ON ABELIAN AND ADDITIVE COMPLEXITY IN INFINITE WORDS

Hayri Ardal
Department of Mathematics, Simon Fraser University, Burnaby, Canada
hardal@sfu.ca
Tom Brown
Department of Mathematics, Simon Fraser University, Burnaby, Canada
tbrown@sfu.ca
Veselin Jungić
Department of Mathematics, Simon Fraser University, Burnaby, Canada
vjungic@sfu.ca
Julian Sahasrabudhe
Department of Mathematics, Simon Fraser University, Burnaby, Canada
jds16@sfu.ca

Received: 8/2/11, Accepted: 2/23/12, Published: 3/1/12

Abstract

The study of the structure of infinite words having bounded abelian complexity was initiated by G. Richomme, K. Saari, and L. Q. Zamboni. In this note we define bounded additive complexity for infinite words over a finite subset of \mathbb{Z}^{m}. We provide an alternative proof of one of the results of the aforementioned authors.

1. Introduction

This note is motivated by the question of whether or not there exists an infinite word on a finite subset of \mathbb{Z} in which there do not exist two adjacent factors with equal lengths and equal sums $[6,7,8,10]$. An infinite word on a finite subset S of \mathbb{Z}, called the alphabet, is defined as a map $\omega: \mathbb{N} \rightarrow S$ and is usually written as $\omega=x_{1} x_{2} \cdots$, with $x_{i} \in S, i \in \mathbb{N}$. For $n \in \mathbb{N}$, a factor B of the infinite word ω of length $n=|B|$ is the image of a set of n consecutive positive integers by ω, $B=\omega(\{i, i+1, \ldots, i+n-1\})=x_{i} x_{i+1} \cdots x_{i+n-1}$. The sum of the factor B is $\sum B=x_{i}+x_{i+1}+\cdots+x_{i+n-1}$.

Recently the study of infinite words with bounded abelian complexity was initiated by G. Richomme, K. Saari, and L. Q. Zamboni [11]. The abelian complexity of a
word ω is the function defined on \mathbb{N} that, for $n \in \mathbb{N}$, counts the maximum number of factors of length n, no two of which are permutations of one another. In particular, it is shown in [11] that if ω is an infinite word with bounded abelian complexity, then ω has k adjacent factors, each two of which are permutations of one other, for all $k \geq 1$.

We define the additive complexity of a word ω on a finite subset S of \mathbb{Z} (in fact we allow S to be a finite subset of \mathbb{Z}^{m} for any $m \geq 1$) as the function defined on \mathbb{N} that, for $n \in \mathbb{N}$, counts the number of different sums of factors of ω of length n. We show that if ω is an infinite word with bounded additive complexity then ω has k adjacent factors with equal lengths and equal sums, for all $k \geq 1$.

The question stated above remains open, even for subsets of \mathbb{Z} of size 4 , although some partial results can be found in [1, 2, 6]. In [6] it is shown that if $a<b<c<d$ satisfy the Sidon equation $a+d=b+c$, then every word on $\{a, b, c, d\}$ of length 61 contains two adjacent factors with equal lengths and equal sums.

2. Additive Complexity

Definition 1. Let ω be an infinite word on a finite subset S of \mathbb{Z}^{m} for some $m \geq 1$. For a factor $B=x_{1} x_{2} \cdots x_{n}$ of $\omega, \sum B$ denotes the sum $x_{1}+x_{2}+\cdots+x_{n}$. Let

$$
\phi_{\omega}(n)=\left\{\sum B: B \text { is a factor of } \omega \text { with length } n\right\} .
$$

The function $\left|\phi_{\omega}\right|$ (where $\left|\phi_{\omega}\right|(n)=\left|\phi_{\omega}(n)\right|, n \geq 1$) is called the additive complexity of the word ω.

If $B_{1} B_{2} \cdots B_{k}$ is a factor of ω such that $\left|B_{1}\right|=\left|B_{2}\right|=\cdots=\left|B_{k}\right|$ and $\sum B_{1}=$ $\sum B_{2}=\cdots=\sum B_{k}$, we call $B_{1} B_{2} \cdots B_{k}$ an additive k-power.

We say that ω has bounded additive complexity if there exists M such that $\left|\phi_{\omega}(n)\right| \leq M$ for all $n \geq 1$.

2.1. Infinite Words on Finite Subsets of \mathbb{Z}

Proposition 2. Let ω be an infinite word on the alphabet S, where S is a finite subset of \mathbb{Z}. Then the following three statements are equivalent.
(1) There exists M_{1} such that if $B_{1} B_{2}$ is a factor of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, then $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{1}$.
(2) There exists M_{2} such that if B_{1}, B_{2} are factors of ω (not necessarily adjacent) with $\left|B_{1}\right|=\left|B_{2}\right|$, then $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{2}$.
(3) The word ω has bounded additive complexity, that is, there exists M_{3} such that $\left|\phi_{\omega}(n)\right| \leq M_{3}$ for all $n \geq 1$.

Proof. We will show that $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$.

Clearly $(2) \Rightarrow(1)$. Now assume that (1) holds, that is, if $B_{1} B_{2}$ is any factor of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, it is the case that $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{1}$. Let B_{1} and B_{2} be factors of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, and assume that B_{1} and B_{2} are non-adjacent, with B_{1} to the left of B_{2}.

Thus, assume that $B_{1} A_{1} A_{2} B_{2}$ is a factor of ω, where $\left|A_{1}\right|=\left|A_{2}\right|$ or $\left|A_{1}\right|=$ $\left|A_{2}\right|+1$.

Let $C_{1}=B_{1} A_{1}$ and $C_{2}=A_{2} B_{2}$. Then $\left|C_{1}\right|=\left|C_{2}\right|$ or $\left|C_{1}\right|=\left|C_{2}\right|+1$. Now

$$
\sum C_{1}-\sum C_{2}=\left(\sum B_{1}+\sum A_{1}\right)-\left(\sum A_{2}+\sum B_{2}\right)
$$

or

$$
\sum B_{1}-\sum B_{2}=\left(\sum C_{1}-\sum C_{2}\right)+\left(\sum A_{2}-\sum A_{1}\right)
$$

Therefore, since A_{1}, A_{2} and C_{1}, C_{2} are adjacent, we have

$$
\begin{gathered}
\left|\sum A_{2}-\sum A_{1}\right| \leq M_{1}+\max \{|x|: x \in S\} \\
\left|\sum C_{1}-\sum C_{2}\right| \leq M_{1}+\max \{|x|: x \in S\} \\
\left|\sum B_{1}-\sum B_{2}\right| \leq 2 M_{1}+2 \max \{|x|: x \in S\}
\end{gathered}
$$

so that we can take $M_{2}=2 M_{1}+2 \max \{|x|: x \in S\}$. Thus (1) $\Rightarrow(2)$.
Next we show that $(2) \Rightarrow(3)$. Thus we assume there exists M_{2} such that whenever B_{1} and B_{2} are factors of ω (not necessarily adjacent) with $\left|B_{1}\right|=\left|B_{2}\right|$, it is the case that $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{2}$.

Let n be given, and let $\sum B_{1}=\min \phi_{\omega}(n)$. Then for any B_{2} with $\left|B_{2}\right|=n$, we have $\sum B_{2}=\sum B_{1}+\left(\sum B_{2}-\sum B_{1}\right)$. Therefore $\sum B_{2} \leq \sum B_{1}+M_{2}$. This means that $\phi_{\omega}(n) \subset\left[\sum B_{1}, \sum B_{1}+M_{2}\right]$, so that $\left|\phi_{\omega}(n)\right| \leq M_{2}+1$.

Finally, we show that $(3) \Rightarrow(2)$. We assume there exists M_{3} such that $\left|\phi_{\omega}(n)\right| \leq$ M_{3} for all $n \geq 1$. Suppose that B_{1} and B_{2} are factors of $\omega=x_{1} x_{2} \cdots$ such that $\left|B_{1}\right|=\left|B_{2}\right|=n$ and $\sum B_{1}=\min \phi_{\omega}(n), \sum B_{2}=\max \phi_{\omega}(n)$. To simplify the notation, for all $a \leq b$ let $\omega[a, b]$ denote the factor $x_{a} x_{a+1} \cdots x_{b}$ of ω, and let us assume that $B_{1}=\omega[1, n], B_{2}=\omega[q+1, q+n]$, where $q>1$.

For each $i, 0 \leq i \leq q$, let C_{i} denote the factor $\omega[i+1, i+n]$. Thus $C_{0}=B_{1}, C_{q}=$ B_{2}, and the factor C_{i+1} is obtained by shifting C_{i} one position to the right. Clearly

$$
\sum C_{i+1}-\sum C_{i} \leq \max S-\min S
$$

Since $\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{q}\right|=n$, and $\left|\phi_{\omega}(n)\right| \leq M_{3}$, there can be at most M_{3} distinct numbers in the sequence $\sum B_{1}=\sum C_{0}, \sum C_{1}, \ldots, \sum C_{q}=\sum B_{2}$. Let these numbers be

$$
\sum B_{1}=d_{1}<d_{2}<\cdots<d_{r}=\sum B_{2}
$$

where $r \leq M_{3}$.

Since $\sum C_{i+1}-\sum C_{i} \leq \max S-\min S, 0 \leq i \leq q$, it follows that $d_{j+1}-d_{j} \leq$ $\max S-\min S, 0 \leq i \leq r-1$, and hence that

$$
\sum B_{2}-\sum B_{1}=\left(d_{r}-d_{r-1}\right)+\cdots\left(d_{2}-d_{1}\right) \leq\left(M_{3}-1\right)(\max S-\min S)
$$

Theorem 3. Let ω be an infinite word on a finite subset of \mathbb{Z}. Assume that ω has bounded additive complexity. Then ω contains an additive k-power for every positive integer k.

Proof. Let $\omega=x_{1} x_{2} x_{3} \cdots$ be an infinite word on the finite subset S of \mathbb{Z}, and assume that whenever B_{1}, B_{2} are factors of ω (not necessarily adjacent) with $\left|B_{1}\right|=\left|B_{2}\right|$, then $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{2}$. (This is from part 2 of Proposition 2.)

Define the function f from \mathbb{N} to $\left\{0,1,2, \ldots, M_{2}\right\}$ by

$$
f(n)=x_{1}+x_{2}+x_{3}+\cdots+x_{n} \quad\left(\bmod M_{2}+1\right), \quad n \geq 1
$$

This is a finite coloring of \mathbb{N} and by van der Waerden's theorem [12], for any k there are t, s such that $f(t)=f(t+s)=f(t+2 s)=\cdots=f(t+k s)$.

Using (as before) the notation $\omega[t+1, t+q]=x_{t+1} x_{t+2} \cdots x_{t+q}$, we set

$$
B_{i}=\omega[t+(i-1) s+1, t+i s], \quad 1 \leq i \leq k
$$

and obtain

$$
\sum B_{1} \equiv \sum B_{2} \equiv \cdots \equiv \sum B_{k} \quad\left(\bmod M_{2}+1\right)
$$

Since $B_{1} B_{2} \cdots B_{k}$ is a factor of ω with $\left|B_{i}\right|=\left|B_{j}\right|, 1 \leq i<j \leq k$, we have $\left|\sum B_{i}-\sum B_{j}\right| \leq M_{2}$ and $\sum B_{i} \equiv \sum B_{j}\left(\bmod M_{2}+1\right)$. Hence $\sum B_{i}=\sum B_{j}$.

Thus ω contains the additive k-power $B_{1} B_{2} \cdots B_{k}$.

2.2. Infinite Words on Subsets of \mathbb{Z}^{m}

Let us use the notation $(u)_{j}$ for the j th coordinate of $u \in \mathbb{Z}^{m}$. That is, if $u=$ $\left(u_{1}, \ldots, u_{m}\right)$ then $(u)_{j}=u_{j}$. Also, $|u|=\left|\left(u_{1}, \ldots, u_{m}\right)\right|$ denotes the vector $\left(\left|u_{1}\right|, \ldots\right.$, $\left.\left|u_{m}\right|\right)$. In other words, $(|u|)_{j}=\left|(u)_{j}\right|$.

For factors B_{1} and B_{2} of an infinite word ω on a finite subset S of \mathbb{Z}^{m}, the notation $\left|\sum B_{1}-\sum B_{2}\right| \leq M_{1}$ means that $\left(\left|\sum B_{1}-\sum B_{2}\right|\right)_{j} \leq M_{1}, 1 \leq j \leq m$.

Suppose that ω is an infinite word on a finite subset S of \mathbb{Z}^{m} for some $m \geq 1$. The definitions of ϕ_{ω} and of the additive complexity of ω are exactly as in Definition 1 above.

By working with the coordinates $\left(B_{1}\right)_{j}$ and $\left(\left|\sum B_{1}-\sum B_{2}\right|\right)_{j}$, we easily obtain the following results.

Proposition 4. Proposition 2 remains true when \mathbb{Z} is replaced by \mathbb{Z}^{m}.

Theorem 5. Let ω be an infinite word on a finite subset of \mathbb{Z}^{m} for some $m \geq 1$. Assume that ω has bounded additive complexity. Then ω contains an additive k power for every positive integer k.

The following is a re-statement of Theorem 5 , in terms of m infinite words on \mathbb{Z}, rather than one infinite word on \mathbb{Z}^{m}.

Theorem 6. Let $m \in \mathbb{N}$ be given, and let $S_{1}, S_{2}, \ldots, S_{m}$ be finite subsets of \mathbb{Z}. Let ω_{j} be an infinite word on S_{j} with bounded additive complexity, $1 \leq j \leq m$. Then for all $k \geq 1$, there exists a k-term arithmetic progression in $\mathbb{N}, t, t+s, t+2 s, \ldots, t+k s$ such that for all $j, 1 \leq j \leq m$,
$\sum \omega_{j}[t+1, t+s]=\sum \omega_{j}[t+s+1, t+2 s]=\cdots=\sum \omega_{j}[t+(k-1) s+1, t+k s]$.
Thus $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ have "simultaneous" additive k-powers for all $k \geq 1$.

3. Abelian Complexity

Recall that we are using the notation $\left|\left(u_{1}, u_{2}, \ldots, u_{t}\right)\right| \leq M$ to denote $\left|u_{i}\right| \leq M$, $1 \leq i \leq t$.

Definition 7. Let ω be an infinite word on a finite alphabet. Two factors of ω are called abelian equivalent if one is a permutation of the other. If the alphabet is $A=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$, and the finite word B is a factor of ω, we write $\psi(B)=$ $\left(u_{1}, u_{2}, \ldots, u_{t}\right)$, where u_{i} is the number of occurrences of the letter a_{i} in the word $B, 1 \leq i \leq t$. We call $\psi(B)$, a notion introduced in [9], the Parikh vector associated with B.

Let

$$
\psi_{\omega}(n)=\{\psi(B): B \text { is a factor of } \omega \text { of length } n\}
$$

The function $\rho_{\omega}^{a b}$, defined by $\rho_{\omega}^{a b}(n)=\left|\psi_{\omega}(n)\right|, n \geq 1$, is called the abelian complexity of ω.

Thus $\rho_{\omega}^{a b}(n)$ is the largest number of factors of ω of length n, no two of which are abelian equivalent. If there exists M such that $\rho_{\omega}^{a b}(n) \leq M$ for all $n \geq 1$, then ω is said to have bounded abelian complexity.

The word $B_{1} B_{2} \cdots B_{k}$ is called an abelian k-power if $B_{1}, B_{2}, \ldots, B_{k}$ are pairwise abelian equivalent. (Being abelian equivalent, they all have the same length.)

Proposition 8. Let ω be an infinite word on a t-element alphabet S. Then the following three statements are equivalent.
(1) There exists M_{1} such that if $B_{1} B_{2}$ is a factor of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, then $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \leq M_{1}$.
(2) There exists M_{2} such that if B_{1} and B_{2} are factors of ω (not necessarily adjacent) with $\left|B_{1}\right|=\left|B_{2}\right|$, then $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \leq M_{2}$.
(3) The word ω has bounded abelian complexity, that is, there exists M_{3} such that $\rho_{\omega}^{a b}(n) \leq M_{3}$ for all $n \geq 1$.

Proof. We show that $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$.
Clearly $(2) \Rightarrow(1)$. Now assume that (1) holds, that is, if $B_{1} B_{2}$ is any factor of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, it is the case that $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \leq M_{1}$. Let B_{1} and B_{2} be factors of ω with $\left|B_{1}\right|=\left|B_{2}\right|$, and assume that B_{1} and B_{2} are non-adjacent, with B_{1} to the left of B_{2}.

Thus, assume that $B_{1} A_{1} A_{2} B_{2}$ is a factor of ω, where $\left|A_{1}\right|=\left|A_{2}\right|$ or $\left|A_{1}\right|=$ $\left|A_{2}\right|+1$.

We finish this argument exactly as in the proof of $(1) \Rightarrow(2)$ in Proposition 2, noting that $\left|\psi\left(A_{1}\right)-\psi\left(A_{2}\right)\right| \leq M_{1}+1$.

Next we show that $(2) \Rightarrow(3)$. Thus we assume there exists M_{2} such that whenever B_{1} and B_{2} are factors of ω (not necessarily adjacent) with $\left|B_{1}\right|=\left|B_{2}\right|$, it is the case that $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \leq M_{2}$.

Let n be given, and let $B_{1} \in \psi_{\omega}(n)$. Then for any B_{2} with $\left|B_{2}\right|=n$, we have $\psi\left(B_{2}\right)=\psi\left(B_{1}\right)+\left(\psi\left(B_{2}\right)-\psi\left(B_{1}\right)\right)$. Therefore $\left|\psi\left(B_{2}\right)\right| \leq\left|\psi\left(B_{1}\right)\right|+M_{2}$. (This inequality is component-wise, that is, $\left(\left|\psi\left(B_{2}\right)\right|\right)_{j} \leq\left(\left|\psi\left(B_{1}\right)\right|\right)_{j}+M_{2}, 1 \leq j \leq t$. $)$

Therefore there are at most $2 M_{2}-1$ choices for each component of B_{2}, and hence $\rho_{\omega}^{a b}(n) \leq\left(2 M_{2}-1\right)^{t}$.

Finally, we show that $(3) \Rightarrow(2)$. We assume there exists M_{3} such that $\rho_{\omega}^{a b}(n) \leq$ M_{3} for all $n \geq 1$.

Since $|\psi(x B)-\psi(B y)| \leq 1$ for all $x, y \in S$, it follows that if ω has factors B_{1} and B_{2} of length n where for some $j, 1 \leq j \leq t,\left(\psi\left(B_{1}\right)\right)_{j}=p$ and $\left(\psi\left(B_{2}\right)\right)_{j}=p+q$, then ω has factors C_{r} of length n with $\left(\psi\left(C_{r}\right)\right)_{j}=p+r, 0 \leq r \leq q$. (This is discussed in more detail in [11].) Thus $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \geq M_{3}$ implies $\rho_{\omega}^{a b}(n) \geq M_{3}+1$. Since we are assuming $\rho_{\omega}^{a b}(n) \leq M_{3}, n \geq 1$, we conclude that $\left|\psi\left(B_{1}\right)-\psi\left(B_{2}\right)\right| \leq M_{3}-1$ whenever $\left|B_{1}\right|=\left|B_{2}\right|$.

Definition 9. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a subset of \mathbb{Z}, and let $\omega=x_{1} x_{2} x_{3} \cdots$ be an infinite word on the alphabet S . For each $j, 1 \leq j \leq m$, let a_{j}^{\prime} be the element of \mathbb{Z}^{m} which has a_{j} in the in the j th coordinate and 0's elsewhere. Let $\omega^{\prime}=x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} \cdots$ be the word on the subset S^{\prime} of $\mathbb{Z}^{m}, S^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right\}$, obtained from ω by replacing each a_{j} by $a_{j}^{\prime}, 1 \leq j \leq m$. It is convenient to visualize each a_{j}^{\prime} as a column vector, rather than as a row vector.

Theorem 10. Referring to Definition 7, consider the following statements concerning ω and ω^{\prime} :
(1) ω has bounded abelian complexity;
(2) ω^{\prime} has bounded abelian complexity;
(3) ω^{\prime} has bounded additive complexity;
(4) ω^{\prime} contains an additive k-power for all $k \geq 1$;
(5) ω^{\prime} contains an abelian k-power or all $k \geq 1$;
(6) ω contains an abelian k-power for all $k \geq 1$.

Then $(1) \Leftrightarrow(2) \Leftrightarrow(3),(4) \Leftrightarrow(5) \Leftrightarrow(6),(3) \Rightarrow(4)$, and $(4) \nRightarrow(3)$.
Proof. Clearly (1) $\Leftrightarrow(2)$ and $(5) \Leftrightarrow(6)$. The linear independence of S^{\prime} over \mathbb{Z} implies that $(2) \Leftrightarrow(3)$ and $(4) \Leftrightarrow(5)$. The implication (3) \Rightarrow (4) follows from Theorem 5 . To see that $(4) \nRightarrow(3)$, note that if $(4) \Rightarrow(3)$ then $(6) \Rightarrow(1)$, which is shown to be false by the Champernowne word [4]

$$
C=01101110010111011110001001 \cdots,
$$

obtained by concatenating the binary representations of $0,1,2, \ldots$. This word has arbitrarily long strings of 1 's (and 0's), hence satisfies condition (6); but C does not satisfy condition (1). (Clearly for the word $C, \rho_{C}^{a b}(n)=n+1$ for all $n \geq 1$.)

Corollary 11. Every infinite word with bounded abelian complexity has an abelian k-power for every k.

Remark 12. To see that bounded additive complexity is indeed weaker than bounded abelian complexity, consider the following example. Let σ be Dekking's word, the fixed point, staring with 0 , of the morphism θ, where $\theta(0)=011$ and $\theta(1)=0001$. It is known [5] that σ has no abelian 4th power. In σ, replace every 1 by 12 , and replace every 0 by 03 , obtaining the sequence τ. If τ had an abelian 4 th power $A B C D$, then the number of 2 's in each of A, B, C, D would be equal, and similarly for the number of 3 's. But then dropping the 2 's and 3 's from $A B C D$ would give an abelian 4 th power in σ, a contradiction. Hence, by the preceding Corollary $1, \tau$ does not have bounded abelian complexity. Now let a factor B of τ be given. By shifting B to the right or left, we see, by examining cases, that if $|B|$ is even then $\sum B=\frac{3}{2}|B|+s$, where $s \in\{-1,0,1\}$. If $|B|$ is odd, then $\sum B=\frac{3}{2}(|B|-1)+s$, where $s \in\{0,1,2,3\}$. Hence $\left|\phi_{\tau}(n)\right| \leq 4$ for all $n \geq 1$, therefore τ does have bounded additive complexity.

4. A More General Statement

One can cast the arguments above into a more general form, and prove (we omit the details) the following statement.

Theorem 13. Let S be a finite set, and let S^{+}denote the free semigroup on S. For $t \in \mathbb{N}$, let $\mu: S^{+} \rightarrow \mathbb{Z}^{t}$ be a morphism, that is, for all $B_{1}, B_{2} \in S^{+}$,

$$
\mu\left(B_{1} B_{2}\right)=\mu\left(B_{1}\right)+\mu\left(B_{2}\right)
$$

Let ω be an infinite word on S. Assume further that there exists $M \in \mathbb{N}$ such that

$$
\left|B_{1}\right|=\left|B_{2}\right| \Rightarrow\left\|\mu\left(B_{1}\right)-\mu\left(B_{2}\right)\right\| \leq M
$$

where $\|\cdot\|$ denotes Euclidean distance in \mathbb{Z}^{t}. Then for all $k \geq 1$, ω contains a k-power modulo μ, that is, ω has a factor $B_{1} B_{2} \cdots B_{k}$ with

$$
\left|B_{1}\right|=\left|B_{2}\right|=\cdots=\left|B_{k}\right|, \quad \mu\left(B_{1}\right)=\mu\left(B_{2}\right)=\cdots=\mu\left(B_{k}\right)
$$

Thus taking S to be a finite subset of \mathbb{Z}^{m}, and $\mu(B)=\sum B \in \mathbb{Z}^{m}$, we obtain Theorem 5.

Taking S to be a finite set and $\mu(B)=\psi(B) \in \mathbb{Z}^{|S|}$, we obtain Corollary 11 .

Acknowledgment. The authors would like to acknowledge the IRMACS Centre at Simon Fraser University for its support.

References

[1] Yu-Hin Au, Aaron Robertson, and Jeffrey Shallit, Van der Waerden's theorem and avoidability in words, Integers 11, \#A6 (electronic), 2011.
[2] Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit, Avoiding three consecutive blocks of the same size and same sum, arXiv:1106.5204.
[3] Julien Cassaigne, Gwénaël Richomme, Kalle Saari, Luca Q. Zamboni, Avoiding Abelian powers in binary words with bounded Abelian complexity, Int. J. Found. Comput. Sci. 22(4), 905920, 2011.
[4] David G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. s1-8(4), 254-260, 1933.
[5] F. M. Dekking, Strongly non-repetitive sequences and progression-free sets, J. Combin. Theory, Series A 27, 181-185, 1979.
[6] Allen R. Freedman, Sequences on sets of four numbers, to appear.
[7] Jaroslaw Grytczuk, Thue type problems for graphs, points, and numbers, Discrete Math. 308, 4419-4429, 2008.
[8] L. Halbeisen and N. Hungerbühler, An application of van der Waerden's theorem in additive number theory, Integers 0, \#A7 (electronic), 2000.
[9] R. J. Parikh, On context-free languages, J. Assoc. Comput. Mach. 13, 570-581, 1966.
[10] G. Pirillo and S. Varricchio, On uniformly repetitive semigroups, Semigroup Forum 49, 125129, 1994.
[11] Gwénaël Richomme, Kalle Saari, Luca Q. Zamboni, Abelian complexity in minimal subshifts, arXiv:0911.2914.
[12] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde 15, 212-216, 1927.

