

AVOIDING TYPE (1,2) OR (2,1) PATTERNS IN A PARTITION OF A SET

Toufik Mansour

Department of Mathematics, University of Haifa, Haifa, Israel tmansour@univ.haifa.ac.il

Mark Shattuck

Department of Mathematics, University of Tennessee, Knoxville, Tennessee shattuck@math.utk.edu

Received: 9/22/10, Accepted: 2/22/12, Published: 3/1/12

Abstract

A partition π of the set $[n] = \{1, 2, ..., n\}$ is a collection $\{B_1, ..., B_k\}$ of nonempty pairwise disjoint subsets of [n] (called *blocks*) whose union equals [n]. In this paper, we find exact formulas and/or generating functions for the number of partitions of [n] with k blocks, where k is fixed, which avoid 3-letter patterns of type x - yzor xy - z, providing generalizations in several instances. In the particular cases of 23 - 1, 22 - 1, and 32 - 1, we are only able to find recurrences and functional equations satisfied by the generating function, since in these cases there does not appear to be a simple explicit formula for it.

1. Introduction

A partition of $[n] = \{1, 2, ..., n\}$ is a decomposition of [n] into nonempty pairwise disjoint subsets $B_1, B_2, ..., B_k$, called *blocks*, which are listed in increasing order of their least elements $(1 \le k \le n)$. The set of all partitions of [n] with exactly k blocks will be denoted by P(n, k) and has cardinality given by S(n, k), the wellknown Stirling number of the second kind [16]. We will represent a partition $\Pi =$ $B_1, B_2, ..., B_k$ in the canonical sequential form $\pi = \pi_1 \pi_2 \cdots \pi_n$ such that $j \in B_{\pi_j}$, $1 \le j \le n$. From now on, we will identify each partition with its canonical sequential form. For example, if $\Pi = \{1, 4\}, \{2, 5, 7\}, \{3\}, \{6, 8\}$ is a partition of [8], then its canonical sequential form is $\pi = 12312424$ and in such a case we write $\Pi = \pi$. Note that $\pi = \pi_1 \pi_2 \cdots \pi_n \in P(n, k)$ is a restricted growth function from [n] to [k] (see, e.g., [13] for details), meaning that it satisfies (i) $\pi_1 = 1$, (ii) π is onto [k], and (iii) $\pi_{i+1} \le \max\{\pi_1, \pi_2, \ldots, \pi_i\} + 1$ for all $i, 1 \le i \le n - 1$.

A generalized subword pattern τ is a (possibly hyphenated) word of $[\ell]^m$ which

contains all of the letters in $[\ell]$. We say that a word $\sigma \in [k]^n$ contains a generalized subword pattern τ if σ contains a subsequence isomorphic to τ in which entries of σ corresponding to consecutive entries of τ not separated by a hyphen must be adjacent. Otherwise, we say that σ avoids τ . For example, a word $\sigma = a_1 a_2 \cdots a_n$ avoids the pattern 1 - 32 if it has no subsequence $a_j a_i a_{i+1}$ with j < i and $a_j < a_{i+1} < a_i$ and avoids the pattern 13 - 2 if it has no subsequence $a_i a_{i+1} a_j$ with j > i + 1 and $a_i < a_j < a_{i+1}$. Generalized patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the word were first introduced by Babson and Steingrímsson [1] in identifying Mahonian statistics on the symmetric group S_n .

Pattern avoidance is a classical problem in enumerative combinatorics. The first consideration of pattern avoidance began with that of permutations avoiding a pattern τ of length 3 with distinct letters and no adjacency requirements. Knuth [10] found that for any $\tau \in S_3$, there are C_n members of S_n which avoid τ , where C_n denotes the *n*-th Catalan number. Later, Simion and Schmidt [15] determined the number of elements of S_n avoiding the patterns in any subset of S_3 , which was extended to words in $[k]^n$ by Burstein [2]. More recently, there has been comparable work done on pattern avoidance in set partitions, using various definitions for avoidance. The reader is referred to the papers by Klazar [9], Sagan [14], and Jelínek and Mansour [8] and to the references therein.

In this paper, we consider the problem of enumerating the partitions of [n] with k blocks, where k is fixed, which avoid a single pattern of type x - yz or of type xy - z, where partitions are construed as words in their canonical sequential forms. (We shall refer to 3-letter patterns of the forms x - yz and xy - z as type (1,2) and type (2,1), respectively.) This extends earlier work by Claesson and Mansour [5] on permutations, by Burstein and Mansour [3] on words in $[k]^n$, and by Heubach and Mansour [7] on compositions.

Given a generalized pattern τ , let $P_{\tau}(n,k)$ denote the subset of P(n,k) which avoids τ , where k is fixed. If $a_n := |P_{\tau}(n,k)|$ for $n \ge 0$, then we define the generating function $F_{\tau}(x;k)$ by

$$F_{\tau}(x;k) = \sum_{n \ge 0} a_n x^n.$$

In the next two sections, we find exact formulas and/or generating functions for the cardinality of $P_{\tau}(n,k)$ for patterns τ of type (1,2) and type (2,1), providing generalizations in several instances. In the particular cases of 23 - 1, 22 - 1, and 32 - 1, we were unable to find explicit formulas for $F_{\tau}(x;k)$, but were able to derive recurrences as well as functional equations satisfied by $F_{\tau}(x;k)$ through use of generating functions and generating trees, respectively.

2. Type (1,2) Patterns

We start with a theorem concerning a general class of patterns.

Theorem 1. Let $\tau = \ell - \tau'$ be a generalized pattern with one dash such that τ' is a subword pattern over the alphabet $[\ell - 1]$. Then

$$F_{\tau}(x;k) = \frac{x^k}{\prod_{j=1}^{\ell-1} (1-jx)} \prod_{j=\ell}^k \frac{W_{\tau'}(x;j-1)}{1-xW_{\tau'}(x;j-1)},$$

where $W_{\tau'}(x;m)$ is the generating function for the number of words of length n over the alphabet [m] that avoid the pattern τ' .

Proof. First note that each member π of P(n,k) may be expressed as

$$\pi = 1\pi^{(1)}2\pi^{(2)}\cdots k\pi^{(k)}.$$

where $\pi^{(j)}$ is a word over the alphabet [j] which we decompose further as

$$\pi^{(j,1)} j \cdots \pi^{(j,s)} j \pi^{(j,s+1)}$$

where each $\pi^{(j,i)}$ is a word over the alphabet [j-1]. Thus, in terms of generating functions, we may write

$$F_{\tau}(x;k) = x^k \prod_{j=1}^k \frac{W_{\tau'}(x;j-1)}{1 - xW_{\tau'}(x;j-1)}.$$

From the definitions, we have $W_{\tau'}(x;j) = \frac{1}{1-jx}$ for all $j = 0, 1, \ldots, \ell - 2$, which completes the proof.

For example, Theorem 1 for $\tau = 3 - 12$ or $\tau = 3 - 21$, together with $W_{12}(x;j) = W_{21}(x;j) = \frac{1}{(1-x)^j}$, yields an explicit formula in these cases.

Example 2. For each positive integer k,

$$F_{3-12}(x;k) = F_{3-21}(x;k) = \frac{x^k}{(1-x)(1-2x)} \prod_{j=3}^k \frac{1/(1-x)^{j-1}}{1-x/(1-x)^{j-1}}$$
$$= x^k \prod_{j=1}^k \frac{1}{(1-x)^{j-1}-x}.$$

Writing the $\pi^{(j,i)}$ in reverse order for all *i* and *j* shows directly that $F_{3-12}(x;k) = F_{3-21}(x;k)$, where the $\pi^{(j,i)}$ are as defined in the proof above. Also, Theorem 1 for $\tau = 2 - 11$ together with $W_{11}(x;j) = \frac{1+x}{1-(j-1)x}$ (see [3, Section 2]) yields

Example 3. For each positive integer k,

$$F_{2-11}(x;k) = x^k \prod_{j=1}^k \frac{1+x}{1-(j-1)x-x^2}.$$

Theorem 4. Let $\tau = 1 - 1 \cdots 1$ be a generalized pattern with one dash having length m, where $m \geq 3$. Then

$$F_{\tau}(x;k) = x^k \prod_{j=1}^k \frac{1 - x^{m-1}}{1 - jx + (j-1)x^{m-1}}$$

Proof. Let $a(n,j) := |P_{\tau}(n,j)|$ for $n, j \ge 0$. If $j \ge 2$, we have

$$a(n,j) = \sum_{i=1}^{m-1} a(n-i,j-1) + (j-1) \sum_{i=1}^{m-2} a(n-i,j), \quad n \ge j,$$

the first term counting all members of $P_{\tau}(n, j)$ where the letter j can be followed by no letter other than j, the second term counting those members of $P_{\tau}(n, j)$ ending in a run of exactly i letters of the same kind for some i, $1 \le i \le m - 2$, and where the letter j is followed by a letter other than j on at least one occasion. Multiplying both sides of the above recurrence by x^n and summing over all $n \ge j$ implies

$$F_{\tau}(x;j) = \frac{F_{\tau}(x;j-1)\sum_{i=1}^{m-1} x^{i}}{1-(j-1)\sum_{i=1}^{m-2} x^{i}} = \frac{x(1-x^{m-1})F_{\tau}(x;j-1)}{1-jx+(j-1)x^{m-1}}, \quad j \ge 2,$$

and iterating this yields our result, upon noting the initial condition $F_{\tau}(x;1) = \frac{x(1-x^{m-1})}{1-x}$.

When m = 3 in Theorem 4, we get

$$F_{1-11}(x;k) = x(1+x)^k \left(x^{k-1} \prod_{j=1}^{k-1} \frac{1}{1-jx} \right),$$

which implies the following explicit formula.

Corollary 5. The number of partitions of [n] with k blocks avoiding the subword pattern 1 - 11 is given by

$$\sum_{j=0}^{\min\{k,n-k\}} S(n-j-1,k-1)\binom{k}{j}.$$

We can provide a combinatorial explanation as follows. First note that the only places where a member of $P_{1-11}(n,k)$ can have a *level* (i.e., an occurrence of 11)

are at the first appearances of letters. So to form a member of $P_{1-11}(n,k)$ having exactly j levels, first choose a member $\lambda \in P(n-j,k)$ having no levels, which as is well-known can be done in S(n-j-1,k-1) ways (see, e.g., [12]), and then select a subset T of [k] having cardinality j. Now insert a copy of the letter i just after the first appearance of i within λ for each $i \in T$ to obtain a member of $P_{1-11}(n,k)$ having exactly j levels.

Theorem 6. Let $\tau = 1 - 2 \cdots 2$ be a generalized pattern with one dash having length m, where $m \geq 3$. Then

$$F_{\tau}(x;k) = \frac{x^k}{1-x} \prod_{j=2}^k \frac{1-x^{m-2}}{1-jx+(j-2)x^{m-1}+x^m}$$

Proof. Let $a(n,j) := |P_{\tau}(n,j)|$ for $n,j \ge 0$. If $j \ge 2$, we have

$$a(n,j) = \sum_{i=1}^{m-2} a(n-i,j-1) + (j-1) \sum_{i=1}^{m-2} a(n-i,j) + a(n-m+1,j), \quad n \ge j,$$

the first term counting all members of $P_{\tau}(n, j)$ where the letter j can be followed by no letter other than j, the second term counting those members of $P_{\tau}(n, j)$ ending in a run of exactly i letters of the same kind for some $i, 1 \le i \le m-2$, and where the letter j is followed by a letter other than j on at least one occasion, and the third term counting those members of $P_{\tau}(n, j)$ ending in a run of the letter 1 having length at least m-1. Multiplying both sides of the above recurrence by x^n and summing over all $n \ge j$ implies

$$F_{\tau}(x;j) = \frac{F_{\tau}(x;j-1)\sum_{i=1}^{m-2} x^{i}}{1-x^{m-1}-(j-1)\sum_{i=1}^{m-2} x^{i}} = \frac{x(1-x^{m-2})F_{\tau}(x;j-1)}{1-jx+(j-2)x^{m-1}+x^{m}}, \quad j \ge 2,$$

and iterating this yields our result, upon noting the initial condition $F_{\tau}(x;1) = \frac{x}{1-x}$.

Letting m = 3 in Theorem 6 gives

Example 7. For each positive integer k,

$$F_{1-22}(x;k) = \frac{x^k}{1-x} \prod_{j=2}^k \frac{1}{1-(j-1)x - x^2}$$

Taking k = 2 in this implies that $P_{1-22}(n, 2)$ has cardinality $f_n - 1$, where f_n denotes the *n*-th Fibonacci number with $f_0 = f_1 = 1$. This may be verified directly using the interpretation for f_n in terms of square-and-domino tilings of length *n*. For there are f_{n-2} members of $P_{1-22}(n, 2)$ ending in a 2, upon noting that every 2 (except the last) must be directly followed by a 1, and $f_{n-1} - 1$ members of

 $P_{1-22}(n,2)$ ending in a 1, upon noting that there must be at least one occurrence of a 2 followed directly by a 1 (which we treat as a domino, hence the all-square tiling of length n-1 is ruled out).

Proposition 8. The number of partitions of [n] with k blocks avoiding either 1-21 or 1-12 is given by $\binom{n-1}{k-1}$.

Proof. First note that a member of $P_{1-21}(n, k)$ cannot have a descent, hence it must be increasing. A member of $P_{1-12}(n, k)$ must be of the form $12 \cdots k\alpha$, where α is a word of length n - k in the alphabet [k] and decreasing, which implies that there are $\binom{(n-k)+k-1}{k-1} = \binom{n-1}{k-1}$ members of $P_{1-12}(n, k)$ as well.

Proposition 9. The number of partitions of [n] with k blocks avoiding either 2–21 or 2–12 is given by $\binom{n+\binom{k}{2}-1}{n-k}$.

Proof. Suppose $\pi \in P_{2-21}(n,k)$ is written in the form $1\pi_12\pi_2\cdots k\pi_k$, where each π_i is a word in the alphabet [i] of length a_i and $a_1 + a_2 + \cdots + a_k = n - k$. Then each π_i must be increasing in order to avoid an occurrence of 2-21. Thus, there are $\sum \prod_{i=1}^{k} \binom{a_i+i-1}{i-1}$ members of $P_{2-21}(n,k)$, where the sum is over all k-tuples (a_1, a_2, \ldots, a_k) of non-negative integers having sum n - k. Note that this quantity is exactly the coefficient of x^{n-k} in the k-fold convolution $\prod_{i=1}^{k} \frac{1}{(1-x)^i} = \frac{1}{(1-x)^{\binom{k+1}{2}}}$, which is $\binom{n-k+\binom{k+1}{2}-1}{n-k} = \binom{n+\binom{k}{2}-1}{n-k}$. A similar argument applies to the pattern 2-12, with the π_i now required to be decreasing.

Theorem 10. Let $\tau = 1 - 32 \cdots 2$ be a generalized pattern of length $m \ge 3$. For each positive integer k,

$$F_{\tau}(x;k) = x^{k}(1-x^{m-2})^{\binom{k-1}{2}} \prod_{j=1}^{k} \frac{x^{m-3}}{x^{m-3}-x^{m-2}-1+(1-x^{m-2})^{j-1}}$$

Proof. Let $\tau' = 21 \cdots 1$ be a subword pattern of length m - 1. In [4, Section 2.1], Burstein and Mansour showed that the generating function for the number of words θ of length n over the alphabet [k] such that θ avoids the subword τ' is given by

$$G_{\tau'}(x;k) = \frac{1}{1 - x^{3-m}(1 - (1 - x^{m-2})^k)}.$$

They also showed that the generating function for the number of words θ of length n over the alphabet [k] such that $(k+1)\theta$ avoids the subword τ' is given by

$$H_{\tau'}(x;k) = \frac{(1-x^{m-2})^k}{1-x^{3-m}(1-(1-x^{m-2})^k)}.$$

Since each word $k\theta$ over the alphabet [k] can be decomposed as $k\theta^{(1)}k\theta^{(2)}k\cdots k\theta^{(s)}$, where $\theta^{(j)}$ is a word over the alphabet [k-1], we have that the generating function

 $H'_{\tau'}(x;k)$ for the number of words $k\theta$ of length n over the alphabet [k] that avoid the subword τ' is given by

$$H'_{\tau'}(x;k) = \frac{xH_{\tau'}(x;k-1)}{1 - xH_{\tau'}(x;k-1)} = \frac{x(1 - x^{m-2})^{k-1}}{1 - x^{3-m}(1 - (1 - x^{m-2})^k)}$$

We will say that a word $\theta = \theta_1 \cdots \theta_n$ almost avoids τ' if there exists no *i* such that $\theta_i > \theta_{i+1} = \cdots = \theta_{i+m-2} > 1$. Now let us find the generating function J(x;k) for the number of words $k\theta = k\theta_1 \cdots \theta_n$ of length *n* over the alphabet [k] which almost avoid τ' . Since the word $k\theta$ can be written as $k\theta^{(1)}1\theta^{(2)}1\cdots 1\theta^{(d)}$, where $\theta^{(j)}$ is a word over the alphabet $\{2, 3, \ldots, k\}$, we obtain

$$J(x;k) = \frac{H'_{\tau'}(x;k-1)}{1 - xG_{\tau'}(x;k-1)},$$

for all $k \geq 2$. Suppose $\pi \in P_{\tau}(n, k)$ is written as $1\pi^{(1)}2\pi^{(2)}\cdots k\pi^{(k)}$, where each $\pi^{(j)}$ is a word over the alphabet [j]. Note π avoids τ if and only if $j\pi^{(j)}$ almost avoids τ' for all j. Hence, the generating function for the number of partitions $\pi \in P_{\tau}(x, k)$ is given by

$$F_{\tau}(x;k) = \frac{x}{1-x} \prod_{j=2}^{k} J(x;j) = \frac{x}{1-x} \prod_{j=2}^{k} \frac{H'_{\tau'}(x;j-1)}{1-xG_{\tau'}(x;j-1)}$$
$$= \frac{x}{1-x} \prod_{j=2}^{k} \frac{x^{m-2}(1-x^{m-2})^{j-2}}{x^{m-3}-x^{m-2}-1+(1-x^{m-2})^{j-1}},$$

which yields the desired result.

Letting m = 3 in Theorem 10 gives

Example 11. For each positive integer k,

$$F_{1-32}(x;k) = x^k (1-x)^{\binom{k-1}{2}} \prod_{j=1}^k \frac{1}{(1-x)^{j-1} - x}.$$

Theorem 12. Let $\tau = 1 - 23 \cdots 3$ be a generalized pattern of length $m \ge 3$. For each positive integer $k \ge 2$,

$$F_{\tau}(x;k) = x^{k}(1-x^{m-3}+x^{m-2})^{k-2} \prod_{j=1}^{k} \frac{x^{m-3}}{x^{m-3}-x^{m-2}-1+(1-x^{m-2})^{j-1}},$$

with $F_{\tau}(x; 1) = \frac{x}{1-x}$.

Proof. Let $\tau' = 12 \cdots 2$ be a subword pattern of length m - 1. In [4, Section 2.1], Burstein and Mansour showed that the generating function for the number of words θ of length n over the alphabet [k] such that θ avoids the subword τ' is given by

$$G_{\tau'}(x;k) = \frac{1}{1 - x^{3-m}(1 - (1 - x^{m-2})^k)}.$$

We will say that a word $\theta = \theta_1 \cdots \theta_n$ almost avoids τ' if there exists no *i* such that $1 < \theta_i < \theta_{i+1} = \cdots = \theta_{i+m-2}$. Now let us find the generating function H(x;k) for the number of words θ of length *n* over the alphabet [k] that almost avoid τ' . Since the word θ can be written as $\theta^{(1)}1\theta^{(2)}1\cdots 1\theta^{(d)}$, where $\theta^{(j)}$ is a word over the alphabet $\{2, 3, \ldots, k\}$, we obtain

$$H(x;k) = \frac{G_{\tau'}(x;k-1)}{1 - xG_{\tau'}(x;k-1)} = \frac{1}{1 - x - x^{3-m}(1 - (1 - x^2)^{k-1})}$$

Suppose $\pi = \pi^{(0)} k^{a_1} \pi^{(1)} k^{a_2} \pi^{(2)} \cdots k^{a_s} \pi^{(s)} \in P_{\tau}(n,k)$, where $\pi^{(0)}$ does not contain the letter k, each a_i is a positive integer, and each $\pi^{(j)}$ is a nonempty word over the alphabet [k-1] if $1 \leq j < s$, with $\pi^{(s)}$ possibly empty. Since π starts with the letter 1, it avoids τ if and only if (1) $\pi^{(0)}$ is a partition with exactly k-1 blocks that avoids τ , (2) $\pi^{(j)}$ almost avoids τ' for all $j = 1, 2, \ldots, s$, and (3) if $a_j > m-3$, then the rightmost letter of $\pi^{(j-1)}$ is 1 for all $j = 1, 2, \ldots, s$. Hence, the generating function for the number of partitions $\pi \in P_{\tau}(x, k)$ is given by

$$F_{\tau}(x;k) = \frac{H(x;k-1)(\frac{x-x^{m-2}}{1-x} + \frac{x^{m-1}}{1-x})F_{\tau}(x;k-1)}{1 - \frac{x-x^{m-2}}{1-x}(H(x;k-1) - 1) - \frac{x^{m-1}}{1-x}H(x;k-1)},$$

which, by using the expression above for H(x; k), implies that

$$F_{\tau}(x;k) = \frac{\frac{x - x^{m-2} + x^{m-1}}{1 - x} F_{\tau}(x;k-1)}{1 - x - x^{3-m} (1 - (1 - x^{m-2})^{k-2}) - \frac{(x - x^{m-2}) (1 - \frac{1}{H(x;k-1)}) + x^{m-1}}{1 - x}}{1 - x}$$
$$= \frac{x^{m-2} (1 - x^{m-3} + x^{m-2}) F_{\tau}(x;k-1)}{x^{m-3} - x^{m-2} - 1 + (1 - x^{m-2})^{k-1}},$$

for all $k \geq 3$. Iterating the above recurrence relation and using the fact that $F_{\tau}(x;2) = \frac{x^2}{(1-x)(1-2x)}$ yields the desired result.

Letting m = 3 in Theorem 12 gives

Example 13. For each positive integer $k \ge 2$,

$$F_{1-23}(x;k) = x^{2k-2} \prod_{j=1}^{k} \frac{1}{(1-x)^{j-1} - x},$$

with $F_{1-23}(x;1) = \frac{x}{1-x}$.

Comparing Examples 13 and 2, we see that the cardinality of $P_{1-23}(n+k-2,k)$ is the same as that for $P_{3-21}(n,k)$ for $k \geq 2$. For a direct bijection, first write $\pi \in P_{1-23}(n+k-2,k)$ as $1\pi^{(1)}2\pi^{(2)}(13)\pi^{(3)}\cdots(1k)\pi^{(k)}$, where a 1 directly precedes the first occurrence of each $i \in \{3, 4, \ldots, k\}$ and $\pi^{(i)}$ is a word in the alphabet [i]. Then remove each of these k-2 1's and replace each word $\pi^{(i)} = a_1a_2\cdots a_r$ with the word $\hat{\pi}^{(i)} = (i+1-a_1)(i+1-a_2)\cdots(i+1-a_r)$ to obtain $\hat{\pi} = 1\hat{\pi}^{(1)}2\hat{\pi}^{(2)}3\hat{\pi}^{(3)}\cdots k\hat{\pi}^{(k)}$ belonging to $P_{3-21}(n,k)$, as may be verified.

The results of this section are summarized in Table 1 below.

au	Reference	au	Reference	au	Reference
1 - 11	Corollary 5	1 - 32	Example 11	2 - 21	Proposition 9
1 - 12	Proposition 8	2 - 11	Example 3	2 - 31	[6]
1 - 21	Proposition 8	2 - 12	Proposition 9	3 - 12	Example 2
1 - 22	Example 7	2 - 13	[11]	3 - 21	Example 2
1 - 23	Example 13				

Table 1: Three letter generalized patterns of type (1, 2)

3. Type (2,1) Patterns

We open with a general theorem which follows immediately from the fact that each partition π with exactly k blocks may be uniquely expressed as $\pi' k w$ where π' is a partition with exactly k - 1 blocks and w is a word over the alphabet [k].

Theorem 14. Let $\tau = \tau' - \ell$ be a generalized pattern with one dash such that τ' is a subword pattern over the alphabet $[\ell - 1]$. Then

$$F_{\tau}(x;k) = xW_{\tau}(x;k)F_{\tau'}(x;k-1),$$

where $W_{\tau}(x; r)$ is the generating function for the number of words of length n over the alphabet [r] which avoid the pattern τ .

The following formula for $F_{12-3}(x;k)$ follows from taking $\tau = 12-3$ in Theorem 14 and is also obvious from the definitions.

Example 15. $F_{12-3}(x;1) = \frac{x}{1-x}$, $F_{12-3}(x;2) = \frac{x^2}{(1-x)(1-2x)}$, and $F_{12-3}(x;k) = 0$ for all $k \ge 3$.

Taking $\tau = 21 - 3$ in the prior theorem together with

$$W_{21-3}(x;k) = \prod_{j=1}^{k} \frac{(1-x)^{j-1}}{(1-x)^{j-1} - x}$$

(see Theorem 3.6 of [3]) and $F_{21}(x; k-1) = \frac{x^{k-1}}{(1-x)^{k-1}}$ yields **Example 16.** For each positive integer k,

$$F_{21-3}(x;k) = \frac{x^k}{1-x} \prod_{j=2}^k \frac{(1-x)^{j-2}}{(1-x)^{j-1}-x}$$

Taking $\tau = 11 - 2$ in the prior theorem together with

$$W_{11-2}(x;k) = \prod_{j=0}^{k-1} \frac{1 - (j-1)x}{1 - jx - x^2}$$

(see Theorem 3.2 of [3]) and

$$F_{11}(x;k-1) = \frac{x^{k-1}}{\prod_{j=1}^{k-2}(1-jx)}$$

(see, e.g., [12]) yields

Example 17. For each positive integer k,

$$F_{11-2}(x;k) = x^k(1+x)\prod_{j=0}^{k-1} \frac{1}{1-jx-x^2}.$$

Letting k = 2 in the last formula, we see that $P_{11-2}(n,2)$ has cardinality

$$\sum_{j=0}^{n-2} f_j = f_n - 1,$$

where f_m denotes the *m*-th Fibonacci number. Note that the sum counts all members of $P_{11-2}(n,2)$ according to the number, n-2-j, of trailing 1's.

Theorem 18. For each positive integer k,

$$F_{1\dots 1-1}(x;k) = F_{1-1\dots 1}(x;k),$$

where the generalized patterns have the same length $m \geq 3$.

Proof. We first express a member $\lambda \in P_{1-1\cdots 1}(n,k)$ as $\lambda = x_1w_1x_2w_2\cdots x_rw_r$, where each x_i is a (maximal) sequence of consecutive 1's and each w_i is a word in the alphabet $[k] - \{1\}$ (with w_r possibly empty). Let $\lambda_1 = x_rw_1x_{r-1}w_2\cdots x_1w_r$ be the partition gotten by reversing the order of the runs of consecutive 1's. Now reverse the order of the runs of consecutive 2's in λ_1 , and, likewise, reverse the order of the runs for each subsequent member of [k]. The resulting partition α will belong to $P_{1\cdots 1-1}(n,k)$ since all runs (except possibly the last) of a given letter will have length at most m - 2, and the mapping $\lambda \mapsto \alpha$ is readily seen to be a bijection. For example, if n = 12, k = 3, m = 3, and $\lambda = 111213323132 \in P_{1-11}(12,3)$, then $\alpha = 121323111332 \in P_{11-1}(12,3)$. The bijection of the preceding proof shows, more generally, that the statistics recording the number of occurrences of $1 \cdots 1 - 1$ and $1 - 1 \cdots 1$ are identically distributed on P(n, k). We next look at the patterns 12 - 1 and 12 - 2.

Proposition 19. The number of partitions of [n] with k blocks avoiding either 12 - 1 or 12 - 2 is given by $\binom{n-1}{k-1}$.

Proof. A member of $P_{12-1}(n,k)$ cannot have a descent since the first descent in a partition always produces an occurrence of 12 - 1. If a member of $P_{12-2}(n,k)$ is expressed in the form $1\pi_12\pi_2\cdots k\pi_k$, where each π_i is a (possibly empty) word in the alphabet [i], then it must be the case that each π_i consists only of 1's, whence there are $\binom{(n-k)+k-1}{k-1} = \binom{n-1}{k-1}$ members of $P_{12-2}(n,k)$ in all. To see this, note first that π_2 in the above decomposition must consist only of 1's in order to avoid an occurrence of 12-2. This in turn implies that π_3 must consist of all 1's, for if it had a 2 or a 3, then there would be an occurrence of 12-2 when taken with the first occurrence of 2 or 3. And so on, inductively, each π_i must consist only of 1's.

Theorem 20. The number of partitions of [n] with k blocks avoiding 21-2 is given by $\binom{n+\binom{k}{2}-1}{n-k}$.

Proof. Within a partition, we'll call a group of consecutive letters of the same type i an i-block. First note that within any member of $P_{21-2}(n,k)$, all of the letters k must occur within a single block. The letters k - 1 either occur as a single block to the left of the k-block or occur as two blocks, one to the left and another to the right of the k-block. In general, suppose one has chosen the relative positions of the j blocks for each $j \in \{2, 3, \ldots, k\}$ and one wishes to insert 1-blocks. One must place a 1-block at the beginning. Once this is done, you may then place a 1-block directly to the right of the *last j*-block for any j > 1.

Let $z = \frac{x}{1-x}$. Upon conditioning on the number, *i*, of 1-blocks to be inserted following *j*-blocks for $j \in \{2, 3, ..., k\}$ (note that for each of the $\binom{k-1}{i}$ choices regarding the insertion sites for the *i* additional 1-blocks, there is a contribution of z^{i+1} towards the generating function), we see that

$$F_{21-2}(x;k) = \left(z\sum_{i=0}^{k-1} \binom{k-1}{i} z^i\right) F_{21-2}(x;k-1)$$
$$= z(1+z)^{k-1} F_{21-2}(x;k-1), \qquad k \ge 2.$$

Iterating this and noting the initial condition $F_{21-2}(x;1) = z$, we get

$$F_{21-2}(x;k) = z^k (1+z)^{\binom{k}{2}} = \frac{x^k}{(1-x)^{\binom{k+1}{2}}},$$

which implies that $P_{21-2}(n,k)$ has cardinality $\binom{n-k+\binom{k+1}{2}-1}{n-k} = \binom{n+\binom{k}{2}-1}{n-k}$.

Theorem 21. The number of partitions of [n] with k blocks avoiding 21-1 is given by $\binom{n+\binom{k}{2}-1}{n-k}$.

Proof. We construct an explicit bijection between the set $P_{21-2}(n,k)$ and the set $P_{21-1}(n,k)$ and use the prior theorem. Suppose $\lambda = \lambda_1 = a_1 a_2 \cdots a_n \in P_{21-2}(n,k)$ and that the first (maximal) descent occurs at index *i* and has length *t*, where $t \geq 2$. Then there are no occurrences of the letters $a_i, a_{i+1}, \ldots, a_{i+t-2}$ past position i+t-1. Replace any occurrences of the letter a_{i+t-1} past position i+t-1 with the letter a_i , letting λ_2 denote the resulting member of P(n,k). (By maximal descent, we mean a descent which is not strictly contained within any other.)

Now suppose the *second* (maximal) descent of λ_2 occurs at index k and has length s (note that the first maximal descent of λ_2 occurs at index i, since the first i+t-1positions of λ_1 were not changed by the above replacement, and hence k > i + t - 1. Then replace any occurrences of the letter a_{k+s-1} past the (k+s-1)-st position with the letter a_{k+s-2} . Then look at the new partition and replace any occurrences of the letter a_{k+s-2} past the (k+s-1)-st position with the letter a_{k+s-3} and so on until one makes the replacement of a_k for a_{k+1} in all positions past the (k+s-1)-st position. (Note that the second and subsequent steps must be defined in this fashion since, for instance, the element a_i might be part of the second maximal descent of λ_2 and therefore create a 21-1 that needs to be removed). Similarly, define λ_3 using λ_2 , and so on. After a finite number of steps, say m, all occurrences of 21-1will have been removed and thus the resulting partition λ_m belongs to $P_{21-1}(n,k)$. The mapping $\lambda \mapsto \lambda_m$ may be reversed by starting on the right and considering the (m-1)-st (maximal) descent in the partition λ_m , the (m-2)-nd (maximal) descent in λ_{m-1} , and so on (note that, by construction, the partition λ_i has at least i-1maximal descents for all i).

In what follows, we let $F_{\tau}(x; k|a_s \cdots a_1)$ denote the generating function for the number of partitions $\pi = \pi_1 \pi_2 \cdots \pi_n$ of [n] with exactly k blocks that avoid the pattern τ and have $\pi_{n+1-j} = a_j$ for all $j = 1, 2, \ldots, s$. The next proposition gives a recursive way of finding the generating functions $F_{23-1}(x; k|a)$ for all positive integers a and k.

Proposition 22. The generating function $F_{23-1}(x;k)$ is given by

$$\sum_{a=1}^{k} F_{23-1}(x;k|a),$$

where the generating functions $F_{23-1}(x; k|a)$ satisfy the recurrence relation

$$F_{23-1}(x;k|a) = \frac{x}{(1-x)^{k-a}-x} \sum_{j=1}^{a-1} F_{23-1}(x;k|j) + \frac{x^2}{(1-x)^{k-a}-x} \sum_{j=1}^{a} F_{23-1}(x;k-1|j),$$

for $1 \leq a \leq k-2$, with the initial conditions

$$F_{23-1}(x;k|k) = xF_{23-1}(x;k) + xF_{23-1}(x;k-1)$$

and

$$F_{23-1}(x;k|k-1) = xF_{23-1}(x;k)$$

if $k \ge 3$, where $F_{23-1}(x;2|1) = \frac{x^3}{(1-x)(1-2x)}$ and $F_{23-1}(x;2|2) = \frac{x^2}{1-2x}$.
Proof. From the definitions, the initial conditions are obvious and $F_{23-1}(x;k) = \sum_{a=1}^{k} F_{23-1}(x;k|a)$. Also, for all $1 \le a \le k-2$,

$$F_{23-1}(x;k|a) = \sum_{b=1}^{a} F_{23-1}(x;k|b,a) + F_{23-1}(x;k|a+1,a) + \sum_{b=a+2}^{k} F_{23-1}(x;k|b,a)$$
(1)
= $x \sum_{j=1}^{a} F_{23-1}(x;k|j) + xF_{23-1}(x;k|a) + \sum_{j=a+2}^{k} F_{23-1}(x;k|j,a).$

We now find a formula for $F_{23-1}(x; k|b, a)$, where $k > b > a + 1 \ge 2$:

$$F_{23-1}(x;k|b,a) = \sum_{j=1}^{k} F_{23-1}(x;k|j,b,a)$$

= $\sum_{j=1}^{a} F_{23-1}(x;k|j,b,a) + \sum_{j=a+1}^{b-1} F_{23-1}(x;k|j,b,a) + \sum_{j=b}^{k} F_{23-1}(x;k|j,b,a)$ (2)
= $x^{2} \sum_{j=1}^{a} F_{23-1}(x;k|j) + x \sum_{j=b}^{k} F_{23-1}(x;k|j,a),$

with

$$F_{23-1}(x;k|k,a) = \sum_{j=1}^{a} F_{23-1}(x;k|j,k,a) + F_{23-1}(x;k|k,k,a)$$

$$= x^{2} \sum_{j=1}^{a} F_{23-1}(x;k|j) + x^{2} \sum_{j=1}^{a} F_{23-1}(x;k-1|j) + xF_{23-1}(x;k|k,a).$$
(3)

Equations (1)-(2) imply

$$F_{23-1}(x;k|b,a) - xF_{23-1}(x;k|a) = -x^2F_{23-1}(x;k|a) - x\sum_{j=a+2}^{b-1}F_{23-1}(x;k|j,a),$$

with the initial condition $F_{23-1}(x; k|a+1, a) = xF_{23-1}(x; k|a)$ (which is obvious from the definitions). Thus, by induction on b, we obtain

$$F_{23-1}(x;k|b,a) = x(1-x)^{b-a-1}F_{23-1}(x;k|a), \quad b = a+1, a+2, \dots, k-1.$$
(4)

Therefore, equations (1), (3) and (4) imply

$$F_{23-1}(x;k|a) = x \sum_{j=1}^{a} F_{23-1}(x;k|j) + x F_{23-1}(x;k|a) \sum_{b=a+1}^{k-1} (1-x)^{b-a-1} + \frac{x^2}{1-x} \sum_{j=1}^{a} (F_{23-1}(x;k|j) + F_{23-1}(x;k-1|j)),$$

which is equivalent to

$$F_{23-1}(x;k|a) = \frac{x}{(1-x)^{k-a}-x} \sum_{j=1}^{a-1} F_{23-1}(x;k|j) + \frac{x^2}{(1-x)^{k-a}-x} \sum_{j=1}^{a} F_{23-1}(x;k-1|j),$$

as claimed.

Note that $F_{23-1}(x; k|1)$ is determined by the recurrence in Proposition 3.6 above for all $k \geq 3$ by simple iteration. Comparing with Example 2.6 above, we see that $F_{23-1}(x; k|1) = xF_{1-23}(x; k)$ for all $k \geq 2$, which is easily seen directly. These values determine the $F_{23-1}(x; k|2)$ for all k, which may then be used to determine the $F_{23-1}(x; k|3)$ and so on.

Remark. By induction on a, there is also the following direct relation between $F_{23-1}(x;k|a)$ and $F_{23-1}(x;k-1|a)$ for all $k \ge 3$ and $1 \le a \le k-2$ which results from Proposition 22:

 $F_{23-1}(x;k|a)$

$$=\sum_{i=1}^{a-1} \left(\frac{x^2 \prod_{j=i+1}^{a-1} \left(1 + \frac{x^2}{(1-x)^{k-j} - x} \right)}{(1-x)^{k-a} - x} \frac{x}{(1-x)^{k-i} - x} \sum_{j=1}^{i} F_{23-1}(x;k-1|j) \right) + \left(\frac{x^2}{(1-x)^{k-a} - x} \sum_{j=1}^{a} F_{23-1}(x;k-1|j) \right).$$

The above proposition may also be used to find an explicit formula for the generating function $F_{23-1}(x;k)$ for any given k. For k = 2, we have $F_{23-1}(x;2|1) = \frac{x^3}{(1-x)(1-2x)}$, $F_{23-1}(x;2|2) = \frac{x^2}{1-2x}$ and $F_{23-1}(x;2) = \frac{x^2}{(1-x)(1-2x)}$. For k = 3, we have

$$F_{23-1}(x;3|1) = \frac{x^2}{1-3x+x^2}F_{23-1}(x;2|1) = \frac{x^5}{(1-x)(1-2x)(1-3x+x^2)},$$

$$F_{23-1}(x;3|2) = xF_{23-1}(x;3),$$

$$F_{23-1}(x;3|3) = xF_{23-1}(x;3) + \frac{x^3}{(1-x)(1-2x)}.$$

By summing the above equations, we obtain $(1-2x)F_{23-1}(x;3) = \frac{x^3}{1-3x+x^2}$, which implies

$$F_{23-1}(x;3) = \frac{x^3}{(1-3x+x^2)(1-2x)}.$$

Likewise, one has

$$F_{23-1}(x;4) = \frac{x^4(1-5x+8x^2-4x^3+x^4)}{(1-x)(1-2x)^2(1-3x+x^2)(1-4x+3x^2-x^3)}.$$

Similarly, there are comparable recurrences satisfied by the generating functions $F_{22-1}(x;k|a)$.

Proposition 23. The generating function $F_{22-1}(x;k)$ is given by

$$\sum_{a=1}^{k} F_{22-1}(x;k|a),$$

where the generating functions $F_{22-1}(x;k|a)$ satisfy the recurrence relation

$$F_{22-1}(x;k|a) = \frac{x(1+x)}{1-(k-a)x-x^2} \sum_{j=1}^{a-1} F_{22-1}(x;k|j) + \frac{x}{1-(k-a)x-x^2} F_{22-1}(x;k-1|a),$$

for all $1 \leq a \leq k-2$, with the initial conditions

$$F_{22-1}(x;k|k) = xF_{22-1}(x;k) + xF_{22-1}(x;k-1)$$

and

$$F_{22-1}(x;k|k-1) = x(F_{22-1}(x;k) - x^2F_{22-1}(x;k) - x^2F_{22-1}(x;k-1))$$

if $k \ge 2$, where $F_{22-1}(x;1|1) = F_{22-1}(x;1) = \frac{x}{1-x}$.

Proof. From the definitions, the first initial condition is obvious and

$$F_{22-1}(x;k) = \sum_{a=1}^{k} F_{22-1}(x;k|a).$$

For the second condition, note that all members of $P_{22-1}(n, k)$ ending in the letter k-1 may be obtained from the members of $P_{22-1}(n-1,k)$ not ending in two or more k's by adding a k-1. Also, for all $1 \le a \le k-2$,

$$F_{22-1}(x;k|a) = \sum_{b=1}^{a} F_{22-1}(x;k|b,a) + \sum_{b=a+1}^{k} F_{22-1}(x;k|b,a)$$

$$= x \sum_{j=1}^{a} F_{22-1}(x;k|j) + \sum_{j=a+1}^{k} F_{22-1}(x;k|j,a).$$
 (5)

We now find a formula for $F_{22-1}(x; k|b, a)$, with $k > b > a \ge 1$:

$$F_{22-1}(x;k|b,a) = \sum_{j=1}^{k} F_{22-1}(x;k|j,b,a)$$

= $\sum_{j=1}^{a} F_{22-1}(x;k|j,b,a) + \sum_{j=a+1,j\neq b}^{k} F_{22-1}(x;k|j,b,a)$ (6)
= $x^{2} \sum_{j=1}^{a} F_{22-1}(x;k|j) + x \sum_{j=a+1,j\neq b}^{k} F_{22-1}(x;k|j,a),$

which, by (5), implies

$$F_{22-1}(x;k|b,a) = \frac{x}{1+x}F_{22-1}(x;k|a).$$
(7)

Also, $F_{22-1}(x; k|k, a) = xF_{22-1}(x; k-1|a) + xF_{22-1}(x; k|a) - xF_{22-1}(x; k|k, a)$, which gives

$$F_{22-1}(x;k|k,a) = \frac{x}{1+x}F_{22-1}(x;k-1|a) + \frac{x}{1+x}F_{22-1}(x;k|a).$$
(8)

Therefore, equations (5), (7) and (8) imply

$$F_{22-1}(x;k|a) = x \sum_{j=1}^{a} F_{22-1}(x;k|j) + \frac{(k-a)x}{1+x} F_{22-1}(x;k|a) + \frac{x}{1+x} F_{22-1}(x;k-1|a),$$

for all $1 \le a \le k - 2$, which gives

$$F_{22-1}(x;k|a) = \frac{x(1+x)}{1-(k-a)x-x^2} \sum_{j=1}^{a-1} F_{22-1}(x;k|j) + \frac{x}{1-(k-a)x-x^2} F_{22-1}(x;k-1|a),$$

claimed.

as claimed.

Remark. By induction on *a*, there is the following direct relation between the $F_{22-1}(x;k|a)$ and the $F_{22-1}(x;k-1|a)$ for all $k \ge 3$ and $1 \le a \le k-2$ which results from Proposition 23:

$$F_{22-1}(x;k|a) = (1+x)x^{2} \sum_{i=1}^{a-1} \left(\frac{\prod_{j=i+1}^{a-1} (1-(k-1-j)x)}{\prod_{j=i}^{a} (1-(k-j)x-x^{2})} F_{22-1}(x;k-1|i) \right) + \frac{x}{1-(k-a)x-x^{2}} F_{22-1}(x;k-1|a).$$

The above proposition may also be used to find an explicit formula for the generating function $F_{22-1}(x;k)$ for any given k. For instance, the above proposition for k = 2 yields

$$F_{22-1}(x;2|1) = (x - x^3)F_{22-1}(x;2) - \frac{x^4}{1-x},$$

$$F_{22-1}(x;2|2) = xF_{22-1}(x;2) + \frac{x^2}{1-x}.$$

By summing the above equations, we get

$$F_{22-1}(x;2) = (2x - x^3)F_{22-1}(x;2) + x^2(1+x),$$

which implies

$$F_{22-1}(x;2) = \frac{x^2(1+x)}{(1-x)(1-x-x^2)}.$$

Likewise, we have

$$F_{22-1}(x;3) = \frac{x^3(1+x-2x^2-x^3)}{(1-x)^2(1-x-x^2)(1-2x-x^2)}.$$

Finally, there are similar relations involving the generating functions $F_{32-1}(x; k|a)$. **Proposition 24.** The generating function $F_{32-1}(x; k)$ is given by

$$\sum_{a=1}^{k} F_{32-1}(x;k|a),$$

where the generating functions $F_{32-1}(x;k|a)$ satisfy the recurrence relation

$$F_{32-1}(x;k|a) = \frac{x}{(1-x)^{k-a}-x} \sum_{j=1}^{a-1} F_{32-1}(x;k|j) + \frac{x(1-x)^{k-1-a}}{(1-x)^{k-a}-x} F_{32-1}(x;k-1|a),$$

for all $1 \le a \le k-2$, with the initial conditions

$$F_{32-1}(x;k|k) = xF_{32-1}(x;k) + xF_{32-1}(x;k-1)$$

and

$$F_{32-1}(x;k|k-1) = xF_{32-1}(x;k)$$

if $k \ge 3$, where $F_{32-1}(x;2|1) = \frac{x^3}{(1-x)(1-2x)}$ and $F_{32-1}(x;2|2) = \frac{x^2}{1-2x}$.

Proof. From the definitions, the initial conditions are obvious and $F_{32-1}(x;k) = \sum_{a=1}^{k} F_{32-1}(x;k|a)$. Also, for all $1 \le a \le k-2$,

$$F_{32-1}(x;k|a) = \sum_{b=1}^{a} F_{32-1}(x;k|b,a) + \sum_{b=a+1}^{k-1} F_{32-1}(x;k|b,a) + F_{32-1}(x;k|k,a)$$
$$= x \sum_{j=1}^{a} F_{32-1}(x;k|j) + \sum_{b=a+1}^{k-1} F_{32-1}(x;k|b,a) + xF_{32-1}(x;k|a)$$
$$+ xF_{32-1}(x;k-1|a).$$
(9)

We now find a formula for $F_{32-1}(x; k|b, a)$, with $k > b > a \ge 1$:

$$F_{32-1}(x;k|b,a) = \sum_{j=1}^{k} F_{32-1}(x;k|j,b,a)$$

= $\sum_{j=1}^{a} F_{32-1}(x;k|j,b,a) + \sum_{j=a+1}^{b} F_{32-1}(x;k|j,b,a)$ (10)
= $x^{2} \sum_{j=1}^{a} F_{32-1}(x;k|j) + x \sum_{j=a+1}^{b} F_{32-1}(x;k|j,a),$

where

$$F_{32-1}(x;k|k,a) = xF_{32-1}(x;k|a) + xF_{32-1}(x;k-1|a).$$
(11)

Equations (9)-(10) imply

$$F_{32-1}(x;k|b,a) - xF_{32-1}(x;k|a) = -x\sum_{j=b+1}^{k} F_{32-1}(x;k|j,a),$$

with the initial condition (11). Thus, induction on b yields

$$F_{32-1}(x;k|b,a) = x(1-x)^{k-b}F_{32-1}(x;k|a) - x^2(1-x)^{k-1-b}F_{32-1}(x;k-1|a),$$
(12)

for $a + 1 \le b \le k - 1$. Therefore, equations (9), (11) and (12) imply

$$F_{32-1}(x;k|a) = x \sum_{j=1}^{a} F_{32-1}(x;k|j) + xF_{32-1}(x;k|a) \sum_{b=a+1}^{k} (1-x)^{k-b} + x \left(1 - x \sum_{b=a+1}^{k-1} (1-x)^{k-1-b}\right) F_{32-1}(x;k-1|a),$$

which is equivalent to

$$F_{32-1}(x;k|a) = \frac{x}{(1-x)^{k-a}-x} \sum_{j=1}^{a-1} F_{32-1}(x;k|j) + \frac{x(1-x)^{k-1-a}}{(1-x)^{k-a}-x} F_{32-1}(x;k-1|a),$$

for all $1 \le a \le k - 2$, as claimed.

Remark. By induction on a, there is the following direct relation between $F_{32-1}(x;k|a)$ and $F_{32-1}(x;k-1|a)$ for all $k \geq 3$ and $1 \leq a \leq k-2$ which results from Proposition 24:

$$F_{32-1}(x;k|a) = x^{2} \sum_{i=1}^{a-1} \left(\frac{(1-x)^{k-1-i} \prod_{j=i+1}^{a-1} \frac{(1-x)^{k-j}}{(1-x)^{k-j}-x}}{((1-x)^{k-a}-x)((1-x)^{k-i}-x)} \right) F_{32-1}(x;k-1|i) + x \frac{(1-x)^{k-1-a}}{(1-x)^{k-a}-x} F_{32-1}(x;k-1|a).$$

The above proposition may also be used to find an explicit formula for the generating function $F_{32-1}(x;k)$ for any given k. For k = 2, we have $F_{32-1}(x;2|1) = \frac{x^3}{(1-x)(1-2x)}$, $F_{32-1}(x;2|2) = \frac{x^2}{1-2x}$ and $F_{32-1}(x;2) = \frac{x^2}{(1-x)(1-2x)}$. For k = 3, we have

$$F_{32-1}(x;3|1) = \frac{x(1-x)}{1-3x+x^2}F_{32-1}(x;2|1) = \frac{x^4}{(1-2x)(1-3x+x^2)},$$

$$F_{32-1}(x;3|2) = xF_{32-1}(x;3),$$

$$F_{32-1}(x;3|3) = xF_{32-1}(x;3) + \frac{x^3}{(1-x)(1-2x)}.$$

By summing the above equations, we obtain $(1 - 2x)F_{32-1}(x;3) = \frac{x^3}{(1-x)(1-3x+x^2)}$, which implies

$$F_{32-1}(x;3) = \frac{x^3}{(1-3x+x^2)(1-2x)(1-x)}$$

The results of this section are summarized in Table 2 below.

au	Reference	au	Reference
11 - 1	Theorem 18	21 - 2	Theorem 20
11 - 2	Example 17	21 - 3	Example 16
12 - 1	Proposition 19	22 - 1	No explicit formula
12 - 2	Proposition 19	23 - 1	No explicit formula
12 - 3	Example 15	31 - 2	Open
13 - 2	Open	32 - 1	No explicit formula
21 - 1	Theorem 21		

Table 2: Three letter generalized patterns of type (2,1)

4. Generating Trees

In this section, we use the methodology of generating trees to count set partitions avoiding a pattern. A generating tree is an infinite rooted tree, which essentially is a process that generates labels from a single label of the root by successively applying certain rules. Formally speaking, a generating tree consists of the single label of its root along with its succession rules, see [17].

For example, we can count the words in $[k]^n$ by inserting a letter from [k] to the right of the rightmost letter of a word. For the purpose of enumeration, we only keep track of labels on words in the case when members of $[k]^n$ are formed from the

empty word. For example, the generating tree for the words in $[k]^n$ is given by

$$\left\{ \begin{array}{l} \mathbf{Root} : (k) \\ \mathbf{Rule} : (k) \rightsquigarrow (k)^k. \end{array} \right.$$

In this setting, partitions of [n] will be regarded as words of the form πj over the alphabet $\{1, 2, \ldots\}$, where the letter j belongs to the set $\{1, 2, \ldots, 1 + \max \pi\}$. Thus, if we label each partition by a label (a), where a is the maximum element of the partition, we see that the generating tree for the partitions of [n] is given by

$$\left\{ \begin{array}{l} \mathbf{Root} : (1) \\ \mathbf{Rule} : (a) \rightsquigarrow (a)^a (a+1). \end{array} \right.$$

We now present the generating trees for partitions of [n] avoiding the patterns 23 - 1, 22 - 1 and 32 - 1.

4.1. The Pattern 23 - 1

Theorem 25. The generating tree \mathcal{T}_{23-1} for the partitions of [n] that avoid 23-1 is given by

$$\left\{ \begin{array}{l} \mathbf{Root}:(1,1,1)\\ \mathbf{Rule}:(a,b,c)\rightsquigarrow(a,b,a)\cdots(a,b,c)(c,b,c+1)\cdots(c,b,b)(c,b+1,b+1). \end{array} \right.$$

Proof. We label each partition $\pi = \pi_1 \cdots \pi_n$ of [n] by (a, b, c), where

$$c = \pi_n, \quad b = \max_{1 \le i \le n} \pi_i, \quad \text{and} \quad a = \begin{cases} 1, & \text{if } \pi = 11 \cdots 1; \\ \max\{\pi_i : \pi_i < \pi_{i+1}\}, & \text{otherwise.} \end{cases}$$

Clearly, the partition $\{1\}$ of [1] is labelled by (1, 1, 1) and $c \geq a$ (for otherwise, π would contain the pattern 23 – 1). If we have a partition π associated with a label (a, b, c), then each child of π is a partition of the form $\pi' = \pi c'$, where $c' = a, a + 1, \ldots, b + 1$, for if c' < a, then π' would contain 23 – 1, which is not allowed. Thus, we have the three cases:

- if $b \ge c' > c$, then π' is labelled by (c, b, c'),
- if c' = b + 1, then π' is labelled by (c, b + 1, b + 1),
- if $c \ge c' \ge a$, then π' is labelled by (a, b, c').

Combining the above cases yields our generating tree.

Let $H_{23-1}(t; a, b, c)$ be the generating function for the number of partitions of level n that are labelled by (a, b, c) in the generating tree \mathcal{T}_{23-1} , as described in

Theorem 25 above. Define $H_{23-1}(t, u, v, w) = \sum_{a,b,c} H_{23-1}(t; a, b, c) u^a v^b w^c$. Then Theorem 25 implies

$$\begin{split} H_{23-1}(t, u, v, w) \\ &= tuvw \\ &+ t \sum_{a,b,c} H_{23-1}(t; a, b, c) v^b (u^a (w^a + \dots + w^c) + u^c (w^{c+1} + \dots + w^b) + u^c v^1 w^{b+1}) \\ &= tuvw \\ &+ t \sum_{a,b,c} H_{23-1}(t; a, b, c) v^b \left(u^a \frac{w^a - w^{c+1}}{1 - w} + u^c \frac{w^{c+1} - w^{b+1}}{1 - w} + u^c v^1 w^{b+1} \right) \\ &= tuvw + \frac{t}{1 - w} (H_{23-1}(t, uw, v, 1) - w H_{23-1}(t, u, v, w)) \\ &+ \frac{tw}{1 - w} (H_{23-1}(t, 1, v, uw) - H_{23-1}(t, 1, vw, u)) + tvw H_{23-1}(t, 1, vw, u), \end{split}$$

which gives the following result.

Theorem 26. The generating function $H_{23-1}(t, u, v, w)$ satisfies

$$H_{23-1}(t, u, v, w) = tuvw + \frac{t}{1-w} (H_{23-1}(t, uw, v, 1) - wH_{23-1}(t, u, v, w)) + \frac{tw}{1-w} (H_{23-1}(t, 1, v, uw) - H_{23-1}(t, 1, vw, u)) + tvwH_{23-1}(t, 1, vw, u).$$

Using the above theorem, we see that the first fifteen values of the sequence recording the number of partitions of [n], $n \ge 1$, which avoid the pattern 23 - 1 are 1, 2, 5, 14, 42, 132, 430, 1444, 4983, 17634, 63906, 236940, 898123, 3478623 and 13761820.

4.2. The Pattern 22 - 1

Theorem 27. The generating tree \mathcal{T}_{22-1} for the partitions of [n] that avoid 22-1 is given by

$$\left\{ \begin{array}{l} \mathbf{Root}:(1,1,1)\\ \mathbf{Rule}:(a,b,c) \rightsquigarrow (a,b,a) \cdots (a,b,c-1)(c,b,c)\\ (a,b,c+1) \cdots (a,b,b)(a,b+1,b+1) \end{array} \right.$$

Proof. We label each partition $\pi = \pi_1 \cdots \pi_n$ of [n] by (a, b, c), where $c = \pi_n$, $b = \max_{1 \le i \le n} \pi_i$, and

$$a = \begin{cases} 1, & \text{if there is no } i \text{ such that } \pi_i = \pi_{i+1}; \\ \max\{\pi_i : \pi_i = \pi_{i+1}\}, & \text{otherwise.} \end{cases}$$

Clearly, the partition $\{1\}$ of [1] is labelled by (1, 1, 1) and $c \geq a$ (for otherwise, π would contain the pattern 22 - 1). If we have a partition π associated with a label (a, b, c), then each child of π is a partition of the form $\pi' = \pi c'$, where $c' = a, a + 1, \ldots, b + 1$, for if c' < a, then π' would contain 22 - 1, which is not allowed. Thus, we have the four cases:

- if $c > c' \ge a$, then π' is labelled by (a, b, c'),
- if c' = c, then π' is labelled by (c, b, c),
- if $b \ge c' > c$, then π' is labelled by (a, b, c'),
- if c' = b + 1, then π' is labelled by (a, b + 1, b + 1).

Combining the above cases yields our generating tree.

Let $H_{22-1}(t; a, b, c)$ be the generating function for the number of partitions of level *n* that are labelled by (a, b, c) in the generating tree \mathcal{T}_{22-1} , as described in Theorem 27. Define $H_{22-1}(t, u, v, w) = \sum_{a,b,c} H_{22-1}(t; a, b, c) u^a v^b w^c$. Then, using similar arguments as in the proof of Theorem 26 above, we obtain

Theorem 28. The generating function $H_{22-1}(t, u, v, w)$ satisfies

$$\begin{aligned} H_{22-1}(t, u, v, w) \\ &= tuvw + \frac{t}{1-w} (H_{22-1}(t, uw, v, 1) - H_{22-1}(t, u, v, w)) + tH_{22-1}(t, 1, v, uw) \\ &+ \frac{tw}{1-w} (H_{22-1}(t, u, v, w) - H_{22-1}(t, u, vw, 1)) + tvwH_{22-1}(t, u, vw, 1). \end{aligned}$$

Using the above theorem, we see that the first fifteen values of the sequence recording the number of partitions of [n], $n \ge 1$, which avoid the pattern 22 - 1 are 1, 2, 5, 14, 44, 153, 585, 2445, 11109, 54570, 288235, 1628429, 9792196, 623191991 and 419527536.

4.3. The Pattern 32 - 1

Theorem 29. The generating tree \mathcal{T}_{32-1} for the partitions of [n] that avoid 32-1 is given by

$$\left\{ \begin{array}{l} \mathbf{Root}:(1,1,1)\\ \mathbf{Rule}:(a,b,c) \rightsquigarrow (a,b,a) \cdots (c-1,b,c-1)(a,b,c) \cdots (a,b,b)(a,b+1,b+1). \end{array} \right.$$

Proof. We label each partition $\pi = \pi_1 \cdots \pi_n$ of [n] by (a, b, c), where $c = \pi_n$, $b = \max_{1 \le i \le n} \pi_i$, and

$$a = \begin{cases} 1, & \text{if there is no } i \text{ such that } \pi_i > \pi_{i+1}; \\ \max\{\pi_{i+1} : \pi_i > \pi_{i+1}\}, & \text{otherwise.} \end{cases}$$

We label the partition $\{1\}$ of [1] by (1, 1, 1), and clearly $c \geq a$ (for otherwise, π would contain 32-1). If we have a partition π associated with a label (a, b, c), then each child of π is a partition of the form $\pi' = \pi c'$, where $c' = a, a + 1, \ldots, b + 1$, for if c' < a, then π' would contain 32-1, which is not allowed. Thus, we have the four cases:

- if $c > c' \ge a$, then π' is labelled by (c', b, c'),
- if c' = c, then π' is labelled by (a, b, c),
- if $b \ge c' \ge c+1$, then π' is labelled by (a, b, c'),
- if c' = b + 1, then π' is labelled by (a, b + 1, b + 1).

Combining the above cases yields our generating tree.

Let $H_{32-1}(t; a, b, c)$ be the generating function for the number of partitions of level *n* that are labelled by (a, b, c) in the generating tree \mathcal{T}_{32-1} , as described in Theorem 29. Define $H_{32-1}(t, u, v, w) = \sum_{a,b,c} H_{32-1}(t; a, b, c) u^a v^b w^c$. Then, using similar arguments as in the proof of Theorem 26 above, we obtain

Theorem 30. The generating function $H_{32-1}(t, u, v, w)$ satisfies

$$H_{32-1}(t, u, v, w)$$

$$= tuvw + \frac{t}{1 - uw} (H_{32-1}(t, uw, v, 1) - H_{32-1}(t, 1, v, uw))$$

$$+ \frac{t}{1 - w} (H_{32-1}(t, u, v, w) - wH_{32-1}(t, u, vw, 1)) + tvwH_{32-1}(t, u, vw, 1).$$

Using the above theorem, we see that the first fifteen values of the sequence recording the number of partitions of [n], $n \ge 1$, which avoid the pattern 32 - 1 are 1, 2, 5, 15, 51, 189, 747, 3110, 13532, 61198, 286493, 1383969, 6881634, 35150498 and 184127828.

5. Concluding Remarks

The enumeration problem of finding the generating function $F_{\tau}(x;k)$, where τ is a pattern of type (1,2), was completed in the first section above. However, the problem of finding the generating function $F_{\tau}(x;k)$, where τ is a pattern of type (2,1), is not complete and we have the following remarks: (1) By using generating functions, we obtained recurrence relations satisfied by $F_{\tau}(x;k)$ in the cases when τ equals 23 - 1, 22 - 1 or 32 - 1, and by using generating trees, we obtained functional equations satisfied by $F_{\tau}(x;k)$ in these cases. However, we were unable to find explicit formulas for $F_{\tau}(x;k)$. (2) We also failed to find explicit formulas

for the generating function $F_{\tau}(x;k)$ in the cases when τ equals either 13 - 2 or 31 - 2. On the other hand, we can write recurrence relations for these cases which are analogous to the case 23 - 1 above, for example, but the recurrence relations here are more complicated and require two indices.

References

- E. Babson and E. Steingrímsson, Generalized permutation patterns and a classification of the Mahonian statistics, Sém. Lothar. Combin. (2000) B44b.
- [2] A. Burstein, Enumeration of words with forbidden patterns, Ph.D. Thesis, University of Pennsylvania, 1998.
- [3] A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Ann. Comb. 7:1 (2003) 1-14.
- [4] A. Burstein and T. Mansour, Counting occurrences of some subword patterns, Discrete Math. Theor. Comput. Sci. 6:1 (2003) 1–12.
- [5] A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, Adv. in Appl. Math. 29:2 (2002) 293–310.
- [6] E. P. Deng, T. Mansour, and N. Mbarieky, Restricted set partitions, preprint.
- [7] S. Heubach and T. Mansour, Enumeration of 3-letter patterns in compositions, Proceedings of the 2005 Integers Conference in Honor of Ron Graham's 70th Birthday, (2007) Article #17.
- [8] V. Jelínek and T. Mansour, On pattern-avoiding partitions, *Electron. J. Combin.* 15:1 (2008) #R39.
- [9] M. Klazar, On abab-free and abba-free set partitions, European J. Combin. 17 (1996) 53-68.
- [10] D. E. Knuth, The Art of Computer Programming, Vol's. 1 and 3, Addison-Wesley, NY, 1968, 1973.
- [11] T. Mansour and N. Mbarieky, Partitions of a set satisfying a certain set of conditions, *Discrete Math.* 309:13 (2009) 4481–4488.
- [12] T. Mansour and A. Munagi, Enumeration of partitions by long rises, levels, and descents, J. Integer Seq. 12 (2009) Article 09.1.8.
- [13] S. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978) 89–118.
- [14] B. E. Sagan, Pattern avoidance in set partitions, Ars Combin. 94 (2010) 79–96.
- [15] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin. 6 (1985) 383–406.
- [16] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, UK, 1997.
- [17] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995) 247–262.