
#A1 INTEGERS 12 (2012)

THE NUMBER OF PERMUTATIONS WITH PRESCRIBED
UP-DOWN STRUCTURE AS A FUNCTION OF TWO VARIABLES

Vladimir Shevelev
Dept. of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

shevelev@bgu.ac.il

Received: 9/27/10, Revised: 6/30/11, Accepted: 11/20/11, Published: 1/2/12

Abstract
We consider the number of permutations with prescribed up-down structure as a
function of two arguments: the number n of elements and the introduced up-down
index k of a permutation. We consider sets of permutations for which k is a fixed
number and when k is a function of n. In the first case the number of permutations
is a polynomial in n, the degree of which is defined by k.

1. Introduction

D. Andre [3] first considered (1881) the problem of enumerating the alternating
permutations π = (π1, . . .πn) of the numbers 1, 2, . . . , n for which ups and downs
are alternating:

π1 < π2 > π3 < . . .

This problem has a highly aesthetic solution: the exponential generating function
of such permutations is the sum of tangent and secant. But only after almost a
century (1968) I. Niven [14] considered the general problem of the enumerating the
permutations with given up-down structure.

Definition 1. For a permutation π = (π1, . . . ,πn), the sequence (q1, q2, . . . , qn−1),
where

qj = sign(πj+1 − πj) =

{
1, if πj+1 > πj

−1, if πj+1 < πj
, (1)

is called Niven’s signature.

For example, a = (2, 1, 5, 4, 3) has the signature (−1, 1,−1,−1). Denote by
[q1, q2, . . . , qn−1] the number of permutations having Niven signature (q1, q2, . . . , qn−1).
In view of symmetry we have

[q1, q2, . . . , qn−1] = [−qn−1,−qn−2, . . . ,−q1]. (2)

Niven obtained the following basic result.
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Theorem 2. ([14]). In the signature (q1, q2, . . . , qn−1), let the indices of the positive
qi be s1 < s2 < . . . < sm (if such qi do not exist then assume m = 0). In addition,
set s0 = 0, sm+1 = n. Then

[q1, q2, . . . , qn−1] = detN, (3)

where N = {nij} is the square matrix of order m + 1 in which

nij =
(

si

sj−1

)
, i, j = 1, 2, . . . ,m + 1. (4)

Since Niven’s celebrated result, there have been many articles on this subject.
We mention only eleven papers in chronological order: N. G. Bruijn, 1970 [6], H.
O. Foulkes, 1976 [10], L. Carlitz, 1978 [7], G. Viennot, 1979 [23], C. L. Mallows
and L .A. Shepp, 1985 [12], V. Arnold, 1991 [4], V. S. Shevelev, 1996 [18], G.
Szpiro, 2001 [21], B. Shapiro, M. Shapiro and A. Vainshtein, 2005 [17], F. C. S.
Brown, T. M. A. Fink and K. Willbrand, 2007 [5], R. Stanley, 2007 [21].

Let us introduce an index of the Niven signature by the following way.

Definition 3. The integer k = kn is called the index of the signature (q1, q2, . . . , qn−1)
if the (n− 1)-digit binary representation of k is

k =
n−1∑

i=1

q!
i2

n−i−1, (5)

where

q!
i =

{
1, if qi = 1,
0, otherwise

. (6)

Denote by S(k)
n the set of permutations of elements 1, 2, . . . , n having the index

k, and put
{

n
k

}
=

∣∣∣S(k)
n

∣∣∣ . (7)

It is clear that in (7) we have n ≥ 1 and 0 ≤ k ≤ 2n−1 − 1.
Note that, in view of the fact that [q1, q2, . . . , qn−1] = [−q1,−q2, . . . ,−qn−1],

{
n
k

}
=

{
n

2n−1 − 1− k

}
. (8)
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We say that indices k and k = 2n−1 − 1− k are conjugate indices.

In case of a fixed k, we show that
{

n
k

}
is a polynomial in n of degree $log2(2k)%.

For different values of k, we call these polynomials up-down polynomials. In general,

when k depends on n, we call
{

n
k

}
an up-down coefficient.

Recall that the number of permutations 1, . . . , n in which exactly t elements are
greater than the previous element (i.e., permutations with t ascents) is given by the
Eulerian number (see, e.g., [9], p.243; [11], p.267-272)

A(n, t) =
t∑

i=0

(−1)i

(
n + 1

i

)
(t + 1− i)n, 0 ≤ t ≤ n− 1. (9)

Let s(k) denote the number of 1′s in the binary expansion of k. Then, by the
definition, we have an expansion of A(n, t) over polynomials in n :

A(n, t) =
∑

j: s(j)=t

{
n
j

}
. (10)

Let us draw an analogy between binomial coefficients and up-down coefficients;

1a.
(

n
k

)
is the number of subsets of the cardinality k of a set of n elements.

1b.
{

n
k

}
is the number of permutations of n elements having the index k.

2a. Each subset of a set of n elements is contained in the number of
(

n
k

)
subsets

for some value of k.
2b. Each permutation of n elements is contained in the number of

{
n
k

}
permu-

tations for some value of the index k.

3a.
n∑

k=0

(
n
k

)
= 2n.

3b.
2n−1−1∑

k=0

{
n
k

}
= n!

4a.
n∑

k=0

(−1)k

(
n
k

)
= 0.

4b.
2n−1∑

k=0

(−1)k

{
n
k

}
= 0.

5a.
∑

0≤k≤n, k even

(
n
k

)
=

∑

0≤k≤n, k odd

(
n
k

)
= 2n−1.

5b.
∑

0≤k≤2n−1−1, k even

{
n
k

}
=

∑

0≤k≤2n−1−1, k odd

{
n
k

}
=

n!
2

, n ≥ 2.
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6a.
(

n
n− k

)
=

(
n
k

)
.

6b.
{

n
k

}
=

{
n

2n−1 − 1− k

}
.

7a.
(

n
0

)
=

(
n
n

)
= 1.

7b.
{

n
0

}
=

{
n

2n−1 − 1

}
= 1.

The latter equality corresponds to the identity permutation (1, . . . , n) and its
reverse permutation (n, . . . , 1).

8. The central binomial coefficients and the “central” numbers
{

n
k

}
are equal

to one another:
{

2n
2n − 1

}
=

(
2n− 1
n− 1

)
=

(
2n− 1

n

)
;

{
2n + 1
2n − 1

}
=

(
2n
n

)
.

We prove these and other properties of the up-down coefficients in different sections
of this paper and in [19].

9. Both
{

n
k

}
and

(
n
k

)
are polynomials in n, if k does not depend on n, and,

generally speaking, are not polynomials, otherwise.

Example 4. In case of the alternating permutations π1 < π2 > π3 < . . . , we have
the sequence of indices k = κn−1, n = 1, 2, 3, . . . such that

κ0 = 0, κ1 = 1, κ2 = 2, κ3 = 5, κ4 = 10, κ5 = 21, . . . .

Here κn − κn−2 = 2n−1, n ≥ 3, whence

κn−1 =
2n+1 − 3 + (−1)n

6
, n = 1, 2, . . . (11)

and, according to (11), we put also κ−1 = 0. Thus, from the classical Andre’s result
we have

∞∑

n=0

{
n

κn−1

}
xn

n!
= tanx + secx, (12)

where we put
{

0
0

}
= 1.
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From the latter formula we find some values of
{

n
m

}
:

{
1
0

}
= 1,

{
2
1

}
= 1,

{
3
2

}
= 2,

{
4
5

}
= 5,

{
5
10

}
= 16,

{
6
21

}
= 61, . . . (13)

It is well-known that these values are explicitly expressed by absolute values of
the Bernoulli and Euler numbers [4], [8]. More exactly, for n = 2m and n = 2m− 1
we have correspondingly

{
2m

22m−1
3

}
= |E2m|,

{
2m− 1
22m−1−2

3

}
=

|B2m|
2m

(22m − 1)22m. (14)

In this paper we develop a theory of up-down coefficients. In particular, we obtain
generator functions, explicit formulas and numerous recursions for them, and study
some interesting arithmetic properties. We also study zeros of up-down polynomials
and give characteristic conditions when a given polynomial in n is up-down. Finally,
we pose some open problems.

2. An Explicit Formula for Up-Down Coefficients

Let k ∈ [2t−1, 2t) and the (n− 1)-digit binary expansion of k have a form:

k = 0 . . . 0︸ ︷︷ ︸
n−t−1

1 0 . . . 0︸ ︷︷ ︸
s2−s1−1

1 0 . . . 0︸ ︷︷ ︸
s3−s2−1

1 . . . 1 0 . . . 0︸ ︷︷ ︸
sm−sm−1−1

1 0 . . . 0︸ ︷︷ ︸
t−sm

, (15)

where 1 = s1 < s2 < . . . < sm are places of 1’s after n− t− 1 0’s before the first 1.
Put

k∗ = 2n−1 − k − 1 =
n−2∑

i=0

q!
i2

i. (16)

By Equation 7 and Theorem 2, we have

{
n
k

}
=

{
n
k∗

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
s1

0

) (
s1

s1

) (
s1

s2

)
. . .

(
s1

sm−2

) (
s1

sm−1

) (
s1

sm

)

(
s2

0

) (
s2

s1

) (
s2

s2

)
. . .

(
s2

sm−2

) (
s2

sm−1

) (
s2

sm

)

(
s3

0

) (
s3

s1

) (
s3

s2

)
. . .

(
s3

sm−2

) (
s3

sm−1

) (
s3

sm

)

...
...

...
. . .

...
...

...(
sm

0

) (
sm

s1

) (
sm

s2

)
. . .

(
sm

sm−2

) (
sm

sm−1

) (
sm

sm

)

(
n
0

) (
n
s1

) (
n
s2

)
. . .

(
n

sm−2

) (
n

sm−1

) (
n
sm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 0 0 0

1
(

s2

s1

)
1 . . . 0 0 0

1
(

s3

s1

) (
s3

s2

)
. . . 0 0 0

...
...

...
. . .

...
...

...

1
(

sm

s1

) (
sm

s2

)
. . .

(
sm

sm−2

) (
sm

sm−1

)
1

1
(

n
s1

) (
n
s2

)
. . .

(
n

sm−2

) (
n

sm−1

) (
n
sm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(17)

Later on, we write the index k of the permutation signature in a more natural
form; consider permutations from the reverse side, then the points of descents t1 >
t2 > . . . > tm ≥ 1 turn into points of ascents. Let k be the conjugate index with
1’s in its binary expansion on the places ti, i = 1, . . . ,m, and 0’s on the other
places. Then

k = 2t1−1 + 2t2−1 + · · · + 2tm−1, t1 > t2 > . . . > tm ≥ 1. (18)

Note that, in view of (8), if
k := k, (19)

then the numbers of the corresponding permutations are equal to one another.
Therefore, using (17)-(19) and replacing si by tm−i+1, we obtain the following result.

Theorem 5. If

k = 2t1−1 + 2t2−1 + . . . + 2tm−1, t1 > t2 > . . . > tm ≥ 1, (20)

then

{
n
k

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 0 0 0

1
(

tm−1

tm

)
1 . . . 0 0 0

1
(

tm−2

tm

) (
tm−2

tm−1

)
. . . 0 0 0

...
...

...
. . .

...
...

...

1
(

t1
tm

) (
t1

tm−1

)
. . .

(
t1
t3

) (
t1
t2

)
1

1
(

n
tm

) (
n

tm−1

)
. . .

(
n
t3

) (
n
t2

) (
n
t1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(21)

Corollary 6. If k does not depend on n, then
{

n
k

}
is a polynomial in n of degree

t1 = $log2(2k)%.
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In the last determinant let us replace the orders of elements in rows and columns
by opposite ones. Then we obtain (21) in the form

{
n
k

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n
t1

) (
n
t2

) (
n
t3

)
. . .

(
n

tm−1

) (
n
tm

)
1

1
(

t1
t2

) (
t1
t3

)
. . .

(
t1

tm−1

) (
t1
tm

)
1

0 1
(

t2
t3

)
. . .

(
t2

tm−1

) (
t2
tm

)
1

0 0 1 . . .

(
t3

tm−1

) (
t3
tm

)
1

...
...

...
. . .

...
...

0 0 0 . . . 1
(

tm−1

tm

)
1

0 0 0 . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(22)

Corollary 7. We have {
0
k

}
= (−1)m = τk, (23)

where {τj}j≥0 = {1,−1,−1, 1,−1, 1, 1,−1, . . . } is the Thue-Morse sequence [13, 2].

From (22) the following arithmetic property of numbers
{

n
k

}
follows.

Theorem 8. If n is prime, then
{

n
k

}
≡ τk (mod n). (24)

Moreover, if all divisors of n, other than 1, are larger than 1 + $log2 k%, then (24)
holds as well.

Corollary 9. If n is prime, then

A(n, t) ≡ 1 (mod n). (25)

Proof. There are
(

n− 1
t

)
indices containing exactly t 1’s. Thus, by (10) and (24),

we have
A(n, t) ≡ (−1)t

(
n− 1

t

)
(mod n).

The latter is an integer of the form (−1)t(n1n
t! + (−1)t) ≡ 1 (mod n). !

Remark 10. It is evident that the validity of (24) does not depend on whether k
is a constant or a function of n.
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Remark 11. Theorem 3, for the first time, was proved by the author in [18] in a
similar way.

Remark 12. Recently, in the case of prime n, a weak form of Theorem 8 was given
in [5] by replacing τk by ±1.

In view of a rather simple structure of determinant (22), we are able to calculate
it using permanents.

Theorem 13. For k (as defined in (20)) we have

{
n
k

}
= τk



1 +
m∑

p=1

(−1)p
∑

1≤i1<i2<...<ip≤m

(
n
ti1

) p∏

r=2

(
tir−1

tir

)

 . (26)

Proof. The number of diagonals of matrix (22) having no 0’s is equal to the perma-
nent of the following (m + 1)× (m + 1) matrix:

Cm+1 =





1 1 1 . . . 1 1 1
1 1 1 . . . 1 1 1
0 1 1 . . . 1 1 1
0 0 1 . . . 1 1 1
...

...
...

. . .
...

...
...

0 0 0 . . . 1 1 1
0 0 0 . . . 0 1 1





.

Decomposing perCm+1 by the last row we find

perCm+1 = 2perCm = 22perCm−1 = . . . = 2m.

Denote by A the (m + 1)× (m + 1) matrix (22) and consider the (m×m) upper-
triangle submatrix T with the main diagonal composed of 1’s. Let us choose p 1’s
of the main diagonal of T in its rows (1 ≤) i1 < i2 < . . . < ip ≤ m. To this choice
corresponds a diagonal of A composed of the other (m−p) 1’s of the main diagonal
of T and the unit in the last column of A which is the continuation of the ip-th

row of T and elements
(

n
ti1

)
,

(
ti1
ti2

)
,

(
ti2
ti3

)
, . . . ,

(
tip−1

tip

)
, such that finally we have

m− p + 1 + p = m + 1 elements of A which are in different rows and columns. As a

result, we obtain
∑m

p=0

(
m
p

)
= 2m, i.e., all diagonals of A having no 0’s (note that,

p = 0 corresponds to the choice of the empty subset of 1’s of the main diagonal of
T, i.e., in this case, all these 1’s and the unit in the first row of A form the only
diagonal of 1’s). Therefore, we have

perA = 1 +
m∑

p=1

∑

1≤i1<i2<...<ip≤m

(
n
ti1

) p∏

r=2

(
tit−1

tir

)
.
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It is left to find the number of cycles of the permutation corresponding to diagonal
of the elements (

n
ti1

)
,

(
ti1
ti2

)
,

(
ti2
ti3

)
, . . . ,

(
tip−1

tip

)

and 1 in position (ip + 1, m + 1). Put, for symmetry, n = t0. Then the matrix
(22) becomes “quasi-Toeplitz” in the sense that, for a fixed j ≥ 0, the diagonal
(ai, i+j)i≥1 contains only non-zero elements of the form:

(
t0

tij+1

)
,

(
t1

tij+2

)
, . . .

with the equal differences (j+1)−0 = (j+2)−1 = · · · = j+1. Note that every non-
zero element of the form (ai, i+j) belongs to a cycle of the form [(ai, i+j), 1, . . . , 1]
with j 1’s in the positions (2, 1), (3, 2), . . . , (j + 1, j), i.e., it belongs to a cycle of
length j+1. Thus the considered elements are in cycles of lengths i1, i2−i1, . . . , ip−
ip−1, m + 1− ip (the last length corresponds to 1 in the position (ip + 1, m + 1))
so we have p + 1 distinct cycles. Indeed, two cycles either coincide or are disjoint.
The total length of all cycles is i1 +(i2− i1)+ · · ·+(ip− ip−1)+m+1− ip = m+1.
If some two cycles coincide, then these two cycles are considered as one and, in this
case, the total sum will be less than m+1, which is impossible for a diagonal. Thus
we have exactly p + 1 cycles of the considered diagonal. The latter means that the
parity of the corresponding permutation is (−1)(m+1)−(p+1) = (−1)m−p = τk(−1)p.
This completes the proof of formula (26). !

Corollary 14. We have the following representation of up-down coefficient as τk =
(−1)m plus a linear combination of binomial coefficients:

{
n
k

}
= (−1)m +

m∑

p=1

cp

(
n
tp

)
, (27)

where

cp = (−1)m



−1 +
m∑

j=p+1

(
tp
tj

)
−

∑

p+1≤j<l≤m

(
tp
tj

)(
tj
tl

)
+ · · ·

+(−1)m−p−1
m∏

j=p+1

(
tj−1

tj

)

 . (28)

In particular,
cm = (−1)m+1

cm−1 = (−1)m

(
−1 +

(
tm−1

tm

))
(29)

cm−2 = (−1)m

(
−1 +

(
tm−2

tm−1

)
+

(
tm−2

tm

)
−

(
tm−2

tm−1

)(
tm−1

tm

))

etc. These formulas play an important role in constructions of the next section.
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Example 15. Let k = 2m − 1. Then, according to (20) − (21), we have tm =
1, tm−1 = 2, . . . , t1 = m and

cm = (−1)m+1

cm−1 = (−1)m(−1 + 2) = (−1)m

cm−2 = (−1)m(−1 + 3 + 3− 3 · 2) = (−1)m+1

and, by induction, cm = −cm−1 = cm−2 = . . . = (−1)m−1c1 = (−1)m−1, i.e.,
cp = (−1)p−1.

Thus, we have
{

n
2m − 1

}
= (−1)m +

m∑

p=1

(−1)p−1

(
n

m− p + 1

)
=

m∑

j=0

(−1)m−j

(
n
j

)
=

(
n− 1

m

)
.

(30)
(the latter identity is proved easily by induction over m).

In particular, putting n = 2m and n = 2m + 1, we have
{

2m
2m − 1

}
=

(
2m− 1

m

)
,

{
2m + 1
2m − 1

}
=

(
2m
m

)
. (31)

This proves the analogy for the central up-down coefficients and the central
binomial coefficients.

Remark 16. On the other hand, applying Theorem 2 directly to the index with
binary expansion (15) (without transformation (16)), we find that

{
n
k

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 0

1
(

n− t + s2 − 1
s2 − 1

)
1 . . . 0

1
(

n− t + s3 − 1
s3 − 1

) (
n− t + s3 − 1

s3 − s2

)
. . . 0

. . . . . . . . . . . . . . .

1
(

n− t + sm − 1
sm − 1

) (
n− t + sm − 1

sm − s2

)
. . . 1

1
(

n
t

) (
n

t + 1− s2

)
. . .

(
n

t + 1− sm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(32)

and, in the same way, we get
{

n
k

}
= (−1)m +

m∑

p=1

(−1)m−p
∑

1≤i1<i2<...<ip≤m

(
n

t + 1− sip

) p∏

r=2

(
n− t + sir − 1

sir − sir−1

)
.

(33)
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Comparing (20) and (15) with t = t1, we have

sm = t1−tm+1, sm−1 = t1−tm−1+1, . . . , s2 = t1−t2+1, s1 = t1−t1+1 = 1. (34)

It is easy to check directly the following identity
(

n
tip

) p∏

r=2

(
n− tir

tir−1 − tir

)
=

(
n
ti1

)(
ti1
ti2

)(
ti2
ti3

)
. . .

(
tip−1

tip

)
. (35)

Now from (33)−(35), (26) follows. Note that (33) was essentially discovered first
in our paper [18].

Remark 17. Note that, the comparison of (21) and (32) with (34) gives an inter-
esting identity for determinants:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 0

1
(

n− t2
n− t1

)
1 . . . 0

1
(

n− t3
n− t1

) (
n− t3
n− t2

)
. . . 0

...
...

...
. . .

...

1
(

n− tm
n− t1

) (
n− tm
n− t2

)
. . . 1

1
(

n
n− t1

) (
n

n− t2

)
. . .

(
n

n− tm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 0 0 0

1
(

tm−1

tm

)
1 . . . 0 0 0

1
(

tm−2

tm

) (
tm−2

tm−1

)
. . . 0 0 0

...
...

...
. . .

...
...

...

1
(

t1
tm

) (
t1

tm−1

)
. . .

(
t1
t3

) (
t1
t2

)
1

1
(

n
tm

) (
n

tm−1

)
. . .

(
n
t3

) (
n
t2

) (
n
t1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(36)

when the transformation of all elements different from 0, 1 by the rule n − ti )→
tm−i+1, i = 1, . . . ,m,m + 1, with the conventions tm+1 = 0, t0 = n, leads to
”sweeping” of the dependance on n in the bordered triangular submatrix.

E.g., for m = 2, (36) reduces to an easily verifiable identity
(

n− t2
t1 − t2

)(
n

t2

)
=

(
t1
t2

)(
n

t1

)
.
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Consider the representation of
{

n
k

}
in form (22) in case of the alternating per-

mutations. In this case k = κn−1 (11). Using (14) for n = 2m, we get an ex-
plicit formula for the Euler numbers E2m, m ≥ 1 (cf.[1], Table 23.2, [20], sequence
A000364). Taking into account the sign (−1)m of E2m, we transpose the column of
1’s in (22) to the first column.

Corollary 18. We have

E2m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(

2m
2m− 1

) (
2m

2m− 3

) (
2m

2m− 5

)
. . .

(
2m
1

)

1 1
(

2m− 1
2m− 3

) (
2m− 1
2m− 5

)
. . .

(
2m− 1

1

)

1 0 1
(

2m− 3
2m− 5

)
. . .

(
2m− 3

1

)

1 0 0 1 . . .

(
2m− 5

1

)

...
...

...
...

. . .
...

1 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Analogously, using (14) for n = 2m− 1, we have for the numbers

b2m =
B2m

2m
(22m − 1)22m, m ≥ 2, (37)

(cf.[1], Table 23.2) the following representation.

Corollary 19. We have

b2m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(

2m− 1
2m− 2

) (
2m− 1
2m− 4

) (
2m− 1
2m− 6

)
. . .

(
2m− 1

2

)

1 1
(

2m− 2
2m− 4

) (
2m− 2
2m− 6

)
. . .

(
2m− 2

2

)

1 0 1
(

2m− 4
2m− 6

)
. . .

(
2m− 4

2

)

1 0 0 1 . . .

(
2m− 6

2

)

...
...

...
...

. . .
...

1 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The latter numbers are called the ”tangent numbers” ([20], sequence A000182).

Example 20. For m = 1, we have

E2 =

∣∣∣∣∣∣
1

(
2
1

)

1 1

∣∣∣∣∣∣
= −1,
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for m = 2, we have

B4

4
· 16 · 15 =

∣∣∣∣∣∣
1

(
3
2

)

1 1

∣∣∣∣∣∣
= −2,

which corresponds to B4 = − 1
30 .

For m = 2, we also have

E4 =

∣∣∣∣∣∣∣∣∣∣

1
(

4
3

) (
4
1

)

1 1
(

3
1

)

1 0 1

∣∣∣∣∣∣∣∣∣∣

= 5,

for m = 3, we find

B6

6
· 64 · 63 =

∣∣∣∣∣∣∣∣∣∣

1
(

5
4

) (
5
2

)

1 1
(

4
2

)

1 0 1

∣∣∣∣∣∣∣∣∣∣

= 16,

which corresponds to B6 = 1
42 .

3. Positive Integer Zeros of the Up-Down Polynomials: Characteristic
Conditions for an Up-Down Polynomial

We consider
{

n
k

}
from a more formal point of view as a polynomial in n the values

of which do not always have a combinatorial sense. E.g., this occurs when n − 1

has smaller digits than k. In this case
{

n
k

}
could take zero and negative values.

We start with the following simple result.

Theorem 21. If k = 2t1−1 + 2t2−1 + . . . + 2tm−1, t1 > t2 > . . . > tm ≥ 1 then the

integers t1, t2, . . . , tm are roots of the up-down polynomial
{

n
k

}
.

Proof. Substituting in (22) n = tj , we see that the first row coincides with the
(j + 1)th row, j = 1, 2, . . . ,m. !

So, the first polynomials of the form

{
n
k

}∗
=

{
n
k

}

(n− t1)(n− t2) · · · (n− tm)
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are (cf. Appendix):

1, 1,
n + 1

2
,

1
2
, n2 + 2,

n + 1
3

,
2n + 1

6
,

1
6
,

n3 − 2n2 + 3n + 6
24

,
n2 − n + 2

8
,

5n2 + 3
24

, etc.

It is easy to see that the sequence of degrees of these polynomials, for k ≥ 1,
is sequence of numbers of 0’s in binary expansion of k (cf. sequences A080791,
A023416 in [20]).

Later we prove that n = tj , j = 1, . . . ,m, are the only positive integer zeros of{
n
k

}
. Now we obtain an additional result.

Theorem 22. Let l ∈ N. If

k ≡ 2l−1 + j mod 2l, (38)

where j ∈ [0, 2l−1), then
{

l
k

}
= 0.

Proof. We have k = v2l + 2l−1 + j, v ≥ 0, 0 ≤ j ≤ 2l−1 − 1. Therefore, if
k = 2t1−1 + 2t2−1 + . . . + 2tm−1, then there exists h ∈ [1,m] such that l = th. Thus,

by Theorem 5, we have
{

l
k

}
=

{
th
k

}
= 0. !

Remark 23. Note that the converse of Theorem 22 implies the converse of Theorem
21.

As a corollary from Theorem 6, we get also the following statement.

Theorem 24. Let k = 2t1−1 + 2t2−1 + . . . + 2tm−1 and 1 ≤ i ≤ log2(2k). If

i += tp, p = 1, 2, . . . ,m, then
{

i
k − 2i−1

}
= 0.

Proof. Let tl < i < tl−1. Then

k − 2i−1 = 2t1−1 + 2t2−1 + · · · +
(
2tl−1−1 − 2i−1

)
+ 2tl−1 + . . . + 2tm−1

= 2t1−1 + 2t2−1 + . . . +
(
2tl−1−2 + 2tl−1−3 + . . . + 2i + 2i−1

)
+ 2tl−1 + . . . + 2tm−1

≡ 2i−1 + 2tl−1 + . . . + 2tm−1 (mod 2i)

and the theorem directly follows from Theorem 6. !

The following theorem gives another algorithm for the evaluation of up-down
polynomials.
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Theorem 25. Representation (27)
{

n
k

}
= c1

(
n
t1

)
+ c2

(
n
t2

)
+ . . . + cm

(
n
tm

)
+ (−1)m, (39)

is unique with coefficients defined by the following system of the linear equations:





cm + (−1)m = 0

cm−1 +

(
tm−1

tm

)
cm + (−1)m = 0

cm−2 +

(
tm−2

tm−1

)
cm−1 +

(
tm−2

tm

)
cm + (−1)m = 0

. . . . . . . . . . . . . . . . . .

c1 +

(
t1
t2

)
c2 +

(
t1
t3

)
c3 + . . . +

(
t1
tm

)
cm + (−1)m = 0.

(40)

Proof. Substituting n = tm, tm−1, . . . , t1 in (39) and using Theorem 5, we obtain
the system (40). !

Example 26. Let us find
{

n
26

}
. We have 26 = 25−1 + 24−1 + 22−1.

Thus, t1 = 5, t2 = 4, t3 = 2, m = 3. By (40),





c3 − 1 = 0
c2 + 6c3 − 1 = 0
c1 + 5c2 + 10c3 − 1 = 0

,

whence c1 = 16, c2 = −5, c3 = 1. Consequently, by (39)
{

n
26

}
= 16

(
n
5

)
− 5

(
n
4

)
+

(
n
2

)
− 1.

Corollary 27. Conversely, if we have a polynomial

P (n) = a1

(
n
t1

)
+ a2

(
n
t2

)
+ . . . + am

(
n
tm

)
+ (−1)m,

such that P (ti) = 0, i = 1, . . . ,m, then P (n) =
{

n
k

}
, where k is 2t1−1+. . .+2tm−1.

Proof. The system P (ti) = 0 with respect to coefficients ai, i = 1, . . . ,m, coincides
with (40), evidently having a unique solution. Thus ai = ci, i = 1, . . . ,m. !

Let P (n) be a polynomial. It is evident that the condition

P (n) = C

(
n
k

)
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with a constant C is satisfied if and only if P (r) = 0, r = 0, 1, . . . , k − 1 where

k = degP (n). Concerning
{

n
k

}
we have the following result. Put ∆P (n) = P (n)−

P (n− 1) and let ∆rP (n) be the r − th difference of P (n).

Theorem 28. For a polynomial P (n) there exists a nonnegative integer k and a
constant C += 0 such that

P (n) = C

{
n
k

}
(41)

if and only if the following conditions satisfied:

P (0) += 0, (∆rP (r))P (r) = 0, r = 1, 2, . . . , l, (42)

where l = degP (n).

Proof. Let (42) hold. Note that we have

P (n) = P (0) +
l∑

r=1

∆rP (r)
(

n
r

)
. (43)

Indeed, put P (n) = a0 +
∑l

r=1 ar

(
n
r

)
. Then we consecutively find a0 = P (0),

∆P (n) =
l∑

r=1

ar

(
n− 1
r − 1

)
, a1 = ∆P (1), . . . ,

i.e.,

∆tP (n) =
l∑

r=1

ar

(
n− t
r − t

)
, at = ∆tP (t), t = 0, . . . , l.

If all ∆rP (r) = 0, r = 1, . . . , l, then we put k = 0, C = P (0). If ∆rP (r) += 0, for
r = t1 > t2 > . . . > tm ≥ 1, then by (43)

P (n) = P (0) +
m∑

i=1

bm+1−i

(
n
ti

)
,

where bi = ∆tiP (ti), i = 1, 2, . . . ,m. Putting ai = (−1)m bi
P (0) for i = 1, 2, . . . ,m,

we have
(−1)m

P (0)
P (n) = (−1)m +

m∑

i=1

am+1−i

(
n
ti

)
(44)

and, according to (42), P (ti) = 0, i = 1, 2, . . . ,m. Thus, by Corollary 27 for

ai := am+1−i, i = 1, . . . ,m, the polynomial (44) is
{

n
k

}
with

k = 2t1−1 + 2t2−1 + . . . + 2tm−1.

The converse statement, evidently, follows from Theorem 25. !
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Example 29. Consider P (n) = n3 − 3n2 + 2n− 6. We have
∆P (n) = 3n2 − 9n + 6, ∆2P (n) = 6n− 12, ∆3P (n) = 6,

such that
(∆P (1))P (1) = (∆2P (2))P (2) = (∆3P (3))P (3) = 0.

Therefore, we conclude that P (n) = C

{
n
k

}
. Now we easily find C. Since r = 3 is

the smallest value of r for which ∆rP (r) += 0, then tm = 3 with m = 1. Therefore,

k = 4 and C = −P (0) = 6. Thus P (n) = 6
{

n
4

}
.

4. Asymptotic Formula for Up-Down Polynomials

An asymptotic formula for up-down polynomials is based on the following lemma
which gives a representation of coefficients cp in (39) by other up-down polynomials.

Lemma 30. If k = 2t1−1 + 2t2−1 + · · · + 2tm−1, t1 > t2 > · · · > tm, then for
coefficients cp in (39) we have

cp =
{

tp
k − 2tp−1

}
.

Proof. Putting k1 = k − 2tp−1, we have

k1 = 2t1−1 + 2t2−1 + · · · + 2tp−1−1 + 2tp+1−1 + · · · + 2tm−1.

Using, for k1 (26), and substituting n = tp, we obtain

{
tp

k − 2tp−1

}
= (−1)m−1



1−
m∑

i=p+1

(
tp
ti

)
+

∑

p+1≤i<j≤m

(
tp
ti

)(
ti
tj

)
− . . .



 .

Comparison of this with (28) gives the lemma. !

Now we are able to give an asymptotic formula for up-down polynomials.

Theorem 31. For n →∞, we have:
1) if t2 < t1 − 1, then

{
n
k

}
=

nt1

t1!

{
t1

k − 2t1−1

}
(1−

(
t1
2

)
1
n

+ O(
1
n2

)); (45)

2) if t2 = t1 − 1, then
{

n
k

}
=

nt1

t1!
(
{

t1
k − 2t1−1

}
+

1
n

(t1
{

t1 − 1
k − 2t1−2

}
−

(
t1
2

){
t1

k − 2t1−1

}
) + O(

1
n2

)). (46)
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Proof. By Lemma 30, we have
{

n
k

}
= c1

(
n
t1

)
+c2

(
n
t2

)
+o(nt2) =

{
t1

k − 2t1−1

}(
n
t1

)
+

{
t2

k − 2t2−1

}(
n
t2

)
+o(nt2).

Now the theorem easily follows from the asymptotic formula for the binomial coef-

ficients
(

n
t

)
, t ≥ 2 :

(
n
t

)
=

nt

t!
− nt−1

2(t− 2)!
+ O(nt−2).

!

5. Two Recursions for Up-Down Coefficients

The first recursion for up-down coefficients we find directly from (39) and Lemma
30.

Theorem 32. (The first recursion) If k = 2t1−1 + 2t2−1 + . . . + 2tm−1, then
{

n
k

}
= (−1)m +

m∑

p=1

{
tp

k − 2tp−1

}(
n
tp

)
. (47)

Example 33. Knowing
{

n
j

}
, j ≤ 20, to find

{
n
21

}
.

We have
21 = 25−1 + 23−1 + 21−1, t1 = 5, t2 = 3, t3 = 1.

By (47), we obtain
{

n
21

}
= −1 +

{
5
5

}(
n
5

)
+

{
3
17

}(
n
3

)
+

{
1
20

}(
n
1

)
. (48)

Knowing the formulas (cf., Appendix)
{

n
5

}
= 2

(
n
3

)
−

(
n
1

)
+ 1,

{
n
17

}
= 4

(
n
5

)
−

(
n
1

)
+ 1,

{
n
20

}
= 9

(
n
5

)
−

(
n
3

)
+ 1,

we get {
5
5

}
= 2 · 10− 5 + 1 = 16,
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{
3
17

}
= −2,

{
1
20

}
= 1

and, by (48), we find
{

n
21

}
= 16

(
n
5

)
− 2

(
n
3

)
+

(
n
1

)
− 1.

The second, even more simple, recursion is based on Theorems 24 and 25.

Theorem 34. (The second recursion) Let k = 2t1−1 + 2t2−1 + . . . + 2tm−1, t1 >
t2 > . . . > tm ≥ 1 . Then, for l > t1, we have

{
n

k + 2l−1

}
=

{
l
k

}(
n
l

)
−

{
n
k

}
. (49)

Proof. By (47), we have
{

n
k + 2l−1

}
= (−1)m+1 +b1

(
n
tm

)
+b2

(
n

tm−1

)
+ . . .+bm

(
n
t1

)
+bm+1

(
n
l

)
, (50)

where bi, i = 1, 2, . . . ,m + 1, are defined by the following system:





b1 + (−1)m+1 = 0(
tm−1

tm

)
b1 + b2 + (−1)m+1 = 0

. . . . . . . . . . . . . . . . . . . . .(
t1
tm

)
b1 +

(
t1

tm−1

)
b2 + . . . +

(
t1
t2

)
bm−1 + bm + (−1)m+1 = 0

(
l

tm

)
b1 +

(
l

tm−1

)
b2 + . . . +

(
l

t1

)
bm + bm+1 + (−1)m+1 = 0

. (51)

By comparing the first m equations of (51) with (48), we conclude that

bi = −ci, i = 1, 2, . . . ,m (52)

and, by the (m + 1)−th equation of (51), taking into account (47), we find that

bm+1 = −
{

l
k

}
. (53)

Now from (47) , (50), (52) and (53) we obtain
{

n
k

}
+

{
n

k + 2l−1

}
=

{
l
k

}(
n
l

)

and (49) follows. !
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Example 35. Starting with
{

n
0

}
= 1 and putting k = 0, l = 1, we obtain

{
n
1

}
=

{
1
0

}(
n
1

)
−

{
n
0

}
=

(
n
1

)
− 1.

Furthermore, we consecutively find

putting k = 0, l = 2,
{

n
2

}
=

{
2
0

}(
n
2

)
−

{
n
0

}
=

(
n
2

)
− 1,

putting k = 1, l = 2,
{

n
3

}
=

{
2
1

}(
n
2

)
−

{
n
1

}
=

(
n
2

)
−

(
n
1

)
+ 1,

putting k = 0, l = 3,
{

n
4

}
=

{
3
0

}(
n
3

)
−

{
n
0

}
=

(
n
3

)
− 1,

putting k = 1, l = 3,
{

n
5

}
=

{
3
1

}(
n
3

)
−

{
n
1

}
= 2

(
n
3

)
−

(
n
1

)
+ 1, etc.

6. Arithmetical Properties of the Numbers of Alternating Permutations

Denote by a(n) the number of alternating (Andre’s) permutations of numbers
1, . . . , n. We saw (Example 4) that

a(n) =

{
n

2n+1−3+(−1)n

6

}
. (54)

Now we prove the following results.

Theorem 36. 1) If p is odd prime, then a(p) ≡ (−1)(p−1)/2 (mod p);

2) For every nonnegative n, a(2n) ≡ 1 (mod 2n);

3) If p is odd prime, then a(2p) ≡ 1 (mod 2p).

Proof of 1). In view of (54), we should prove that
{

p
2p−2

3

}
≡ (−1)(p−1)/2 (mod p). (55)

Since k = κp−1 = 2p−2
3 is the index of alternative permutations of p elements, then

its binary expansion is κp−1 = 1010 . . . 10 with (p−1)
2 1’s and (p−1)

2 0’s. Therefore,

τκp−1 = (−1)(p−1)/2. (56)

Now 1) follows from Theorem 8. !
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Corollary 37. Let p be an odd prime and let |Bp+1| = αp+1/βp+1 (with (αp+1,βp+1)
= 1). Then

12αp+1 + (−1)(p+1)/2βp+1 ≡ 0 (mod p). (57)

Proof. Denote B2n
2n (22n − 1)22n by b2n. Using (14), for m = p+1

2 , and (55), we have

|bp+1| =
|Bp+1|
p + 1

(2p+1 − 1)2p+1 ≡ (−1)(p−1)/2 (mod p).

Furthermore, since

(p + 1)βp+1|bp+1| = αp+1(4 · 2p−1 − 1)4 · 2p−1 ≡ 12αp+1 (mod p),

then (−1)(p−1)/2βp+1 ≡ 12αp+1 (mod p), and the corollary follows. !

We will need several lemmas.

Lemma 38. If 1 ≤ 2i− 1 ≤ 2m, then
(

2m

2i− 1

)
≡ 0 (mod 2m).

Proof. Let α(m) be exponent such that

2α(m)|| m. (58)

Denote by s(m) the number of 1’s in the binary expansion of m. It is known (cf.
[15]) that,

α(m!) = (m− s(m)). (59)

From (59) we obtain:

α(
(

m

x

)
) = α(m!)− α(x!)− α((m− x)!) =

((m− s(m))− (x− s(x))− (m− x− s(m− x)) = (s(x) + s(m− x)− s(m)). (60)

Using (60), we find

α(
(

2n

2i− 1

)
) = s(2i− 1) + s(2n − (2i− 1))− s(2n).

Note that, evidently we have s(2n − (2i− 1)) = n + 1− s(2i− 1). Therefore,

α(
(

2n

2i− 1

)
) = n + 1− 1 = n

and, according to (58), the lemma follows. !
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Lemma 39. For n ≥ 1 and 0 ≤ j ≤ 2n−1 − 2,
{

2n

22n−2j−1
3

}
≡ −

{
2n

22n−2j−2−1
3

}
(mod 2n).

Proof. Note that,

22n−2j − 1
3

=
22n−2j−2 − 1

3
+ 22n−2j−2

and

2n − 2j − 1 > 2n − 2j − log2 3 > log2 (2
22n−2j−2 − 1

3
).

Therefore, we can apply Theorem 34 with l = 2n − 2i− 1. Thus
{

2n

22n−2j−1
3

}
=

{
2n

22n−2j−2−1
3 + 22n−2j−2

}
=

{
2n − 2j − 1
22n−2j−2−1

3

}(
2n

2n − 2j − 1

)
−

{
2n

22n−2j−2−1
3

}
,

and the lemma follows from Lemma 38 (for i = j + 1). !

Lemma 40. If p is an odd prime, then for 2i− 1 ≤ 2p,

(
2p

2i− 1

)
≡

{
0 if i += p+1

2

2 if i = p+1
2

(mod 2p).

Proof. We have
∑

1≤i≤p

(
2p

2i− 1

)
= 22p−1 ≡ 2 (mod 2p)

by Fermat’s theorem. Furthermore, using the identity

(2p− 2i + 1)
(

2p
2i− 1

)
= 2p

(
2p− 1
2i− 1

)
,

we see that, if i < p+1
2 , then

(
2p

2i− 1

)
≡ 0 (mod 2p). Thus, for i = p+1

2 , we have
(

2p
p

)
≡ 2 (mod 2p). The case of i ≥ p+1

2 is symmetric. !

Lemma 41. If p is an odd prime, then for 0 ≤ j ≤ (p− 1)/2,
{

2p
22p−2j−1

3

}
≡ −

{
2p

22p−2j−2−1
3

}
(mod 2p),

{
2p

2p−1−2j−1
3

}
≡ −

{
2p

2p−3−2j−1
3

}
(mod 2p).
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Proof. This is the same as the proof of Lemma 39, in view of Lemma 40 and the
equalities

22p−2j − 1
3

=
22p−2j−2 − 1

3
+ 22p−2j−2,

2p−1−2j − 1
3

=
2p−3−2j − 1

3
+ 2p−3−2j .

!

We now complete the proof of Theorem 36.

Proof of Theorem 36, Parts 2 and 3. For (2), firstly, note that, in case n = 1, a(2) ={
2
1

}
= 1 ≡ 1 (mod 2). Furthermore, using Lemma 39, we have modulo 2n, n ≥ 2,

a(2n) =

{
2n

22n
−1

3

}
≡ −

{
2n

22n−2−1
3

}
≡

{
2n

22n−4−1
3

}
≡ · · · ≡ −

{
2n

1

}
.

Now the statement follows in view of
{

m
1

}
=

(
m
1

)
− 1.

For (3), using Lemma 41, we have modulo 2p, p ≥ 3,

a(2p) =
{

2p
22p−1

3

}
≡ −

{
2p

22p−2−1
3

}
≡ · · · ≡ (−1)

p−1
2

{
2p

2p+1−1
3

}
. (61)

Now, using Theorem 34 and Lemma 40, we have
{

2p
2p+1−1

3

}
=

{
2p

2p−1−1
3 + 2p−1

}(
2p
p

)
−

{
2p

2p−1−1
3

}

≡ 2
{

p
2p−1−1

3

}
−

{
2p

2p−1−1
3

}
. (62)

But, using the proof of (1), we have

p− 1
2

= s

(
2p − 2

3

)
= s

(
2p−1 − 1

3

)
.

Therefore, by Theorem 8, we have
{

p
2p−1−1

3

}
≡ (−1)(p−1)/2 (mod p). (63)

Again, using Lemma 41, by (61)-(63), we have

a(2p) ≡ 2− (−1)(p−1)/2

{
2p

2p−1−1
3

}
≡
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2 + (−1)(p−1)/2

{
2p

2p−3−1
3

}
≡ · · · ≡ 2 +

{
2p
1

}
= 2 +

(
2p
1

)
− 1 ≡ 1 (mod 2p).

!

Corollary 42. Let n = 2p + 1, where p is odd primes. Then

|En−1| ≡ 1 (mod n− 1). (64)

Proof. Use (14) with m = n−1
2 and part (3) of Theorem 36. !

7. Generating Function for the Up-Down Coefficients

Note that, formula (49) gives the possibility to add to k any powers of 2 more than
2t1 . Therefore, using some iterations of (49), one can formally get any k1 > k. Thus

we have a natural way to define
{

n
k

}
for k > 2n−1 − 1. Moreover, the following

lemma shows that the series
∑∞

k=0

{
n
k

}
xk converges for |x| < 1, for every n.

Lemma 43. For a fixed n, the sequence {
{

n
k

}
}k≥0 is bounded.

Proof. Using (26), we have

{
1
k

}
= (−1)m

(
1−

(
1
tm

))
=

{
(−1)m, if tm ≥ 2,
0, if tm = 1

;

{
2
k

}
= (−1)m

(
1−

(
2

tm−1

)
−

(
2
tm

)
+

(
2

tm−1

)(
2
tm

))
=

=






(−1)m, if tm ≥ 3
0, if tm = 2
0, if tm = 1, tm−1 = 2,
(−1)m−1, if tm = 1, tm−1 ≥ 3

;

{
3
k

}
= (−1)m

(
1−

(
3

tm−2

)
−

(
3

tm−1

)
−

(
3
tm

)
+

(
3

tm−2

)(
3

tm−1

)
+

+
(

3
tm−2

)(
3
tm

)
+

(
3

tm−1

)(
3
tm

)
−

(
3

tm−2

)(
3

tm−1

)(
3
tm

))
=
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=






(−1)m, if tm ≥ 4
0, if tm = 3
0, if tm = 2, tm−1 = 3
2(−1)m−1, if tm = 2, tm−1 > 3
0, if tm = 1, tm−1 = 2, tm−2 = 3
4(−1)m, if tm = 1, tm−1 = 2, tm−2 > 3
0, if tm = 1, tm−1 = 3, tm−2 > 3
2(−1)m−1, if tm = 1, tm−1 > 3

;

etc.
We see that, for every fixed n, we have a finite number of distinct values of the

sequence
{{

n
k

}}

k≥0

. Therefore it is bounded by a constant C(n). !

Denote, for any n ∈ N,

F (n, x) =
∞∑

k=0

{
n
k

}
xk, |x| < 1. (65)

Put

τ(x) =
∞∑

k=0

τkxk, |x| < 1, (66)

where τ is the Thue-Morse sequence (23).

Theorem 44. For every n ∈ N, the quotient F (n,x)
τ(x) is a rational function.

Proof. When p runs through 1, . . . ,m, then, in view of (20), we have 1 ≤ tm ≤ tp ≤
t1 = $log2(2k)%. Therefore, one can write (47) in the form

{
n
k

}
= τk +

∑

1≤i≤log2(2k)

(
n
i

){
i

k − 2i−1

}
, k ≥ 1. (67)

Note that, for k = 0, the sum is 0, and we have
{

n
0

}
= 1 = τ0. Therefore, by (65)

and (67), we find

F (n, x) =
∞∑

k=0

{
n
k

}
xk = τ(x) +

∑

k≥1

∑

1≤i≤log2(2k)

(
n
i

){
i

k − 2i−1

}
xk

= τ(x) +
n∑

i=1

(
n
i

) ∞∑

k=2i−1

xk

{
i

k − 2i−1

}
= τ(x) +

n∑

i=1

(
n
i

) ∞∑

r=0

{
i
r

}
xr+2i−1

= τ(x) +
n∑

i=1

(
n
i

)
x2i−1

F (i, x), |x| < 1. (68)
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(68) gives us a recursion formula for F (n, x):

(
1− x2n−1

)
F (n, x) = τ(x) +

n−1∑

i=1

(
n
i

)
x2i−1

F (i, x), |x| < 1. (69)

Put
F (n, x) = τ(x)

Pn(x)
(1− x)(1− x2) . . . (1− x2n−2)

(|x| < 1). (70)

Then we obtain a recursion formula for Pn(x):

Pn(x) =
1

1− x2n−1

(
(1− x)(1− x2) . . . (1− x2n−1

)

+
n−1∑

i=1

(
n
i

)
(1− x2i

)(1− x2i+1
) . . . (1− x2n−1

) x2i−1
Pi(x)

)
. (71)

Here it is not expedient to cancel 1 − x2n−1
without additional conventions. In

particular, (71) yields

P1(x) =
1

1− x
(1− x) = 1

P2(x) =
1

1− x2
((1− x)(1− x2) + 2(1− x2)x) = 1 + x

P3(x) = 1 + 2x + 2x2 + x3,

P4(x) = 1 + 3x + 5x2 + 3x3 + 3x4 + 5x5 + 3x6 + x7,

P5(x) = 1 + 4x + 9x2 + 6x3 + 9x4 + 16x5 + 11x6 + 4x7+

4x8 + 11x9 + 16x10 + 9x11 + 6x12 + 9x13 + 4x14 + x15,

P6(x) = 1 + 5x + 14x2 + 10x3 + 19x4 + 35x5 + 26x6 + 10x7 + 14x8 + 40x9+

+61x10 + 35x11 + 26x12 + 40x13 + 19x14 + 5x15 + 5x16 + 19x17 + 40x18+

+26x19 + 35x20 + 61x21 + 40x22 + 14x23 + 10x24 + 26x25 + 35x26 + 19x27+

+10x28 + 14x29 + 5x30 + x31, etc.

By a simple induction, we see that Pn(x) is a polynomial in x of degree 2n−1 − 1.
Thus, the theorem follows from (70). !

But (70) gives us more. Since

(1− x)(1− x2) . . . (1− x2n−2
) =

2n−1−1∑

k=0

τkxk = τ(x) + o(x2n−1−1),

then, from (70) it follows that Pn(x) = F (n, x)(1 + o(x2n−1−1)) and, since Pn(x)
is a polynomial of degree 2n−1 − 1, then, by (65), we conclude that the following
statement is true.
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Theorem 45. Polynomial Pn(x) which is defined recursively by (71) is equal to

Pn(x) =
2n−1−1∑

k=0

{
n
k

}
xk, (72)

and, for every n ∈ N, we have an identity

2n−1−1∑
k=0

{
n
k

}
xk

∞∑
k=0

{
n
k

}
xk

=
1

∞∏
i=n−1

(1− x2i)
. (73)

8. Another Type of Recursion for Up-Down Coefficients

For any k ∈ N, let us consider the set Ak of those positive integers i ≤ log2(2k) for
which

⌊
k
2i − 1

2

⌋
=

⌈
k+1
2i − 1

⌉
. The common values of these expressions denote by

λ(k; i) :

λ(k; i) =
⌊

k

2i
− 1

2

⌋
=

⌈
k + 1

2i
− 1

⌉
. (74)

Theorem 46. We have
{

n
k

}
= τk +

∑

i∈Ak

(
n
i

){
i

k − 2i−1 − λ(k; i)2i

}
τλ(k;,i). (75)

Proof. Taking into account (72) and comparing Coefxk , k ≤ 2n−1 − 1, in both
sides of (71), we find

{
n
k

}
= τk +

n−1∑

i=1

(
n
i

)∑

l

τl

{
i

k − 2i−1 − 2il

}
,

where the summing is over those values of l ≥ 0 for which

2i−1 + 2il ≤ k, k − 2i−1 − 2il ≤ degPi(x) = 2i−1 − 1.

Consequently,

l ∈
[
k + 1

2i
− 1,

k

2i
− 1

2

]
.

Nevertheless, the length of this segment equals 1
2 −

1
2i . This means that it could

contain not more than one integer value of l ≥ 0. It does contain it only in the case⌊
k
2i − 1

2

⌋
=

⌈
k+1
2i − 1

⌉
≥ 0. !
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Example 47. Let k = 2m. Then i ≤ log2(2k) = m + 1. If i ≤ m, then
⌊

k
2i − 1

2

⌋
=

2m−i−1, while
⌈

k+1
2i − 1

⌉
= 2m−i. It is left to consider the case i = m+1 for which
⌊

k

2i
− 1

2

⌋
=

⌈
k + 1

2i
− 1

⌉
= 0.

Thus, by (75), we have
{

n
2m

}
= −1 +

(
n

m + 1

){
m + 1

0

}
=

(
n

m + 1

)
− 1. (76)

9. Converse of Theorem 22

We have seen (Theorem 22) that
{

a
b

}
= 0, if b ≡ 2a−1 + c (mod 2a), c ∈ [0, 2a−1). (77)

The converse of Theorem 22 is based on the following result.

Theorem 48. Let a ∈ N, r ≥ a, c ∈ [0, 2a−1). Then, for b = 2rl + c, where l is
odd, we have {

a
b

}
= τl

{
a
c

}
. (78)

Proof. Let k = 2t1−1 + 2t2−1 + . . . + 2tm−1, t1 > t2 > . . . > tm ≥ 1. Comparing
(47) and (75), we conclude that

Ak = {t1, t2, . . . , tm}, (79)

and, for i ∈ Ak,
{

i
k − 2i−1 − λ(k; i)2i

}
τλ(k;i) =

{
i

k − 2i−1

}
. (80)

In particular, for i = tj , we have

λ(k; tj) =
⌊

k

2tj
− 1

2

⌋
=

⌈
k + 1
2tj

− 1
⌉

.

Thus
λ(k; tj) =

⌊
2t1−1 + 2t2−1 + · · · + 2tj−1 + · · · + 2tm−1

2tj
− 1

2

⌋

= 2t1−tj−1 + 2t2−tj−1 + · · · + 2tj−1−tj−1 (81)

and, consequently,
τλ(k; tj) = (−1)j−1. (82)
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Therefore, by (82) (for i = tj) and (81), we find

(−1)j−1

{
tj

k − 2t1−1 − 2t2−1 − · · ·− 2tj−1−1 − 2tl−1

}
=

{
tj

k − 2tj−1

}
, (83)

or, taking into account that k = 2t1−1 + · · · + 2tm−1,

(−1)j−1

{
tj

2tj+1−1 + · · · + 2tm−1

}
=

{
tj

2t1−1 + . . . + 2tj−1−1 + 2tj+1−1 + . . . + 2tm−1

}
. (84)

Putting here
tj = a, 2tj+1−1 + · · · + 2tm−1 = c ∈ [0, 2a−1),

tj−1 − 1 = r ≥ a, 2t1−1 + . . . + 2tj−1−1 = 2rl,

where

l = 2t1−1−r + 2t2−1−r + · · · + 2tj−1−1−r = 2t1−1−r + 2t2−1−r + · · · + 1,

such that τl = (−1)j−1, and b = 2rl + c, we write (84) in the form of (78). !

Since in Theorem 48, b − c = 2rl, then τl = τb−c. Therefore, Theorem 48, for
b = k, one can write in the following form.

Corollary 49. We have
{

a
k

}
= τk−i

{
a
i

}
, k ≡ i (mod 2a), i = 0, 1, 2, . . . , 2a−1 − 1.

It is worth adding that, by (23),
{

0
k

}
= τk. (85)

In particular, taking into account (77) and (85), we obtain the following sequences:
{

0
k

}
: 1, −1, −1, 1, −1, 1, 1, −1, . . . ;

{
1
k

}
: 1, 0,−1, 0,−1, 0, 1, 0,−1, 0, 1, 0, 1, 0,−1, . . . ;

{
2
k

}
: 1,1, 0, 0,−1,−1, 0, 0,−1,−1, 0, 0, 1, 1, . . . ;

{
3
k

}
: 1,2,2,1, 0, 0, 0, 0,−1,−2,−2,−1, 0, 0, 0, 0, . . . ;



INTEGERS: 12 (2012) 30

{
4
k

}
: 1,3,5,3,3,5,3,1, 0, . . . , 0︸ ︷︷ ︸

8

,−1,−3,−5,−3,−3, . . . ; (86)

{
5
k

}
1,4,9,6,9,16,11,4,4,11,16,9,6,9,4,1, 0, . . . , 0︸ ︷︷ ︸

16

,−1, . . . ;

{
6
k

}
1,5,14,10,19,35,26,10,14,40,61,35,26,40,19,5,5,19,40,26,35,61,

40,14,10,26,35,19,10,14,5,1, 0, . . . , 0︸ ︷︷ ︸
32

,−1,−5,−14,−10,−19,−35, . . . ,

etc.
We see that, if the signs in the sequence (

{
a
k

}
) are ignored, then it becomes to

periodic sequence with period 2a, such that, by (77), the second part of the period
containing terms of the form 2a−1 + c, c = 1, . . . , 2a−1, consists of 0’s. It is left to

show that all terms
{

a
k

}
, k = 0, 1, . . . , 2a−1 − 1, of the first part of the period are

positive. For this, it is sufficient to note that there exists at least one permutation
of elements 1, . . . , a with a given index k ∈ [0, 2a−1−1] ([14], Lemma 2). This gives
the converse of Theorem 6 and, consequently, of Theorem 5. Thus we have the
following statement.

Theorem 50. If k = 2t1−1 + 2t2−1 + . . . + 2tm−1, t1 > t2 > . . . > tm ≥ 1, then

ti, i = 1, 2, . . . ,m, are the only positive integer roots of the polynomials
{

n
k

}
.

Note that, the bold-faced numbers are coefficients of the corresponding polyno-
mials Pi(x), i = 1, 2, . . . , which are defined by the recursion (71). Consider the
concatenation sequence of all of the bold-faced numbers (cf. [20], sequence A060351)

{
1
0

}
;
{

2
0

}
,

{
2
1

}
;
{

3
0

}
,

{
3
1

}
,

{
3
2

}
,

{
3
3

}
;
{

4
0

}
,

{
4
1

}
,

{
4
2

}
,

{
4
3

}
,

{
4
4

}
,

{
4
5

}
,

{
4
6

}
,

{
4
7

}
; . . . . (87)

It is easy to see that this sequence can be written in the explicit form:

{
{
$log2 k%+ 1
k − 2(log2 k)

}
}∞k=1. (88)

This sequence is closely connected with asymptotics of
{

n
k

}
(cf. (45)-(46)). Thus

we conclude that the first coefficients of
{

n
k

}
, k ≥ 1, as linear combinations of

binomial coefficients, form sequence (88) (cf., Appendix).
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10. On Full Cycles of 1, . . . , n with a Given Index

The following theorem is very well-known.

Theorem 51. (cf, e.g.,[16]). The number of full cycles of n elements 1, 2, . . . , n
equals (n− 1)!.

Denote by
[
n
k

]
the number of full cycles of n elements of index k. We call it the

up-down coefficient for cycles.
Numerous experiments show that, for n ≥ 3, very similar expressions hold for

numbers
[
n
k

]
and

{
n
k

}
. Our conjecture is the following.

Conjecture 52. Let n ≥ 3 and t1 = t1(k) be defined by (20). If all divisors of n,
other than 1, are larger than t1, then

[
n
k

]
=

1
n

({
n
k

}
−

{
0
k

})
, (89)

where, according to (85),
{

0
k

}
= τk; otherwise, (89) is a good approximation of

[
n
k

]
.

Note that, in the conditions of Conjecture 52, in view of (24), the fraction in (89)
is an integer. Moreover, from (22) we find that

{
n
k

}
−

{
0
k

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n
t1

) (
n
t2

) (
n
t3

)
. . .

(
n

tm−1

) (
n
tm

)
0

1
(

t1
t2

) (
t1
t3

)
. . .

(
t1

tm−1

) (
t1
tm

)
1

0 1
(

t2
t3

)
. . .

(
t2

tm−1

) (
t2
tm

)
1

0 0 1 . . .

(
t3

tm−1

) (
t3
tm

)
1

...
...

...
. . .

...
...

...

0 0 0 . . . 1
(

tm−1

tm

)
1

0 0 0 . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (90)

Matrix (90) differs from matrix (22) only in the last element of the first row. This
element corresponds to the only diagonal in matrix (22) composed of 1’s. The

corresponding term in the determinant (90) is (−1)m = τk =
{

0
k

}
. However, now

we prove the following statement about the essentially more complicated structure

of numbers {
[
n
k

]
}.
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Theorem 53. If Conjecture 52 is true, then, in contrast to sequence (
{

n
k

}
)n≥0, at

least for some values of k, the sequence {
[
n
k

]
}n≥0 is not polynomial.

Proof. Indeed, let sequence {
[
n
k

]
} be polynomial for every k:

[
n
k

]
= P (k)(n).

Denoting polynomial (90) by Q(k)(n) and considering all prime values of n, we

conclude that P (k)(n) ≡ Q(k)(n)/n. Since
[
n
k

]
is an integer for every n, we have

Q(k)(n)/n is an integer-valued polynomial in n for every k. Let k be of the form
k = 2p−1, where p is prime. Then t1 = p, and in (22) m = 1, i.e., we have a 2× 2
matrix:

{
n

2p−1

}
=

∣∣∣∣∣∣

(
n
p

)
1

1 1

∣∣∣∣∣∣
=

(
n
p

)
− 1.

Hence, by (90),

Q(n)/n =
1
n

∣∣∣∣∣∣

(
n
p

)
0

1 1

∣∣∣∣∣∣
=

(n− 1)(n− 2) . . . (n− p + 1)
p!

.

Let n be multiple of p. We see that, for such n, Q(n)/n is not an integer. We have
a contradiction which completes our proof. !

Let us consider an analog of the Eulerian number A∗(n, t) enumerating full cycles
of elements 1, . . . , n, having exactly t ascents.

Theorem 54. If Conjecture 52 is true, then, for prime n ≥ 3, we have

A∗(n, t) =
1
n

(
A(n, t) + (−1)t−1

(
n− 1

t

))
. (91)

Proof. According to (89) and (10),

A∗(n, t) =
∑

0≤j≤2n−1−1: s(j)=t

{
n
j

}
− τj

n
=

1
n

(
∑

0≤j≤2n−1−1: s(j)=t

(
{

n
j

}
−

∑

0≤j≤2n−1−1: s(j)=t

(−1)t))

and (91) follows. !
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11. Some Open Problems

1. We conjecture that all real roots of the up-down polynomials are rational.

2. We conjecture that a polynomial
{

n
k

}
, k ≥ 1, has only real roots if and only if

the number of 0’s in the binary expansion of k less that 2.

In view of Theorem 21, this condition is sufficient (since there is no place for two
conjugate complex roots). Therefore, it is left to prove its necessity.

We have polynomials
{

n
k

}
with only real roots for

k = 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, . . .

(cf. sequence A089633 [20]).

3. Investigate sequence {km} for which the polynomials
{

n
km

}
have a root n = −1.

The first values of km are: 2, 5, 8, 11, 23, . . .

The following 3 conjectures are connected with sequence (13), which we shall
denote by {an} .

4. We conjecture that maxk

{
n
k

}
= an.

5. Let D(a)
n be the number of alternating permutations without fixed points (i.e.,

π(i) += i, i = 1, 2, . . . , n). We conjecture that

lim
n→∞

D(a)
n

an
= e−1.

6. Let S(a)(n, l) be the number of alternating permutations having l cycles (the
absolute value of the “alternating” Stirling numbers of the first kind). We conjecture
that, for a fixed l,

lim
n→∞

nS(a)(n, l)
an(lnn)l−1

=
1

(l − 1)!
.

The latter means that, for each l, the events “a permutation is alternative” and “a
permutation has l cycles” are asymptotically independent.

7. In connection with Theorem 36, we call an odd composite number m a zig-zag
pseudoprime, if a(m) ≡ (−1)

m−1
2 (mod m) ([20], sequence A180942). Is it true that

every Carmichael number ([20], sequence A002997) is also zig-zag pseudoprime?

8. In connection with Corollary 37, we call an odd composite number m a B-
pseudoprime, if 12αm+1+(−1)(m+1)/2βm+1 ≡ 0 (mod m) ([20], sequence A180943).
Explain the following phenomenon: among the first fifty B-pseudoprimes there are
only two of the form 4l − 1.
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9. Find a proof of Conjecture 52 for cycles (Section 10).
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for improvement in the text.

Appendix

Below is a list of the first thirty-two up-down polynomials.
{

n
0

}
= 1

{
n
1

}
=

(
n
1

)
− 1

{
n
2

}
=

(
n
2

)
− 1

{
n
3

}
=

(
n
2

)
−

(
n
1

)
+ 1

{
n
4

}
=

(
n
3

)
− 1

{
n
5

}
= 2

(
n
3

)
−

(
n
1

)
+ 1

{
n
6

}
= 2

(
n
3

)
−

(
n
2

)
+ 1

{
n
7

}
=

(
n
3

)
−

(
n
2

)
+

(
n
1

)
− 1

{
n
8

}
=

(
n
4

)
− 1

{
n
9

}
= 3

(
n
4

)
−

(
n
1

)
+ 1

{
n
10

}
= 5

(
n
4

)
−

(
n
2

)
+ 1

{
n
11

}
= 3

(
n
4

)
−

(
n
2

)
+

(
n
1

)
− 1

{
n
12

}
= 3

(
n
4

)
−

(
n
3

)
+ 1

{
n
13

}
= 5

(
n
4

)
−2

(
n
3

)
+

(
n
1

)
−1

{
n
14

}
= 3

(
n
4

)
−2

(
n
3

)
+

(
n
2

)
−1

{
n
15

}
=

(
n
4

)
−

(
n
3

)
+

(
n
2

)
−

(
n
1

)
+ 1

{
n
16

}
=

(
n
5

)
− 1

{
n
17

}
= 4

(
n
5

)
−

(
n
1

)
+ 1

{
n
18

}
= 9

(
n
5

)
−

(
n
2

)
+ 1

{
n
19

}
= 6

(
n
5

)
−

(
n
2

)
+

(
n
1

)
− 1

{
n
20

}
= 9

(
n
5

)
−

(
n
3

)
+ 1

{
n
21

}
= 16

(
n
5

)
− 2

(
n
3

)
+

(
n
1

)
− 1

{
n
22

}
= 11

(
n
5

)
− 2

(
n
3

)
+

(
n
2

)
− 1

{
n
23

}
= 4

(
n
5

)
−

(
n
3

)
+

(
n
2

)
−

(
n
1

)
+1

{
n
24

}
= 4

(
n
5

)
−

(
n
4

)
+1

{
n
25

}
= 11

(
n
5

)
− 3

(
n
4

)
+

(
n
1

)
− 1

{
n
26

}
= 16

(
n
5

)
− 5

(
n
4

)
+

(
n
2

)
− 1
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{
n
27

}
= 9

(
n
5

)
− 3

(
n
4

)
+

(
n
2

)
−

(
n
1

)
+ 1

{
n
28

}
= 6

(
n
5

)
− 3

(
n
4

)
+

(
n
3

)
− 1

{
n
29

}
= 9

(
n
5

)
− 5

(
n
4

)
+ 2

(
n
3

)
−

(
n
1

)
+ 1

{
n
30

}
= 4

(
n
5

)
− 3

(
n
4

)
+ 2

(
n
3

)
−

(
n
2

)
+ 1

{
n
31

}
=

(
n
5

)
−

(
n
4

)
+

(
n
3

)
−

(
n
2

)
+

(
n
1

)
− 1
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