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Abstract
The so-called ζ-analogues of the Stirling numbers of the first and second kind are
considered. These numbers cover ordinary binomial and Gaussian coefficients, p, q-
Stirling numbers and other combinatorial numbers studied with the help of object
selection, Ferrers diagrams and rook theory.

Our generalization includes these and now also the p, q-binomial coefficients. This
special subfamily of F -nomial coefficients encompasses among others, Fibonomial
ones. The recurrence relations with generating functions of the ζ-analogues are
delivered here. A few examples of ζ-analogues are presented.

1. Introduction

Let w = {wi}i≥1 be a vector of complex numbers wi. The generalized Stirling
numbers of the first kind Cn

k (w) and the second kind Sn
k (w) are defined as follows:

Cn
k (w) =

�

1≤i1<i2< ··· <ik≤n

wi1wi2 · · ·wik ,

Sn
k (w) =

�

1≤i1≤i2≤ ···≤ik≤n

wi1wi2 · · ·wik .
(1)

If the elements of the weight vector w are positive integers then the coefficients
are interpreted as a selection of k objects from k of n boxes without and with box
repetition allowed, respectively. In this case the number of distinct objects in the
s-th box is designated by the s-th element of the weight vector w.

One shows that the numbers Cn
k (w) and Sn

k (w) cover among others, binomial
coefficients, Gaussian coefficients and the Stirling numbers of the first and second
kind, see for example Konvalina [6, 7]. Indeed, if we fix wi = 1, we obtain ordinary
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binomial coefficients:

Cn
k (1) =

�
n

k

�
, Sn

k (1) =
�

n + k − 1
k

�
.

Setting wi = qi−1 gives us Gaussian coefficients:

Cn
k (q) = q(

k
2)

�
n
k

�

q

, Sn
k (q) =

�
n + k − 1

k

�

q

.

In this note, the ordinary Stirling numbers of the first kind are defined in the
following way

(1− x)(1− 2x) · · · (1− nx) =
n�

k=0

(−1)k

�
n + 1

n + 1− k

�
xk,

and the second kind

1
(1− x)(1− 2x) · · · (1− nx)

=
n�

k=0

�
n + k

n

�
xk.

Letting i = �1, 2, 3, . . .�, i.e., wi = i, gives

Cn
k (i) =

�
n + 1

n− k + 1

�
, Sn

k (i) =
�

n + k
n

�
.

Furthermore, if ip,q = �[1]p,q, [2]p,q, . . .� where [i]p,q =
�i

s=1 pi−sqs−1, then we ob-
tain p, q-Stirling numbers considered by Wachs and White [12]

p(n
2)Sn

k (ip,q) =
�

n + k
n

�

p,q

,

which satisfy the following recursive relation
�

n
k

�

p,q

= pk−1

�
n− 1
k − 1

�

p,q

+ [k]p,q

�
n− 1

k

�

p,q

.

We refer the reader also to Wagner [13], Médicis and Leroux [11].

Notice, that the weight vector w in the definition of the coefficients Cn
k (w) and

Sn
k (w) is constant and independent of the number n. The ζ-analogue of the Stirling

numbers introduced in the next section do not require this assumption. We define
the weight vector wn(ζ) dependent on the number n and a complex number ζ.

We show that our approach covers the well-known combinatorial numbers men-
tioned above and contains, e.g., Fibonomial and more general p, q-binomial coef-
ficients [2, 3, 4] relevant with cobweb posets’ partitions and hyper-boxes tilings
considered by Kwaśniewski [9] and the present author [5].
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2. A ζ-analogue of the Stirling Numbers

Take a vector wn(ζ) of n complex numbers wiζn−i, where i = 1, 2, ..., n, i.e.,

wn(ζ) =
�
w1ζ

n−1, w2ζ
n−2, . . . , wn−1ζ, wn

�
. (2)

We write it as ŵn for short and denote the i-th element of ŵn by ŵn,i or just ŵi

for fixed n ∈ N. We assume w0(ζ) = ∅ and ŵ0 = 0.

It is important to notice, that the j-th element of wn(ζ) is not equal to the j-th
element of wm(ζ) while n �= m in general. Indeed, wjζn−j �= wjζm−j .

Definition 1. For any n, k ∈ N ∪ {0} the ζ-analogues of the Stirling numbers of
the first kind Ĉn

k (ŵn) and the second kind Ŝn
k (ŵn) are defined as follows:

Ĉn
k (ŵn) =

�

1≤i1<i2< ··· <ik≤n

ŵi1ŵi2 · · · ŵik , (3a)

Ŝn
k (ŵn) =

�

1≤i1≤i2≤ ···≤ik≤n

ŵi1ŵi2 · · · ŵik , (3b)

with Ĉn
0 (ŵn) = Ŝn

0 (ŵn) = 1 due to the empty product.

2.1. Combinatorial Interpretation

If the ŵi are positive integers, the coefficients Ĉn
k (ŵn) and Ŝn

k (ŵn) denote the
number of ways to select k objects from k of n boxes without box repetition allowed
and with box repetition allowed, respectively. In this case, the size of the i-th box
is designated by the i-th element of wn(ζ) for i = 1, 2, ..., n. However, all the
results in this note holds for any vector ŵ of complex numbers and can be proved
algebraically.

Theorem 2. For any n, k ∈ N we have

Ĉn
k (ŵn) = wnζk−1Ĉn−1

k−1 (ŵn−1) + ζkĈn−1
k (ŵn−1), (4a)

Ŝn
k (ŵn) = wnŜn

k−1(ŵn) + ζkŜn−1
k (ŵn−1), (4b)

where Ĉn
0 (ŵn) = Ŝn

0 (ŵn) = 1 and Ĉn
s (ŵn) = 0 for s > n, Ŝ0

k(ŵ0) = 0 for k > 0.

Proof. The proof uses terms of the combinatorial interpretation of these coefficients,
but still holds for any vector ŵn of complex numbers. In point of fact, we consider
the sums (3a), (3b) and only play with its summations.

Fix a natural number n and take the weight vector ŵn = �w1ζn−1, . . . , wn−1ζ, wn�.
(a) Consider a k-selection with the last n-th box being selected (ik = n) and not
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selected (ik < n), respectively (repetition of boxes is not allowed)

Ĉn
k (ŵn) =

�

1≤i1<i2< ··· <ik=n

k�

j=1

wij ζ
n−ij +

�

1≤i1<i2< ··· <ik<n

k�

j=1

wij ζ
n−ij .

Observe that we can rewrite the right-hand side of the above as follows:

wn

�

1≤i1< ··· <ik−1≤n−1

k−1�

j=1

wij ζ
n−ij +

�

1≤i1< ··· <ik≤n−1

k�

j=1

wij ζ
n−ij .

As we have already noticed, the vector ŵn ≡ wn(ζ) is dependent on n, and the
j-th element of wn(ζ) is ζ times as large as the j-th element of wn−1(ζ) for j =
1, 2, . . . , n− 1. Hence

Ĉn
k (ŵn) = wnζk−1

�

1≤i1<i2< ··· <ik−1≤n−1

k−1�

j=1

wij ζ
n−1−ij +

+ ζk
�

1≤i1<i2< ··· <ik≤n−1

k�

j=1

wij ζ
n−1−ij

= wnζk−1Ĉn−1
k−1 (ŵn−1) + ζkĈn−1

k (ŵn−1).

(b) In the same way we prove the case with box repetition allowed.

Notation 3. Let n ∈ N and m ∈ N ∪ {0}. Denote by ŵ(m)
n the vector

ŵ(m)
n = �wm+1ζ

n−1, wm+2ζ
n−2, . . . , wm+n−1ζ, wm+n�.

For m = 0 we have ŵ(0)
n ≡ ŵn.

Proposition 4. For any n,m, k ∈ N we have

Ĉn+m
k (ŵn+m) =

k�

j=0

ζj·mĈn
j (ŵn)Ĉm

k−j(ŵ
(n)
m ), (5a)

Ŝn+m
k (ŵn+m) =

k�

j=0

ζj·mŜn
j (ŵn)Ŝm

k−j(ŵ
(n)
m ). (5b)

Proof. (a) We prove the first equation (5a). Consider the left-hand side, i.e., the
sum

Ĉn+m
k (ŵn+m) =

�

1≤i1<i2< ··· <ik≤n+m

wi1ζ
n+m−i1 · · ·wikζn+m−ik .

Take j ∈ {0, 1, . . . , k}. We only need to show that the above summation might
be separated into (k + 1) disjoint sums where in the j-th one the first j variables
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i1, i2, . . . , ij take on values from the set {1, 2, . . . , n} and the remaining (k − j)
variables from {n + 1, . . . , n + m}, i.e.,

Ĉn+m
k (ŵn+m) =

k�

j=0

�

1≤i1<···<ij≤n

wi1ζ
n+m−i1 · · ·wij ζ

n+m−ij

·
�

n+1≤ij+1<···<ik≤n+m

wij+1ζ
n+m−ij+1 · · ·wikζn+m−ik .

Finally, we need to correct the powers of ζ’s as follows:
�

1≤i1<i2< ··· <ij≤n

wi1ζ
n+m−i1 · · ·wij ζ

n+m−ij = ζj·mĈn
j (ŵn).

(b) The same proof remains valid for the coefficients Ŝn+m
k (ŵn+m).

This result provides a more general form of the recurrence relation (4a) for the
coefficients Ĉn

k (ŵn). Indeed, letting n = n� − 1 and m = 1 in the equation (5a)
gives (4a).

Proposition 5. For any n, k ∈ N we have

Ĉn
k (ŵn) =

n�

j=k

wjζ
k(n−j+1)−1Ĉj−1

k−1(ŵj−1), (6a)

Ŝn
k (ŵn) =

n�

j=1

wjζ
k(n−j)Ŝj

k−1(ŵj). (6b)

Proof. (a) Consider the sum (3a) from the definition of the coefficient Ĉn
k (ŵn) and

separate it into (n− k + 1) sums where in the j-th one the last variable ik is equal
to (k + j) for j = 0, 1, . . . , n− k, i.e.,

Ĉn
k (ŵn) =

n−k�

j=0

�

1≤i1<···<ik−1<ik=k+j

wi1ζ
n−i1 · · ·wikζn−ik (7)

=
n�

j=k

wjζ
n−j

�

1≤i1<···<ik−1≤j−1

wi1ζ
n−i1 · · ·wik−1ζ

n−ik−1 . (8)

Taking out the common factor ζ(n−j+1) from (k − 1) factors (wiζn−i) gives

Ĉn
k (ŵn) =

n�

j=k

wjζ
k(n−j+1)−1

�

1≤i1<···<ik−1≤j−1

wi1ζ
j−1−i1 · · ·wik−1ζ

j−1−ik−1

=
n�

j=k

wjζ
k(n−j+1)−1Ĉj−1

k−1(ŵj−1).
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(b) The second equation (6a) might be handled in much the same way. Observe
only that the variable j takes on values from the set {1, 2 . . . , n}.

Proposition 6. For any n, k ∈ N we have

Ĉn+1
k (ŵn+1) =

k�

j=0

Ĉn−j
k−j (ŵn−j)ζ(j+1)(k−j)+(j

2)
j−1�

i=0

wn+1−i, (9a)

Ŝn+1
k (ŵn+1) =

k�

j=0

Ŝn
k−j(ŵn)ζ(k−j)wj

n+1. (9b)

Proof. (a) Consider the sum (3a) of Ĉn+1
k (ŵn+1) and observe that it may be sepa-

rated into (k + 1) sums where in the j-th one (j = 0, 1, 2, . . . , k) we have

1 ≤ i1 < · · · < ik−j ≤ n− j; ik−j+1 = n + 1− j + 1, . . . , ik = n + 1.

(b) In the case of the coefficient Ŝn+1
k (ŵn+1) we may separate the sum (3b) into

(k + 1) sums where in the j-th one (j = 0, 1, 2, . . . , k) we have

1 ≤ i1 ≤ · · · ≤ ik−j ≤ n; ik−j+1 = ik−j+2 = · · · = ik = n + 1.

The rest of the proof is straightforward and goes in much the same way as the
proofs of Proposition 4 and Proposition 5.

3. Generating Functions

Let n ≥ 0 and define two generating functions:

An(x, y) =
�

k≥0

(−1)kĈn
k (ŵn)xkyn−k, (10a)

Bn(x) =
�

k≥0

Ŝn
k (ŵn)xk. (10b)

Theorem 7. For n ≥ 1 we have

An(x, y) =
n�

i=1

�
y − wiζ

n−ix
�
, (11a)

Bn(x) =
n�

i=1

1
(1− wiζn−ix)

, (11b)

with A0(x, y) = 1 and B0(x) = 1.
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Proof. Applying recurrences (4a) and (4b), respectively, shows that An(x, y) and
Bn(x) satisfy

An(x, y) = (y − wn x)An−1(ζx, y) with A0(x, y) = 1,

Bn(x) =
1

(1− wn x)
Bn−1(ζx) with B0(x) = 1.

Solving these recurrence relations proves (11a) and (11b).

Corollary 8. For any n, j ∈ N the coefficients Ĉn
k (ŵn) and Ŝn

k (ŵn) satisfy the
following relations

j�

k=0

(−1)kĈn
k (ŵ)Ŝn

j−k(ŵ) = 0, (12a)

j�

k=0

Ŝn
k (ŵ)(−1)j−kĈn

j−k(ŵ) = 0. (12b)

Proof. Indeed, notice thatAn(x, 1)Bn(x) = Bn(x)An(x, 1) = 1 for any n ∈ N. Using
the Cauchy product of power series with (11a) and (11b) finishes the proof.

Let f(x) be a series in powers of x. Then by the symbol [xn]f(x) we will mean
the coefficient of xn in the series f(x). For example we have

Ŝn
k (ŵn) = [xk]Bn(x) = [xk]

n�

i=1

1
(1− wiζn−ix)

.

Proposition 9. Let ŵ = �ŵ1, ŵ2, . . . , ŵn� be the vector wn(ζ), such that ŵi �= ŵj

for any i �= j. Then for n, k ∈ N we have

Ŝn
k (ŵn) =

n�

i=1

(−1)n−i ŵ(n+k−1)
i�i−1

j=1(ŵi − ŵj)
�n

j=i+1(ŵj − ŵi)
, (13)

where ŵi = wiζn−i for i = 1, 2, . . . , n.

Proof. Let us consider the generating function (11b). From the partial fraction
decomposition we get

Ŝn
k (ŵn) = [xk]

n�

i=1

1
(1− wiζn−ix)

= [xk]
n�

i=1

ai

(1− wiζn−ix)
=

n�

i=1

ai

�
wiζ

n−i
�k

.

What is left is to find the coefficients a1, a2, . . . , an. First, we multiply the above
by the denominator of (11b), i.e., by

�n
j=1

�
1− wjζn−jx

�
to get

1 ≡
n�

i=1

ai

n�

j=1
j �=i

�
1− wjζ

n−jx
�
.
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Observe that if we evaluate the above with x = (wiζn−i)−1, all summands except
the i-th one vanish. Thus we obtain ai, i.e.,

1 = ai

�

j=1
j �=i

�
1− wj

wi
ζi−j

�
⇒ ai =

�

j=1
j �=i

1�
1− wj

wi
ζi−j

� =
�
wiζn−i

�n−1

�n
j=1
j �=i

(wiζn−i − wjζn−j)
.

Replacing wiζn−i by ŵi for each i = 1, 2, . . . , n, we can rewrite the above as

ai =
ŵn−1

i�n
j=1
j �=i

(ŵi − ŵj)
=

ŵn−1
i�i−1

j=1 (ŵi − ŵj)
�n

j=i+1 (ŵi − ŵj)

= (−1)n−i ŵn−1
i�i−1

j=1 (ŵi − ŵj)
�n

j=i+1 (ŵj − ŵi)
.

Example 10. Let i be the vector �1, 2, 3, . . .�, i.e., ŵi = i for i ∈ N. Then by
Proposition 9 we obtain the well-known identity for the Stirling numbers of the
second kind:

Ŝk
n−k(i) =

�
n
k

�
=

k�

i=1

(−1)k−i in

i!(k − i)!
.

4. Remarks and Examples

It is clear that Ĉn
k (ŵn) and Ŝn

k (ŵn) generalize the Stirling numbers of the first kind
Cn

k (w) and the second kind Sn
k (w) if ζ = 1, i.e., w = (w1, w2, . . . , wk, . . .) and

Ĉn
k (wn(1)) ≡ Cn

k (w), Ŝn
k (wn(1)) ≡ Sn

k (w). (14)

Fix p, q ∈ C. A sequence {np,q}n≥0 of the elements np,q =
�n

i=1 pn−iqi−1 is
called a (p, q)-sequence. In the literature, the elements of (p, q)-sequences are called
(p, q)-analogues and are denoted by np,q ≡ [n]p,q (see Briggs and Remmel [1]).

Example 11. (p, q-binomial coefficients)
The p, q-binomial coefficients generalize binomial, Gaussian and Fibonomial coeffi-
cients [2, 3, 4] and are defined as

�
n
k

�

p,q

=
np,q!

kp,q!(n− k)p,q!
=

np,q(n− 1)p,q · · · (n− k + 1)p,q

kp,q(k − 1)p,q · · · 1p,q
,

where np,q! = np,q(n− 1)p,q · · · 1p,q and 0p,q = 1.
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Therefore, if the weight vector wn(p) takes the form �pn−1, qpn−2, . . . , qn−2p, qn−1�,
one covers the family of p, q-binomial coefficients [2, 3, 4], i.e.,

Ĉn
k (wn(p)) = p(k

2)q(
k
2)

�
n
k

�

p,q

, Ŝn
k (wn(p)) =

�
n + k − 1

k

�

p,q

. (15)

Thus for any (p, q)-sequence with p, q ∈ N, we have at least three different com-
binatorial interpretations of its p, q-binomial coefficients: expressed in the language
of cobweb posets partitions [9], tilings of hyper-boxes [4] and now as an object
selection from weighted boxes.

Example 12. (Fibonomial coefficients)
It is easy to show that the Fibonacci numbers define a (ϕ, ρ)-sequence where ϕ =
(1 +

√
5)/2 and ρ = (1 −

√
5)/2. Therefore, from the previous example, the ζ-

analogue also generalize the Fibonomial coefficients, i.e.,

Ĉn
k (ϕn) = (−1)(

k
2)

�
n
k

�

Fib

, Ŝn
k (ϕn) =

�
n + k − 1

k

�

Fib

, (16)

with the weight vector ϕn = �ϕn−1, ρϕn−2, . . . , ρn−2ϕ, ρn−1�. However, the com-
binatorial interpretation in terms of object selection cannot be applied in this case
vector ϕn does not consist of only nonnegative integers. Fixing s, n ∈ N, from
Corollary 8 we have also

s�

k=0

(−1)(
k+1
2 )

�
n
k

�

Fib

�
n + s− k − 1

s− k

�

Fib

= 0.

Example 13. (p, q-Stirling numbers)
The ζ-analogue generalizes the p, q-Stirling numbers [12]. Indeed, let us consider
the vector in(ζ) = �[1]p,qζn−1, [2]p,qζn−2, . . . , [n]p,q�, where [i]p,q =

�i
s=1 pi−sqs−1

for i ∈ N and ζ = 1. Then we have

Ŝn
k (in(1)) =

�
n + k

n

�

p,q

, Ŝk
n−k(in(1)) =

�
n
k

�

p,q

. (17)

Finally, by Theorem 2 we have that the ζ-analogues of p, q-Stirling numbers satisfy
�

n
k

�

ζ

= pk−1ζn−k

�
n− 1
k − 1

�

ζ

+ [k]p,q

�
n− 1

k

�

ζ

. (18)

5. Final Remarks

The form of the weight vector wn(ζ) given by (2) is one possible choice and we
expect that there might be many other useful forms that can be applied here, e.g.
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ŵi,n = wn−i
i , etc. We leave it for further investigation. Our choice is caused by

unifying p, q-binomial coefficients and generalized Stirling numbers.
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