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Abstract
A sufficient condition for a monic integer polynomial to be a semi-CNS polynomial
is presented. This result infers a unified proof of two well-known theorems on
irreducible CNS polynomials thereby extending them to reducible polynomials.

1. Introduction

Canonical number systems (usually abbreviated by CNS) can be regarded as gen-
eralizations of the decimal or binary numeration systems. They have first been
introduced by the Hungarian school some decades ago (see [19, 17, 18, 21] and
[15,20] for the first special cases). We recommend the work [7] as a profound survey
on this subject in a broader context.

The concept of CNS polynomials was introduced by A. Pethő and extended
to semi-CNS polynomials by P. Burcsi and A. Kovács (the reader is referred
to Section 2 for all necessary definitions). Some characterization results on these
polynomials are known (see e.g., [17, 14] for quadratic polynomials, [3, 8, 4, 26, 10]
for some other classes of polynomials and [22, 16] for general results). However,
until now the complete description of these polynomials remains an open problem
even for small degrees. On the other hand, there are a few results stating sufficient
conditions for a polynomial to be a CNS polynomial (see e.g., [14, 22, 3, 12]) or a
semi-CNS polynomial (see e.g., [11]).

Exploiting known methods we present a new sufficient condition for a monic
integer polynomial P to be a semi-CNS polynomial (see Theorem 4 ). Based on this
result we derive proofs of two apparently different theorems of W. J. Gilbert and
B. Kovács – A. Pethő (see Corollaries 5 and 8) on irreducible CNS polynomials
thereby extending them to reducible polynomials. Our result requires the knowledge
of the canonical representation of the absolute value of the constant term of the
polynomial P . Therefore we present an algorithm for the calculation of canonical
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representatives in the last part of this note.
The author is indebted to an anonymous referee for very carefully reading the

first version of the manuscript.

2. A Necessary Condition for Semi-CNS Polynomials

Throughout this note we let P ∈ Z[X] be a monic integer polynomial of positive
degree with P (0) "= 0 and D = [0, |P (0)|− 1] ∩ N where we denote by N the set of
nonnegative rational integers. We say that the polynomial A ∈ Z[X] is canonically
representable (with respect to P ) if A is congruent modulo P to a polynomial
B ∈ D[X]. In this case we say that B canonically represents A, and we call the
coefficients of B the digits of the canonical representation of A. We denote by RP

the set of all canonically representable integer polynomials. It is easy to see that
each A ∈ RP has a unique representative B ∈ D[X].

CNS polynomials were introduced by A. Pethő and generalized in the sequel
(see e.g., [1, 5, 29]). Recently, this notion was extended to semi-CNS polynomials
by P. Burcsi and A. Kovács. For convenience we recall their definitions in a
form slightly adapted to our purposes here.

Definition 1.

(i) P is called a CNS polynomial if Z[X] = RP [24].

(ii) P is called a semi-CNS polynomial if RP is an additive semigroup [11, Defi-
nition 3.2].

It is known that all semi-CNS polynomial P with |P (0)| ≥ 2 are expanding
(see [10, Theorem 11]). Moreover, we shall make use of the following properties of
semi-CNS polynomials.

Proposition 2.Let P ∈ Z[X] be a monic integer polynomial.

(i) P be a semi-CNS polynomial with |P (0)| ≥ 2 if and only if N[X] ⊆ RP .

(ii) P is a CNS polynomial if and only if P is a semi-CNS polynomial with
|P (0)| ≥ 2 and does not have a real positive root.

Proof. (i) This follows directly from the definitions.
(ii) If P is a CNS polynomial then P has the required properties [14, 24]. Con-

versely, let P be a semi-CNS polynomial which does not have a real positive root
and satisfies |P (0)| ≥ 2. Clearly, we have P (0) ≥ 2. We infer from [9, Theorem
21] that there is a polynomial G ∈ Z[X] such that GP ∈ N>0[X]. Let A ∈ Z[X].
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Then we can find some H ∈ N[X] with A + GHP ∈ N[X]. As P is a semi-CNS
polynomial there is some E ∈ D[X] with

A + GHP ≡ E (mod P ) ,

hence we conclude A ∈ RP . !

Corollary 3. Let P be a semi-CNS polynomial with only nonnegative coefficients
and P (0) ≥ 2. Then P is a CNS polynomial.

Our main result exhibits a necessary condition for P to be a semi-CNS polynomial
under the condition that the modulus of its constant term has a particularly nice
canonical representative modulo P . The idea is taken from W. J. Gilbert [14,
Proposition 7], and the essence of the proof is modeled on [25, proof of Theorem 4].

Theorem 4. Let P ∈ Z[X] be a monic polynomial of positive degree with P (0) "= 0
and assume that no root of P is a root of unity. Further, let B ∈ D[X] canonically
represent |P (0)| and suppose B(1) = |P (0)|. Then P is a semi-CNS polynomial
with |P (0)| ≥ 2.

Proof. Let M ∈ Z[X] with B − |P (0)| = MP . Then

P (0)
(
M(0) + signP (0)

)
= (MP )(0) + |P (0)| = B(0) ∈ D,

hence M(0) = −signP (0) in view of P (0) "= 0. Further, we have M(1) = 0 because

M(1)P (1) = B(1)− |P (0)| = 0

and P (1) "= 0. Clearly, the polynomial MP + |P (0)| has only nonnegative coeffi-
cients.

It suffices to show that N[X] ⊆ RP since then Proposition 2 (i) implies that P is
a semi-CNS polynomial with the required property.

We closely follow [25, proof of Theorem 4]. Let A ∈ N[X] and define integers ak

and polynomials Dk by

D0 = A, Dk +
⌊

Dk(0)
|P (0)|

⌋
PM = XDk+1 + ak (k ∈ N).

Obviously, the integers ak belong to D. Using induction we check that the polyno-
mials Dk belong to N[X]. Observing

Dk(1) = Dk+1(1) + ak (1)

we see that the sequence (Dk(1))k∈N is monotonously decreasing, hence ultimately
constant. Therefore we find some s, ! ∈ N such that Dk(1) = s for all k ≥ ! > 0.
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Denoting by y the image of y ∈ Z[X] under the canonical epimorphism Z[X] −→
Z[X]/PZ[X] it suffices to show D! = 0 because then

A = D0 =
!−1∑

k=0

(Dk −X Dk+1)X
k =

!−1∑

k=0

ak X
k
.

By (1) for k ≥ ! we have ak = 0, hence Dk = X Dk+1, and therefore

D! = X
k
Dk+! for all k ∈ N. (2)

Observe that the nonempty set {Dk+! : k ∈ N} is finite because Dk+! has only
nonnegative coefficients and Dk+!(1) is bounded. Thus there exist k,m ∈ N, k < m
with Dk+! = Dm+!. Using (2) we find

(Xm+! −X
k+!)Dk+! = X

m+!
Dm+! −X

!
D! = X

!
D! −X

!
D! = 0,

i.e., P divides Xk+!(Xm−k − 1)Dk+!, and we conclude that P is a divisor of
Xk+!Dk+! by our assumptions on P . Thus we find some G ∈ Z[X] with PG =
Xk+!Dk+! which by (2) yields our desired relation. !

The following result was established by B. Kovács and A. Pethő for irreducible
polynomials and generalized in [2].

Corollary 5 (Kovács – Pethő [22, Theorem 6]). Let P = pdXd + pd−1Xd−1 +
· · · + p0 ∈ Z[X], d ≥ 1 and 1 = pd ≤ pd−1 ≤ . . . ≤ p1 ≤ p0 . If P is not divisible by
a cyclotomic polynomial then P is a CNS polynomial.

Proof. Set B = (X − 1) · P and apply the Theorem and Proposition 2 (ii). !

We mention two easily applicable consequences of Corollary 5.

Corollary 6. Let P = pdXd + pd−1Xd−1 + · · · + p0 ∈ Z[X], d ≥ 2 and 1 = pd ≤
pd−1 ≤ . . . ≤ p1 ≤ p0. If either P is irreducible and p0 ≥ 2 or

gcd
{
j ∈ {1, . . . , d + 1} : pj < pj−1

}
= 1 (pd+1 := 0) (3)

then P is a CNS polynomial.

Proof. If P is irreducible then the assertion is clear by Corollary 5. Now assume
(3) and set

µ = min
{ pj

pj+1
: j = 0, . . . , d− 1

}
,

hence µ ≥ 1. By Corollary 5 it suffices to show that P is not divisible by a cyclotomic
polynomial. Assume on the contrary that P has a root on the boundary of the unit
circle. Then µ = 1 by the theorem of Eneström-Kakeya [6]. But then [6, Theorem 1]
yields a contradiction to our prerequisites. !
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Corollary 7. Let P = Xd + pd−1Xd−1 + · · · + p0, d ≥ 2 and 1 ≤ pd−1 ≤ pd−2 ≤
· · · ≤ p1 < p0. Then P is a CNS polynomial.

Proof. The set defined in (3) contains 1, hence its greatest common divisor is 1 and
the assertion follows from Corollary 6. !

The following statement was proved by W. J. Gilbert for irreducible polyno-
mials.

Corollary 8 (Gilbert [14, Proposition 7]). Let P be a monic integral polynomial
with the following properties:

(i) All coefficients of P are nonnegative.

(ii) p0 = P (0) > 1

(iii) P is not divisible by a cyclotomic polynomial.

(iv) There exist q1, . . . , qm ∈ {0, . . . , p0 − 1} with m ≥ deg (P ) and p0 =
∑m

i=1 qi

such that P divides the polynomial
∑m

i=1 qiXi − p0.

Then P is a CNS polynomial.

Proof. Choose M ∈ Z[X] such that PM =
∑m

i=1 qiXi−p0, and set B =
∑m

i=1 qiXi.
Then all prerequisites of the Theorem above are satisfied, and an application of
Proposition 2 (ii) completes the proof. !

Example 9. Assume that no cyclotomic polynomial divides P = Xd +pd−1Xd−1 +
· · ·+ p1− p0 ∈ Z[X] with pi ≥ 0 (i = 1, . . . , d− 1) and p0 = 1 + p1 + · · ·+ pd−1 ≥ 2.
Obviously, p0 is canonically representable, and its canonical representation meets
the requirements of Theorem 4. Hence P is a semi-CNS polynomial.

Remark 10.

(i) Apparently only two types of examples for an application of Theorem 4 to
CNS polynomials seem to be known, namely the polynomials described in
Corollary 5 and the polynomials

Xn + p0 (p0 ≥ 2), (4)

see [14, Section 6] for special cases. Note that the CNS property of the
polynomial (4) can also be seen by [8, Theorem 1].

(ii) The converse of Theorem 4 does certainly not hold if d ≥ 2: The canonical
representative of p0 with respect to the CNS polynomial X2 −X + p0 (with
p0 ≥ 2; see e.g., [14, Theorem 1]) is

X(X4 + (p0 − 1)X2 + (p0 − 1)X + 1) .
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3. Computation of Canonical Representatives

In [7, p. 2021] the iteration process for the computation of canonical representatives
was presented. Based on this procedure we give a formalized algorithm here. More
specifically, we compute the canonical representative of Q =

∑d−1
i=0 qiXi ∈ Z[X]

with respect to a given monic expanding polynomial P = Xd +
∑d−1

i=0 piXi ∈ Z[X]
if such a representative exists. Our Algorithm 1 below requires a bound for the
degree of the canonical representative of Q. A suitable value for this bound may
be taken from Corollary 13 provided all its prerequisites are satisfied; otherwise
one can choose a large heuristic bound. For instance, if P is an irreducible CNS
polynomial the algorithm yields the canonical representative of Q.

Algorithm 1 Computation of a canonical representative
Input: d ∈ N>0, q0, . . . , qd−1 ∈ Z, coefficients p0, . . . , pd−1 ∈ Z of the expanding

polynomial Xd +
∑d−1

i=0 piXi, bound ∈ N.
Output: Vector A of the digits of the canonical representative of

∑d−1
i=0 qiXi or

“not canonically representable” or “overflow”
Q(0) ← (q0, . . . , qd−1)
k ← 0
repeat

c←
⌊
Q(k)

0 / |p0|
⌋

Ak ← Q(k)
0 − c |p0|

Q(k+1) ← (Q(k)
1 − (sign p0)cp1, . . . , Q

(k)
d−1 − (sign p0)cpd−1,−(sign p0)c)

k ← k + 1
until Q(k) = (0, . . . , 0) or Q(k) = Q(j) for some j < k or k > bound
if k > bound then

return “overflow”
else

if Q(k) = Q(j) for some j < k then
return “Not canonically representable”

else
return “Digits of the canonical representation:” A

end if
end if

We conclude with some results on bounds for the degrees of representatives of
elements of RP . Here we denote by LP (A) the degree of the canonical representative
of A ∈ Z[X] if A is not a multiple of P ; otherwise we set LP (0) = 0. Clearly, we
have

LP (XnA) = n + LP (A) (n ∈ N)
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provided P does not divide A.
We start with an easily computable lower bound for degrees of representatives

of elements of RP and denote by Ωf the set of roots of f ∈ Z[X].

Proposition 11. Let P ∈ Z[X] be a monic expanding polynomial and A ∈ RP . If
there is some root of P which is not a root of A we have

LP (A) > max
{

log |A(α)| + log(|α|− 1)− log(|P (0)|− 1)
log |α| : α ∈ ΩP \ ΩA

}
− 1 .

Proof. Our proof is adapted from [23,p. 170]. Let E =
∑k

i=0 eiXi ∈ D[X] be the
representative of A and α ∈ ΩP . Then we have

|A(α)| = |E(α)| ≤
k∑

i=0

ei |α|i ≤ (|P (0)|− 1)
k∑

i=0

|α|i

= (|P (0)|− 1) · |α|
k+1 − 1
|α|− 1

<
(|P (0)|− 1) |α|k+1

|α|− 1
which implies our assertion by taking logarithms. !

Our next statements are modeled on respective results in the works [23] and [13].

Theorem 12. Let P ∈ Z[X] be a monic, irreducible and expanding polynomial of
degree ≥ 2. Then there exist constants LP and KP with the following properties.

(i) If A ∈ RP is not a multiple of P we have

LP (A) ≤ LP +
⌈
max

{
log |A(α)|

log |α| : α ∈ ΩP

}⌉
.

(ii) If A, B, A + B ∈ RP we have

LP (A + B) ≤ KP + max {LP (A), LP (B)} .

Proof. (i) Let µ ∈ ΩP have minimal modulus among all roots of P and set

c = 1 +
|P (0)|− 1
|µ|− 1

.

It is well known that the set

B =
{
γ ∈ Z[µ] \ {0} : |γ| < c

}

is finite; here |γ| denotes the maximum modulus of the conjugates of γ. In view of
the uniqueness of the CNS representation the set

S = {E ∈ D[X] : E(µ) ∈ B}
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is also finite. Clearly, S is nonvoid because X ∈ S, and we can define

LP = max {deg(E) : E ∈ S} .

Set
k =

⌈
max

{
log |A(α)|

log |α| : α ∈ ΩP

}⌉
,

and hence |A(α)| ≤ |α|k for all α ∈ ΩP . Let E ∈ D[X] be the representative of A.
Thus there exist e0, . . . , ek−1 ∈ D and F ∈ D[X] such that we can write

E =
k−1∑

i=0

eiX
i + XkF .

If F = 0 we have
LP (A) = deg(E) ≤ k − 1,

and we are done. Otherwise F ∈ S as can be seen similarly as in the proof of [22,
Lemma 4]: For every α ∈ ΩP we have

|α|k |F (α)| ≤ |A(α)| +
k−1∑

i=0

ei |α|i ,

hence

|F (α)| ≤ 1 +
(|P (0)|− 1))(|α|k − 1)

|α|k (|α|− 1)
< 1 +

|P (0)|− 1
|α|− 1

≤ |P (0)|− 1
|µ|− 1

,

and we conclude
LP (A) = k + deg(F ) ≤ k + LP .

(ii) This can be proved similarly using

c =
2 (|P (0)|− 1)

|µ|− 1

and an analogous definition of KP . The reader may compare the proof of [13,
Proposition 2] which in turn is a modification of an argument in [28, p. 271]. !

The constant KP introduced above plays a key role in finding a bound mentioned
in Algorithm 1.

Corollary 13. Let P ∈ Z[X] be a monic, irreducible and expanding polynomial of
degree ≥ 2 and p = |P (0)|.

(i) If p ∈ RP then

! := LP (p) ≤ min
{

KP , LP +
⌈

log p

log |µ|

⌉}

where KP and LP are the constants given by Theorem 12 and µ is a root of
minimal modulus of P .
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(ii) For n ∈ N>0 we have

LP (np) ≤ ! + (n− 1)KP

provided p, 2p, . . . , np ∈ RP .

(iii) If N ⊆ RP we have

LP (n) ≤ ! +
⌊

n

p

⌋
KP (n ∈ N≥p).

(iv) If P is a semi-CNS polynomial and f ∈ N[X] \ {0} we have

LP (f) ≤ ! + deg(f) +
(⌊

H(f)
p

⌋
+ deg(f)

)
KP

where H(f) denotes the (naive) height of f .

(v) Let n ∈ N>0, r ∈ D and −kp ∈ RP for k = 1, . . . , n. Then we have

LP (−np + r) ≤ ! + (n− 1)KP

with ! = LP (−p).

(vi) Let n ∈ N≥p and −
⌈

n
p

⌉
p ∈ RP . Then −n ∈ RP and we have

LP (−n) ≤ ! +
(⌈

n

p

⌉
− 1

)
KP .

(vii) If Z ⊆ RP we have

LP (n) ≤ !" +
⌊
|n|
p

⌋
KP (n ∈ Z)

with !" = max
{
!, !

}
.

(viii) If P is a CNS polynomial and f ∈ Z[X] \ {0} we have

LP (f) ≤ !" + deg(f) +
(⌊

H(f)
p

⌋
+ deg(f)

)
KP .

Proof. For simplicity we now omit the subscript P . (i) In view of D ⊆ R and
Theorem 12 (ii) we have ! ≤ max {L(p− 1), L(1)} + K = K .

(ii) The statement is trivial for n = 1, and by induction we find

L ((n + 1)p) ≤ max {L(np), !} + K ≤ max {! + (n− 1)K, !} + K = ! + nK .
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(iii) This is trivial for n < p. Otherwise we write n =
⌊

n
p

⌋
p + r with r ∈ D and

infer from (ii)

L (n) = L
(⌊

n

p

⌋
p
)
≤ ! +

⌊
n

p

⌋
K .

(iv) We proceed by induction on d := deg(f). If d = 0 the statement is clear by (iii).
Otherwise, we write f = Xg + c with c ∈ N, g ∈ N[X], deg(g) = d − 1, H(g) ≤
H(f), hence with q :=

⌊
H(f)

p

⌋

L (f) ≤ max {1 + L(g)), L(c)} + K

≤ 1 + ! + deg(g) + (q + deg(g))K + K = ! + d + (q + d)K .

Proofs of (v) through (viii) follow the same scheme and are left to the reader. !

The practical application of Theorem 12 for the determination of the constants
KP and LP for an irreducible semi-CNS polynomial P requires the computation of
sets of the form

G =
{
γ ∈ Z[µ] : |γ| < c

}
.

It is well known that G can be computed in finitely many steps (see for instance [27,
Chapter 3.3]). However, so far no bounds for the degrees of canonical representatives
(if they exist) of the elements of G seem to be known.
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