satisfies (12) by modifying the argument given in the third section.
To do so, given π = E1/E2/ · · · , expressed in standard form, let us first define

s(π) by
s(π) =

∑

i even

|Ei|.

If π ∈ Pn,k, then let the (signed) weight w(π) be given by w(π) = (−1)s(π)bn−k.
Note that the exponent n − k gives the number of non-minimal elements within a
member of Pn,k. If n ≥ 0, then let Hn(b) =

∑
π∈Pn

w(π), which we will denote by
Hn.

Proposition 7. If n ≥ 0, then Gn = Hn.
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Proof. To show that Hn satisfies

Hn+1 =
n∑

j=0

(−1)jbn−j

(
n

j

)
Hj , n ≥ 0,

we condition on the number of additional elements, n− j, occupying the block with
1 within a member of Pn+1. There are

( n
n−j

)
=

(n
j

)
choices for these elements, which

contributes bn−j towards the weight w of a partition. Then (−1)jHj accounts for
the contribution towards w of the remaining j elements of [n + 1] arranged in the
blocks E2, E3, . . .. We multiply Hj by (−1)j since we wish for members lying in
blocks Ei of even index to contribute −1 towards the sign and those in odd-indexed
Ei to contribute +1. Since j is the number of elements in all of the blocks past the
first one, multiplying by (−1)j changes the contribution of each element towards
the sign, as desired.

Using the combinatorial interpretation for Gn in Proposition 7, we now show
that it satisfies recurrence (12).

Combinatorial proof of (12). To show that the right side of (12) gives the total
w-weight of all the members of Pn where n ≥ 2, we consider whether or not the
elements 1 and 2 in a partition of [n] belong to the same block. Note that the first
term, bGn−1, gives the weight of those partitions where 1 and 2 belong to the same
block, for adding the 1 to the block containing 2 in a partition of {2, 3, . . . , , n} in
standard form contributes only a factor of b and does not change the sign.

To show that the second term, −Gn−2, gives the total weight of all of the members
of Pn in which the blocks containing 1 and 2 are distinct, suppose first that at least
one of these blocks is not a singleton. Let M > 2 denote the largest element in the
first two blocks. If M lies in the first block, then move it to the second, and vice-
versa. This defines an involution x &→ x′ in which x and x′ have opposite weight. It
is not defined on those partitions of [n] in which the elements 1 and 2 both belong to
singleton blocks. The weight of such partitions is seen to be −Gn−2 since no factor
of b is introduced by the blocks {1} and {2} coming before the blocks E3, E4, . . .
and since the sign must be changed as there is a single element lying in the second
block.

Acknowledgment We we wish to thank Doron Zeilberger for helpful discussions
concerning the problem in this paper.
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