THE CHARACTERISTIC SEQUENCE AND P-ORDERINGS OF THE SET OF D-TH POWERS OF INTEGERS

Y. Fares
Laboratoire de mathematiques fundamentales et appliquees d'Amiens, Amiens, France
K. Johnson
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada

Received: 9/21/10, Accepted: 3/6/12, Published: 3/23/12

Abstract

If E is a subset of \mathbb{Z} then the n-th characteristic ideal of the algebra of rational polynomials taking integer values on $E, \operatorname{Int}(E, \mathbb{Z})$, is the fractional ideal consisting of 0 and the leading coefficients of elements of $\operatorname{Int}(E, \mathbb{Z})$ of degree no more than n. For p a prime the characteristic sequence of $\operatorname{Int}(E, \mathbb{Z})$ is the sequence of negatives of the p-adic values of these ideals. We give recursive formulas for these sequences for the sets $\left\{n^{d}: n=0,1,2, \ldots\right\}$ by describing how to recursively p-order them in the sense of Bhargava. We describe the asymptotic behavior of these sequences and identify primes, p, and exponents, d, for which there is a formula in closed form for the terms.

1. Introduction

For any subset E of \mathbb{Z} the ring of integer-valued polynomials on E is defined to be

$$
\operatorname{Int}(E, \mathbb{Z})=\{f(x) \in \mathbb{Q}[x]: f(E) \subseteq \mathbb{Z}\}
$$

Associated to this ring is its sequence of characteristic ideals, $\left\{I_{n}: n=0,1,2, \ldots\right\}$, with I_{n} the fractional ideal formed by 0 and the leading coefficients of the elements of $\operatorname{Int}(E, \mathbb{Z})$ of degree no more than n. For p a prime the sequence of negatives of the p-adic valuations of the ideals $I_{n},\{\alpha(n): n=0,1,2, \ldots\}$, is called the characteristic sequence of E with respect to p. In this paper we will give a recursive method for computing these sequences, and so the characteristic ideals, of the power sets $E=\left\{n^{d}: n=0,1,2, \ldots\right\}$ for any prime p and any positive integer exponent d and identify cases in which a nonrecursive formula exists.

Our results are based on the idea of a p-ordering of a subset E of \mathbb{Z} as introduced in [1], [2] and we will, in the course of establishing our results, also give recursive
methods for constructing p-orderings of these sets. A p-ordering of E is a sequence $\left\{a_{n}: n=0,1,2, \ldots\right\} \subseteq E$ with the property that for each n the element a_{n} minimizes the p-adic valuation $\nu_{p}\left(\prod_{i=0}^{n-1}\left(x-a_{i}\right)\right)$ over $x \in E$. It is shown in [1], [2] that the sequence $\left\{\nu_{p}\left(\prod_{i=0}^{n-1}\left(a_{n}-a_{i}\right)\right): n=0,1,2, \ldots\right\}$ coincides with the characteristic sequence of E for the prime p. To state our main result we use the following notation:

Definition 1. If E is a subset of \mathbb{Z}, p a prime, and $0 \leq s<p$, let $E_{s}=\{x \in E$: $x \equiv s(\bmod p)\}$. Also, if $\{\alpha(n): n=0,1,2, \ldots\}$ is the characteristic sequence of E with respect to p, let $\left\{\alpha_{s}(n): n=0,1,2, \ldots\right\}$ denote the characteristic sequence of E_{s}.
Theorem 2. If d is a positive integer and $E=\left\{n^{d}: n=0,1,2, \ldots\right\}$, then the characteristic sequence $\left\{\alpha_{s}(n)\right\}$ has the properties:
(a) $\alpha_{0}(n)=d n+\alpha(n)$.
(b) if $s \neq 0$, and $p \nmid d$, then $\alpha_{s}(n)=n+\nu_{p}(n!)$.
(c) if $p \mid d$ and $d=p^{c} d_{1}$ with $p \nmid d_{1}$, then $\alpha_{s}(n)=(c+1) n+\nu_{p}(n$!) for $p \geq 3$ and $\alpha_{s}(n)=(c+2) n+\nu_{2}(n!)$ if $p=2$.
(d) if $s \neq 0$ and a is such that $a^{d} \equiv s(\bmod p)$, then the increasing order on $\left\{(n p+a)^{d}: n=0,1,2, \ldots\right\}$ is a p-ordering for E_{s}.
(e) the map $\phi\left(n^{d}\right)=(p n)^{d}$ from E to E_{0} gives a one-to-one correspondences between the p-orderings of these two sets.

Since, by Lemma 3.5 of [6], the characteristic sequence $\{\alpha(n): n=0,1,2, \ldots\}$ of E is the shuffle of the sequences $\left\{\alpha_{s}(n): n=0,1,2, \ldots\right\}$ for $s=0,1, \ldots, p-1$ into nondecreasing order, it follows that for each n the value of $\alpha(n)$ is equal to $\alpha_{s}(m)$ for some s and some $m<n$ and so that parts (a), (b) and (c) of this theorem determine $\alpha(n)$ for all n. Also, a p-ordering of E is given by combining p-orderings of the E_{s} 's using the same shuffle and so is determined as well by parts (d) and (e).

For example, for $d=3$ and $p=2$ the sequence $\{\alpha(n): n=0,1,2, \ldots\}$ is the nondecreasing shuffle of the sequence

$$
\begin{aligned}
\left\{\alpha_{1}(n): n=0,1,2, \ldots\right\} & =\left\{n+\nu_{2}(n): n=0,1,2, \ldots\right\} \\
& =\{0,1,3,4,7,8,10,11,15, \ldots\}
\end{aligned}
$$

with the sequence $\left\{\alpha_{0}(n): n=0,1,2, \ldots\right\}$ which satisfies the equation $\alpha_{0}(n)=$ $3 n+\alpha(n)$. Thus

$$
\left\{\alpha_{0}(n): n=0,1,2, \ldots\right\}=\{0,3,7,12,15,19,25,28,32, \ldots\}
$$

and

$$
\{\alpha(n): n=0,1,2, \ldots\}=\{0,0,1,3,3,4,7,7,8, \ldots\}
$$

The corresponding 2 -ordering is $\{0,1,27,8,125,343,216,729,1331, \ldots\}$. Similar calculations for the primes 3,5 , and 7 show that the sequence of inverses of characteristic ideals of the set of cubes is

$$
\{(1),(1),(2),(72),(72),(2160),(51840),(362880),(6531840), \ldots\}
$$

Combining the results of Theorem 2 with those of [7] allows us to determine the asymptotic behavior of the characteristic sequences, i.e., the values of the limits $\lim _{n \rightarrow \infty} \alpha(n) / n$.

Theorem 3. If $E=\left\{n^{d}: n=0,1,2, \ldots\right\}$, the sets E_{s} are nonempty for $e+1$ distinct residue classes modulo p and $L=\lim _{n \rightarrow \infty} \alpha(n) / n$, then
(a) if $p \nmid d$, then L satisfies the equation

$$
e(p-1) L^{2}+e d(p-1) L-p d=0
$$

(b) if $p \mid d$ and $d=p^{c} d_{1}$ with $p \nmid d_{1}$, then for $p \geq 3$ the limit L satisfies the equation

$$
e(p-1) L^{2}+e d(p-1) L-d((p-1)(c+1)+1)=0
$$

while for $p=2$ it satisfies

$$
L^{2}+d L-d(c+3)=0
$$

The question of whether or not these limits are rational can be settled by examining the discriminants of the quadratic equations above.

Theorem 4. If $S=\left\{n^{d}: n=0,1,2, \ldots\right\}$ and $\{\alpha(n): n=0,1,2, \ldots\}$ is the characteristic sequence of S for the prime p, then the limit $L=\lim _{n \rightarrow \infty} \alpha(n) / n$ is rational if and only if $d \mid p-1$ or $d=p=2$.

In those cases where this limit is rational there is a closed form formula for the characteristic sequence:

Theorem 5. If $d \mid p-1$ and $\{\alpha(n): n=0,1,2, \ldots\}$ is the characteristic sequence of the set $S=\left\{n^{d}: n=0,1,2, \ldots\right\}$ then $\alpha(n)=\nu_{p}((d n)!)$.

2. Characteristic Sequences and p-Orderings

The assertions in Theorem 2, parts (a) and (e), concerning E_{0} and $\alpha_{0}(n)$ are obvious. We will, therefore, assume from this point on that $s \neq 0$ and provide a proof of the other assertions in the theorem. For this we need some preliminary results about the sets E_{s}.

Lemma 6. The congruence $x^{d} \equiv 1(\bmod p)$ has $\operatorname{gcd}(d, p-1)$ distinct solutions modulo p.

Proof. Let $t=\operatorname{gcd}(d, p-1)$. The multiplicative $\operatorname{group}(\mathbb{Z} /(p))^{*}$ is cyclic of order $p-1$ and so has a unique subgroup of order t consisting of those elements of $\mathbb{Z} /(p)$ whose multiplicative order divides t. Since t is a divisor of d, all elements of this subgroup are solutions of the given congruence. On the other hand, if $x \in \mathbb{Z} /(p)$ is a solution of this congruence then its order must be a divisor of d and also of the order of $(\mathbb{Z} /(p))^{*}$, i.e., of t.

Let r be a generator of the cyclic subgroup of $(\mathbb{Z} /(p))^{*}$ consisting of the solutions of $x^{d} \equiv 1(\bmod p)$ and, for $0 \leq i \leq \operatorname{gcd}(d, p-1)-1$, let r_{i} be the representative of $r^{i}(\bmod p)$ which is between 1 and $p-1$ (so that in particular $r_{0}=1$ and $\left.r_{1}=r\right)$.

Corollary 7. If $a^{d} \equiv s(\bmod p)$, then the set E_{s} is the disjoint union of the sets $E_{s, i}=\left\{\left(n p+r_{i} a\right)^{d}: n=0,1,2, \ldots\right\}$ for $0 \leq i<\operatorname{gcd}(d, p-1)$ together with a finite (possibly empty) set. In particular, the disjoint union of the sets $E_{s, i}$ is p-adicly dense in E_{s}.

Lemma 8. If $a^{d} \equiv s(\bmod p)$ and E_{s} and the sets $E_{s, i}$ are as above, then $E_{s, 0}$ is p-adicly dense in E_{s}.

Proof. In order to prove that $E_{s, 0}$ is p-adicly dense in E_{s}, we need only prove that for every $k \in \mathbb{N}$, every i such that $0 \leq i \leq \operatorname{gcd}(d, p-1)-1$ and every $\left(y p+r_{i} a\right)^{d} \in E_{s, i}$, there exists $(x p+a)^{d} \in E_{s, 0}$ such that $\nu_{p}\left(\left(y p+r_{i} a\right)^{d}-(x p+a)^{d}\right) \geq k$.

Let $x \in \mathbb{Z}$ be a solution of the congruence $r_{i}^{p^{k}} x \equiv y\left(\bmod p^{k-1}\right)$. Such a solution exists because r_{i} is not divisible by p and so $r_{i}^{p^{k}}$ is a unit modulo p^{k-1}. For such an x we have

$$
p\left(y-r_{i}^{p^{k}} x\right) \equiv 0 \equiv a\left(r_{i}^{p^{k}}-r_{i}\right) \quad\left(\bmod p^{k}\right)
$$

which is equivalent to

$$
\left(p y+r_{i} a\right) \equiv r_{i}^{p^{k}}(p x+a) \quad\left(\bmod p^{k}\right)
$$

and so we have, taking d-th powers,

$$
\left(p y+r_{i} a\right)^{d} \equiv r_{i}^{d p^{k}}(p x+a)^{d} \equiv(p x+a)^{d} \quad\left(\bmod p^{k}\right)
$$

as required.
Since $E_{s, 0}$ is p-adicly dense in E_{s}, a p-ordering of $E_{s, 0}$ will be one of E_{s} also and these sets will have the same characteristic sequences. To calculate this characteristic sequence some preliminary results concerning p-adic values of d-th powers are needed.

Let $\alpha \in \mathbb{Z}_{(p)} \backslash\{1\}$ be such that $\nu_{p}(\alpha-1) \geq 1$ and let $d \geq 1$. We then have $\alpha^{d}-1=(\alpha-1)\left(\sum_{0}^{d-1}\left(\alpha^{k}-1\right)+d\right)$ and so, in particular, if p does not divide d, then $\nu_{p}\left(\alpha^{d}-1\right)=\nu_{p}(\alpha-1)$. If p does divide d, then we have the following:

Lemma 9. [([4], Prop 8)] If $\alpha \in \mathbb{Z}_{(p)} \backslash\{1\}$ is such that $\nu_{p}(\alpha-1) \geq 1$, then for every $d \in \mathbb{N}$ such that p divides d we have

$$
\nu_{p}\left(\alpha^{d}-1\right)= \begin{cases}\nu_{p}(\alpha-1)+\nu_{p}(d) & \text { if } p \geq 3 \text { or } p=2 \text { and } \nu_{p}(\alpha-1) \geq 2 \\ \nu_{p}(\alpha+1)+\nu_{p}(d) & \text { if } p=2 \text { and } \nu_{p}(\alpha-1)=1\end{cases}
$$

Lemma 10. If $a^{d} \equiv s(\bmod p)$ and $(x p+a)^{d}$ and $(y p+a)^{d}$ are elements of $E_{s, 0}$, then:
i. if $p \geq 3$ then,

$$
\nu_{p}\left((x p+a)^{d}-(y p+a)^{d}\right)=1+\nu_{p}(x-y)+\nu_{p}(d) .
$$

ii. if $p=2$ and $\nu_{p}(x-y) \geq 1$, then

$$
\nu_{p}\left((x p+a)^{d}-(y p+a)^{d}\right)=1+\nu_{p}(x-y)+\nu_{p}(d) .
$$

iii. if $p=2$ and $\nu_{p}(x-y)=0$, then

$$
\nu_{p}\left((x p+a)^{d}-(y p+a)^{d}\right)=1+\nu_{p}(x+y+a)+\nu_{p}(d) .
$$

Proof. We have:

$$
\nu_{p}\left((p x+a)^{d}-(p y+a)^{d}\right)=\nu_{p}\left(\left(\frac{p x+a}{p y+a}\right)^{d}-1\right)
$$

Since $\nu_{p}\left(\left(\frac{p x+a}{p y+a}\right)-1\right)=\nu_{p}\left(\frac{p(x-y)}{p y+a}\right) \geq 1$, using Lemma 9 we have:
i. if $p \geq 3$ or $\nu_{p}(x-y) \geq 1$, then

$$
\begin{aligned}
\nu_{p}\left((p x+a)^{d}-(p y+a)^{d}\right) & =\nu_{p}\left(\frac{p(x-y)}{p y+a}\right)+\nu_{p}(d) \\
& =\nu_{p}\left(\left(\frac{p x+a}{p y+a}\right)-1\right)+\nu_{p}(d) \\
& =1+\nu_{p}(x-y)+\nu_{p}(d)
\end{aligned}
$$

ii. if $p=2$ and $\nu_{p}(x-y) \geq 1$, then

$$
\nu_{p}\left((p x+a)^{d}-(p y+a)^{d}\right)=1+\nu_{p}(x-y)+\nu_{p}(d) .
$$

iii. if $p=2$ and $\nu_{p}(x-y)=0$, then

$$
\begin{aligned}
\nu_{p}\left((p x+a)^{d}-(p y+a)^{d}\right) & =\nu_{p}\left(\left(\frac{p x+a}{p y+a}\right)+1\right)+\nu_{p}(d) \\
& =1+\nu_{p}(x+y+a)+\nu_{p}(d)
\end{aligned}
$$

In fact, if $p=2$ and $d=2 m$, then

$$
\begin{aligned}
\nu_{p}\left((p x+a)^{d}-(p y+a)^{d}\right) & =\nu_{p}\left(\left(\frac{p x+a}{p y+a}\right)^{2 m}-1\right) \\
& =\nu_{p}\left(\left(\frac{p x+a}{p y+a}+1\right)\left(\frac{p x+a}{p y+a}-1\right)\right)+\nu_{p}(m) \\
& =\nu_{p}\left(p^{2}(x+y+a)(x-y)\right)+\nu_{p}(m) \\
& =1+\nu_{p}\left(\left(x^{2}+a x\right)-\left(y^{2}+a y\right)\right)+\nu_{p}(d)
\end{aligned}
$$

We are now ready to prove Theorem 2.
Proof. Since, as previously noted, $E_{s, 0}$ is dense in E_{s} these two sets have the same characteristic sequence. For parts (b) and (d) we show by induction on n that the sequence $\left\{\left((n p+a)^{d}\right): n=0,1,2, \ldots\right\}$ is a p-ordering for $E_{s, 0}$. Since $p \nmid d$ it follows from Lemma 10 that

$$
\sum_{i=0}^{n-1} \nu_{p}\left((x p+a)^{d}-(i p+a)^{d}\right)=n+\sum_{i=0}^{n-1} \nu_{p}(x-i)
$$

The term n in this sum is independent of x and the remaining sum is the same as that occurring in showing that the usual increasing order is a p-ordering of the integers. It is, therefore, minimized by taking $x=n$ in which case the value of the sum, which equals $\alpha_{s}(n)$, is $n+\nu_{p}(n!)$.

For part (c), if $p \geq 3$ and $p \mid d$ with $d=p^{c} d_{1}$ and $p \nmid d_{1}$, then the same argument shows that

$$
\sum_{i=0}^{n-1} \nu_{p}\left((x p+a)^{d}-(i p+a)^{d}\right)=n+n \nu_{p}(d)+\sum_{i=0}^{n-1} \nu_{p}(x-i)
$$

is minimized by taking $x=n$ which results in $\alpha_{s}(n)=(c+1) n+\nu_{p}(n!)$.
For $p=2$ and $s=1$ we may take $a=1$. The corresponding expression is

$$
\sum_{i=0}^{n-1} \nu_{p}\left((2 x+1)^{d}-(2 i+1)^{d}\right)=n+n \nu_{2}(d)+\sum_{i=0}^{n-1} \nu_{2}\left(\left(x^{2}+x\right)-\left(i^{2}+i\right)\right)
$$

and, since the increasing ordering on $\left\{n^{2}+n \mid n \in \mathbb{N}\right\}$ is known to be a 2-ordering, it follows that $x=n$ minimizes the sum in this case also.

3. Limits

By Proposition 7 of [7] the limit $L=\lim _{n \rightarrow \infty} \alpha(n) / n$ satisfies the equation

$$
\frac{1}{L}=\sum \frac{1}{L_{s}}
$$

if $L_{s}=\lim _{n \rightarrow \infty} \alpha_{s}(n) / n$ and the sum is taken over the residue classes for which E_{s} is infinite. Recall that if the expression of n in base p is $n=\sum n_{i} p^{i}$, then $\nu_{p}(n!)=\left(n-\sum n_{i}\right) /(p-1)$. It thus follows from part (b) of Theorem 2 that for $s \neq 0$ and $p \nmid d$

$$
L_{s}=\lim _{n \rightarrow \infty}\left(n+\nu_{p}(n!)\right) / n=\lim _{n \rightarrow \infty} \frac{\left(n+\frac{n-\sum n_{i}}{p-1}\right)}{n}=p /(p-1)
$$

while for $s=0$ part (a) implies

$$
L_{0}=L+d
$$

We thus have that

$$
\frac{1}{L}=\frac{1}{d+L}+\sum \frac{p-1}{p}
$$

in which the sum has $e=(p-1) / \operatorname{gcd}(d, p-1)$ terms. Simplifying this equation yields the quadratic

$$
e(p-1) L^{2}+e d(p-1) L-p d=0 .
$$

If $d=p^{c} d_{1}$ with $c>0$, then for $p \geq 3$ we have

$$
L_{s}=\lim _{n \rightarrow \infty}\left((c+1) n+\nu_{p}(n!)\right) / n=((c+1)(p-1)+1) /(p-1)
$$

and, for $p=2$,

$$
L_{s}=\lim _{n \rightarrow \infty}\left((c+2) n+\nu_{2}(n!)\right)=c+3
$$

This gives, for $p \geq 3$, the equation

$$
\frac{1}{L}=\frac{1}{d+L}+\sum \frac{p-1}{(c+1)(p-1)+1}
$$

and, for $p=2$,

$$
\frac{1}{L}=\frac{1}{d+L}+\sum \frac{1}{c+3}
$$

The corresponding quadratics are, for $p \geq 3$,

$$
e(p-1) L^{2}+e d(p-1) L-d((p-1)(c+1)+1)=0
$$

and, for $p=2$,

$$
L^{2}+d L-d(c+3)=0
$$

The fact that these limits are roots of quadratic equations raises the natural question of whether or not these limits are rational. The answer is as follows:

Proposition 11. If $\{\alpha(n): n=0,1,2, \ldots\}$ is the characteristic sequence for the set $\left\{n^{d}: n=0,1,2, \ldots\right\}$ with respect to the prime p and $L=\lim _{n \rightarrow \infty} \alpha(n) / n$, then $L \in \mathbb{Q}$ if and only if d divides $p-1$ or $d=p=2$.

Proof. We consider separately the four cases $p>2$ and $p \nmid d, p>2$ and $p \mid d, p=2$ and d odd, and $p=2$ and d even. In each case we determine whether or not the discriminant of the quadratic equation given above is a square.

If $p>2$ does not divide d, then the discriminant in question is $(e d(p-1))^{2}+$ $4 e d(p-1) p=(e d(p-1)+2 p)^{2}-4 p^{2}$. If this is a square, y^{2} say, then $(2 p, y, e d(p-$ $1)+2 p)$ is a Pythagorean triple. A general Pythagorean triple with common divisor k is of the form $(k x, k y, k z)$ with $\operatorname{gcd}(x, y, z)=1$ and exactly one of x or y even. By a theorem of Euler if y is even, then there exist m, n such that $x=m^{2}-n^{2}$, $y=2 m n$ and $z=m^{2}+n^{2}$. In our case $k=2$, since p is an odd prime, and so we must have $p=m^{2}-n^{2}=(m-n)(m+n)$. Since p is prime the only solution is $m=(p+1) / 2$ and $n=(p-1) / 2$. Since $2\left(m^{2}+n^{2}\right)=e d(p-1)+2 p$ we have

$$
(p+1)^{2} / 2+(p-1)^{2} / 2=p^{2}+1=e d(p-1)+2 p
$$

and so $p-1=e d$. Since $e d=d(p-1) / \operatorname{gcd}(d, p-1)=\operatorname{lcm}(d, p-1)$ this can occur if and only if d is a divisor of $p-1$.

If $p>2$ divides d with $d=p^{c} \ell$, then the discriminant is $(e d(p-1))^{2}+4 d e(p-$ $1)((p-1)(c+1)+1)=(e d(p-1)+2((p-1)(c+1)+1))^{2}-4((p-1)(c+1)+1)^{2}$. As in the previous case, if this forms a Pythagorean triple $(2((p-1)(c+1)+$ $1)$, $y, e d(p-1)+2((p-1)(c+1)+1)$), then the greatest common divisor, k, is even and there exist integers $m>n$ such that $2((p-1)(c+1)+1)=k\left(m^{2}-n^{2}\right)$ and $k\left(m^{2}+n^{2}\right)=e d(p-1)+2((p-1)(c+1)+1)$. Let $D=2((p-1)(c+1)+1)$. If $k\left(m^{2}-n^{2}\right)=D$, then $k\left(m^{2}+n^{2}\right)=2 k n^{2}+D$. This is an increasing function of n and so is largest when n is largest subject to the constraint $m>n$, i.e., when $m=n+1$ in which case $n=((D / k)-1) / 2$ and $m=((D / k)+1) / 2$. For these values $k\left(m^{2}+n^{2}\right)=\left(D^{2} / 2 k\right)+(k / 2)$ which is largest if $k=2$ (since k is even). Combining this with our second equation we have the inequality $D^{2} / 4+1 \geq D+e d(p-1)$ or

$$
\begin{aligned}
(p-1)^{2}(c+1)^{2}-1 & \geq(p-1) \operatorname{lcm}(d, p-1) \\
& =(p-1) p^{c} \operatorname{lcm}(\ell, p-1) \\
& \geq(p-1)^{2} p^{c}
\end{aligned}
$$

This implies $(c+1)^{2} \geq p^{c}$ which can occur only if $p=3$ and $c=1$ or $c=2$. In both of these cases no pair m, n exists.

If $p=2$ and d is odd, then the discriminant is $d^{2}+8 d=(d+4)^{2}-4^{2}$. In this case in order for $(4, y, d+4)$ to be a Pythagorean triple there must exist integers k and $m>n$ such that $4=2 k m n$ and $k\left(m^{2}+n^{2}\right)=4+d$. Since the first equation implies $m=2$ and $k=n=1$ the only possible value of d is $d=1$.

If $p=2$ and $d=2^{c} \ell$, then the discriminant is $d^{2}+4 d(c+3)=(d+2(c+3))^{2}-4(c+$ $3)^{2}$ and so we must consider possible Pythagorean triples $(2(c+3), y, 2(c+3)+d)$. Since d is even the greatest common divisor, k, must be even also and either $\nu_{2}(2(c+$ $3)+d)<\nu_{2}(2(c+3))$ or $\nu_{2}(2(c+3)+d)=\nu_{2}(2(c+3))$. In the first case there exist integers $m>n$ such that $c+3=k m n$ with $k\left(m^{2}+n^{2}\right)=d+2(c+3)=2^{c} \ell+2(c+3)$. The quantity $k\left(m^{2}+n^{2}\right)$ is subject to the constraints $c+3=k m n, m>n$ and k even and so is largest if $n=1, k=2$ and $m=(c+3) / 2$. We thus have $2\left(((c+3) / 2)^{2}+1\right) \geq 2^{c} \ell+2(c+3)$, which implies $(c+1)^{2} \geq 2^{c+1}$ and so $c \leq 3$. The only value of c in this range for which there is a solution is $c=1$ with $k=2$, $\ell=1, m=2$ and $n=1$. In the second case there must exist integers $m>n$ such that $2(c+3)=k\left(m^{2}-n^{2}\right)$ and $k\left(m^{2}+n^{2}\right)=d+2(c+3)=2^{c} \ell+2(c+3)$. As in the case $p>2$, above, the first of these equations implies that

$$
k\left(m^{2}+n^{2}\right) \leq k\left(\left(\frac{2(c+3) / k-1}{2}\right)^{2}+\left(\frac{2(c+3) / k+1}{2}\right)^{2}\right) .
$$

The right-hand side is largest if $k=2$ and simplifies to give

$$
k\left(m^{2}+n^{2}\right) \leq(c+3)^{2}+1
$$

Combining this with the second equation gives the inequality

$$
(c+3)^{2}+1 \geq 2(c+3)+d
$$

or

$$
(c+2)^{2} \geq d=2^{c} \ell
$$

which occurs only if $c \leq 6$ and no value for c in this range has $\nu_{2}(2(c+3)+d)=$ $\nu_{2}(2(c+3))$.

Proposition 12. If d divides $p-1$, then the characteristic sequence $\{\alpha(n): n=$ $0,1,2, \ldots\}$ of the set $\left\{n^{d}: n=0,1,2, \ldots\right\}$ is given by $\alpha(n)=\nu_{p}((d n)!)$.

Proof. Let $e=(p-1) / d$ and let $\beta(n)=\nu_{p}((d n)!)$. Also let ϕ and $\left\{\psi_{s}: s=\right.$ $1,2, \ldots, e\}$ be the following maps from $\mathbb{Z} \geq 0$ to $\mathbb{Z} \geq 0$:

$$
\begin{gathered}
\phi(n)=d n \\
\psi_{s}(n)=e n+\lfloor n / d\rfloor+s
\end{gathered}
$$

It is straightforward to verify that these $e+1$ maps define a shuffle, i.e., that each is strictly increasing and that any element of $\mathbb{Z} \geq 0$ is in the image of exactly one of them. By Theorem $2\{\alpha(n): n=0,1,2, \ldots\}$ is the nondecreasing shuffle of the e sequences $\left\{\alpha_{s}(n): n=0,1,2, \ldots\right\}$ with $\alpha_{s}(n)=n+\nu_{p}(n!)$ for $s=1,2, \ldots, e$ and the sequence $\left\{\alpha_{0}(n): n=0,1,2, \ldots\right\}$ with $\alpha_{0}(n)=d n+\alpha(n)$. Thus it will suffice,
by induction on n, to show that $\{\beta(n): n=0,1,2, \ldots\}$, which is nondecreasing, is the $\left(\phi, \psi_{1}, \ldots, \psi_{s}\right)$-shuffle of $d n+\beta(n)$ and the sequences $\alpha_{1}, \ldots, \alpha_{s}$.

For the first of these let $\sum n_{i} p^{i}$ be the base p expansion of $d n$ and note that the base p expansion of $p d n$ will then be $\sum n_{i} p^{i+1}$. We thus have

$$
\begin{aligned}
\beta(\phi(n)) & =\beta(p n) \\
& =\nu_{p}(p d n!) \\
& =\frac{p d n-\sum n_{i}}{p-1} \\
& =d n+\frac{d n-\sum n_{i}}{p-1} \\
& =d n+\beta(n)
\end{aligned}
$$

For the others, note that for $0 \leq r<d$ we have $\psi_{s}(d n+r)=p n+e r+s$ and so, that

$$
\beta\left(\psi_{s}(d n+r)\right)=\beta(p n+e r+s)=\nu_{p}((p d n+(p-1) r+d s)!)
$$

while

$$
\alpha_{s}(d n+r)=\nu_{p}((p(d n+r))!)=\nu_{p}((p d n+p r)!)
$$

Since $(p-1) r+d s-p r=d s-r$ and $1 \leq d s-r<p$ these two p-adic norms are equal, i.e., $\beta\left(\psi_{s}(d n+r)\right)=\alpha_{s}(d n+r)$.

References

[1] Bhargava, M., P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127.
[2] Bhargava, M., The factorial function and generalizations, Am. Math. Monthly 107 (2000), 783-799.
[3] Cahen,P.-J. and Chabert,J.-L., Integer Valued Polynomials, Amer. Math. Soc., Providence, R.I., 1997.
[4] Chabert, J-L, Fan, A-H, and Fares, Y, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems 425 (2009), 751-777.
[5] Fares, Y and Johnson, K., Characteristic sequences of quadratic sets, submitted.
[6] Johnson, K., P-orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics 30 (2009), 233-253.
[7] Johnson, K., Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), 2933-2942.

