

THE CHARACTERISTIC SEQUENCE AND *P*-ORDERINGS OF THE SET OF *D*-TH POWERS OF INTEGERS

Y. Fares

Laboratoire de mathematiques fundamentales et appliquees d'Amiens, Amiens, France

K. Johnson

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada

Received: 9/21/10, Accepted: 3/6/12, Published: 3/23/12

Abstract

If E is a subset of \mathbb{Z} then the *n*-th characteristic ideal of the algebra of rational polynomials taking integer values on E, $Int(E, \mathbb{Z})$, is the fractional ideal consisting of 0 and the leading coefficients of elements of $Int(E, \mathbb{Z})$ of degree no more than n. For p a prime the characteristic sequence of $Int(E, \mathbb{Z})$ is the sequence of negatives of the p-adic values of these ideals. We give recursive formulas for these sequences for the sets $\{n^d : n = 0, 1, 2, ...\}$ by describing how to recursively p-order them in the sense of Bhargava. We describe the asymptotic behavior of these sequences and identify primes, p, and exponents, d, for which there is a formula in closed form for the terms.

1. Introduction

For any subset E of \mathbb{Z} the ring of integer-valued polynomials on E is defined to be

$$Int(E,\mathbb{Z}) = \{ f(x) \in \mathbb{Q}[x] : f(E) \subseteq \mathbb{Z} \}.$$

Associated to this ring is its sequence of characteristic ideals, $\{I_n : n = 0, 1, 2, ...\}$, with I_n the fractional ideal formed by 0 and the leading coefficients of the elements of $Int(E,\mathbb{Z})$ of degree no more than n. For p a prime the sequence of negatives of the p-adic valuations of the ideals I_n , $\{\alpha(n) : n = 0, 1, 2, ...\}$, is called the characteristic sequence of E with respect to p. In this paper we will give a recursive method for computing these sequences, and so the characteristic ideals, of the power sets $E = \{n^d : n = 0, 1, 2, ...\}$ for any prime p and any positive integer exponent dand identify cases in which a nonrecursive formula exists.

Our results are based on the idea of a *p*-ordering of a subset E of \mathbb{Z} as introduced in [1], [2] and we will, in the course of establishing our results, also give recursive methods for constructing *p*-orderings of these sets. A *p*-ordering of *E* is a sequence $\{a_n : n = 0, 1, 2, ...\} \subseteq E$ with the property that for each *n* the element a_n minimizes the *p*-adic valuation $\nu_p(\prod_{i=0}^{n-1}(x-a_i))$ over $x \in E$. It is shown in [1], [2] that the sequence $\{\nu_p(\prod_{i=0}^{n-1}(a_n-a_i)) : n = 0, 1, 2, ...\}$ coincides with the characteristic sequence of *E* for the prime *p*. To state our main result we use the following notation:

Definition 1. If E is a subset of \mathbb{Z} , p a prime, and $0 \le s < p$, let $E_s = \{x \in E : x \equiv s \pmod{p}\}$. Also, if $\{\alpha(n) : n = 0, 1, 2, ...\}$ is the characteristic sequence of E with respect to p, let $\{\alpha_s(n) : n = 0, 1, 2, ...\}$ denote the characteristic sequence of E_s .

Theorem 2. If d is a positive integer and $E = \{n^d : n = 0, 1, 2, ...\}$, then the characteristic sequence $\{\alpha_s(n)\}$ has the properties:

- (a) $\alpha_0(n) = dn + \alpha(n)$.
- (b) if $s \neq 0$, and $p \nmid d$, then $\alpha_s(n) = n + \nu_p(n!)$.
- (c) if $p \mid d$ and $d = p^c d_1$ with $p \nmid d_1$, then $\alpha_s(n) = (c+1)n + \nu_p(n!)$ for $p \ge 3$ and $\alpha_s(n) = (c+2)n + \nu_2(n!)$ if p = 2.
- (d) if $s \neq 0$ and a is such that $a^d \equiv s \pmod{p}$, then the increasing order on $\{(np+a)^d : n = 0, 1, 2, ...\}$ is a p-ordering for E_s .
- (e) the map $\phi(n^d) = (pn)^d$ from E to E_0 gives a one-to-one correspondences between the p-orderings of these two sets.

Since, by Lemma 3.5 of [6], the characteristic sequence $\{\alpha(n) : n = 0, 1, 2, ...\}$ of E is the shuffle of the sequences $\{\alpha_s(n) : n = 0, 1, 2, ...\}$ for s = 0, 1, ..., p - 1 into nondecreasing order, it follows that for each n the value of $\alpha(n)$ is equal to $\alpha_s(m)$ for some s and some m < n and so that parts (a), (b) and (c) of this theorem determine $\alpha(n)$ for all n. Also, a p-ordering of E is given by combining p-orderings of the E_s 's using the same shuffle and so is determined as well by parts (d) and (e).

For example, for d = 3 and p = 2 the sequence $\{\alpha(n) : n = 0, 1, 2, ...\}$ is the nondecreasing shuffle of the sequence

$$\{\alpha_1(n): n = 0, 1, 2, \dots\} = \{n + \nu_2(n): n = 0, 1, 2, \dots\}$$
$$= \{0, 1, 3, 4, 7, 8, 10, 11, 15, \dots\}$$

with the sequence $\{\alpha_0(n) : n = 0, 1, 2, ...\}$ which satisfies the equation $\alpha_0(n) = 3n + \alpha(n)$. Thus

$$\{\alpha_0(n): n = 0, 1, 2, \dots\} = \{0, 3, 7, 12, 15, 19, 25, 28, 32, \dots\}$$

and

$$\{\alpha(n): n = 0, 1, 2, \dots\} = \{0, 0, 1, 3, 3, 4, 7, 7, 8, \dots\}.$$

The corresponding 2-ordering is $\{0, 1, 27, 8, 125, 343, 216, 729, 1331, ...\}$. Similar calculations for the primes 3, 5, and 7 show that the sequence of inverses of characteristic ideals of the set of cubes is

$$\{(1), (1), (2), (72), (72), (2160), (51840), (362880), (6531840), \dots\}$$

Combining the results of Theorem 2 with those of [7] allows us to determine the asymptotic behavior of the characteristic sequences, i.e., the values of the limits $\lim_{n\to\infty} \alpha(n)/n$.

Theorem 3. If $E = \{n^d : n = 0, 1, 2, ...\}$, the sets E_s are nonempty for e + 1 distinct residue classes modulo p and $L = \lim_{n \to \infty} \alpha(n)/n$, then

(a) if $p \nmid d$, then L satisfies the equation

$$e(p-1)L^2 + ed(p-1)L - pd = 0.$$

(b) if $p \mid d$ and $d = p^{c}d_{1}$ with $p \nmid d_{1}$, then for $p \geq 3$ the limit L satisfies the equation

$$e(p-1)L^{2} + ed(p-1)L - d((p-1)(c+1) + 1) = 0,$$

while for p = 2 it satisfies

$$L^2 + dL - d(c+3) = 0.$$

The question of whether or not these limits are rational can be settled by examining the discriminants of the quadratic equations above.

Theorem 4. If $S = \{n^d : n = 0, 1, 2, ...\}$ and $\{\alpha(n) : n = 0, 1, 2, ...\}$ is the characteristic sequence of S for the prime p, then the limit $L = \lim_{n \to \infty} \alpha(n)/n$ is rational if and only if $d \mid p-1$ or d = p = 2.

In those cases where this limit is rational there is a closed form formula for the characteristic sequence:

Theorem 5. If $d \mid p-1$ and $\{\alpha(n) : n = 0, 1, 2, ...\}$ is the characteristic sequence of the set $S = \{n^d : n = 0, 1, 2, ...\}$ then $\alpha(n) = \nu_p((dn)!)$.

2. Characteristic Sequences and *p*-Orderings

The assertions in Theorem 2, parts (a) and (e), concerning E_0 and $\alpha_0(n)$ are obvious. We will, therefore, assume from this point on that $s \neq 0$ and provide a proof of the other assertions in the theorem. For this we need some preliminary results about the sets E_s . **Lemma 6.** The congruence $x^d \equiv 1 \pmod{p}$ has gcd(d, p - 1) distinct solutions modulo p.

Proof. Let $t = \gcd(d, p - 1)$. The multiplicative group $(\mathbb{Z}/(p))^*$ is cyclic of order p - 1 and so has a unique subgroup of order t consisting of those elements of $\mathbb{Z}/(p)$ whose multiplicative order divides t. Since t is a divisor of d, all elements of this subgroup are solutions of the given congruence. On the other hand, if $x \in \mathbb{Z}/(p)$ is a solution of this congruence then its order must be a divisor of d and also of the order of $(\mathbb{Z}/(p))^*$, i.e., of t.

Let r be a generator of the cyclic subgroup of $(\mathbb{Z}/(p))^*$ consisting of the solutions of $x^d \equiv 1 \pmod{p}$ and, for $0 \leq i \leq \gcd(d, p-1) - 1$, let r_i be the representative of $r^i \pmod{p}$ which is between 1 and p-1 (so that in particular $r_0 = 1$ and $r_1 = r$).

Corollary 7. If $a^d \equiv s \pmod{p}$, then the set E_s is the disjoint union of the sets $E_{s,i} = \{(np + r_i a)^d : n = 0, 1, 2, ...\}$ for $0 \le i < \gcd(d, p - 1)$ together with a finite (possibly empty) set. In particular, the disjoint union of the sets $E_{s,i}$ is p-adicly dense in E_s .

Lemma 8. If $a^d \equiv s \pmod{p}$ and E_s and the sets $E_{s,i}$ are as above, then $E_{s,0}$ is *p*-adicly dense in E_s .

Proof. In order to prove that $E_{s,0}$ is p-adicly dense in E_s , we need only prove that for every $k \in \mathbb{N}$, every *i* such that $0 \leq i \leq \gcd(d, p-1) - 1$ and every $(yp+r_ia)^d \in E_{s,i}$, there exists $(xp+a)^d \in E_{s,0}$ such that $\nu_p((yp+r_ia)^d - (xp+a)^d) \geq k$.

Let $x \in \mathbb{Z}$ be a solution of the congruence $r_i^{p^k} x \equiv y \pmod{p^{k-1}}$. Such a solution exists because r_i is not divisible by p and so $r_i^{p^k}$ is a unit modulo p^{k-1} . For such an x we have

$$p(y - r_i^{p^k} x) \equiv 0 \equiv a(r_i^{p^k} - r_i) \pmod{p^k}$$

which is equivalent to

$$(py+r_ia) \equiv r_i^{p^k}(px+a) \pmod{p^k}$$

and so we have, taking d-th powers,

$$(py+r_ia)^d \equiv r_i^{dp^k}(px+a)^d \equiv (px+a)^d \pmod{p^k}$$

as required.

Since $E_{s,0}$ is *p*-adicly dense in E_s , a *p*-ordering of $E_{s,0}$ will be one of E_s also and these sets will have the same characteristic sequences. To calculate this characteristic sequence some preliminary results concerning *p*-adic values of *d*-th powers are needed.

INTEGERS: 12 (2012)

Let $\alpha \in \mathbb{Z}_{(p)} \setminus \{1\}$ be such that $\nu_p(\alpha - 1) \ge 1$ and let $d \ge 1$. We then have $\alpha^d - 1 = (\alpha - 1)(\sum_{0}^{d-1}(\alpha^k - 1) + d)$ and so, in particular, if p does not divide d, then $\nu_p(\alpha^d - 1) = \nu_p(\alpha - 1)$. If p does divide d, then we have the following:

Lemma 9. [([4], Prop 8)] If $\alpha \in \mathbb{Z}_{(p)} \setminus \{1\}$ is such that $\nu_p(\alpha - 1) \ge 1$, then for every $d \in \mathbb{N}$ such that p divides d we have

$$\nu_p(\alpha^d - 1) = \begin{cases} \nu_p(\alpha - 1) + \nu_p(d) & \text{if } p \ge 3 \text{ or } p = 2 \text{ and } \nu_p(\alpha - 1) \ge 2\\ \nu_p(\alpha + 1) + \nu_p(d) & \text{if } p = 2 \text{ and } \nu_p(\alpha - 1) = 1 \end{cases}$$

Lemma 10. If $a^d \equiv s \pmod{p}$ and $(xp+a)^d$ and $(yp+a)^d$ are elements of $E_{s,0}$, then:

i. if $p \geq 3$ then,

$$\nu_p \left((xp+a)^d - (yp+a)^d \right) = 1 + \nu_p (x-y) + \nu_p (d).$$

ii. if p = 2 and $\nu_p(x - y) \ge 1$, then

$$\nu_p \left((xp+a)^d - (yp+a)^d \right) = 1 + \nu_p (x-y) + \nu_p (d)$$

iii. if p = 2 and $\nu_p(x - y) = 0$, then

$$\nu_p \left((xp+a)^d - (yp+a)^d \right) = 1 + \nu_p (x+y+a) + \nu_p (d).$$

Proof. We have:

$$\nu_p\left((px+a)^d - (py+a)^d\right) = \nu_p\left(\left(\frac{px+a}{py+a}\right)^d - 1\right).$$

Since $\nu_p\left(\left(\frac{px+a}{py+a}\right)-1\right) = \nu_p\left(\frac{p(x-y)}{py+a}\right) \ge 1$, using Lemma 9 we have:

i. if $p \ge 3$ or $\nu_p(x-y) \ge 1$, then

$$\nu_p \left((px+a)^d - (py+a)^d \right) = \nu_p \left(\frac{p(x-y)}{py+a} \right) + \nu_p(d)$$
$$= \nu_p \left(\left(\frac{px+a}{py+a} \right) - 1 \right) + \nu_p(d)$$
$$= 1 + \nu_p(x-y) + \nu_p(d).$$

ii. if p = 2 and $\nu_p(x - y) \ge 1$, then

$$\nu_p \left((px+a)^d - (py+a)^d \right) = 1 + \nu_p (x-y) + \nu_p (d).$$

iii. if p = 2 and $\nu_p(x - y) = 0$, then

$$\nu_p \left((px+a)^d - (py+a)^d \right) = \nu_p \left(\left(\frac{px+a}{py+a} \right) + 1 \right) + \nu_p(d) \\ = 1 + \nu_p (x+y+a) + \nu_p(d).$$

In fact, if p = 2 and d = 2m, then

$$\nu_{p} \left((px+a)^{d} - (py+a)^{d} \right) = \nu_{p} \left(\left(\frac{px+a}{py+a} \right)^{2m} - 1 \right)$$
$$= \nu_{p} \left(\left(\frac{px+a}{py+a} + 1 \right) \left(\frac{px+a}{py+a} - 1 \right) \right) + \nu_{p}(m)$$
$$= \nu_{p} \left(p^{2}(x+y+a)(x-y) \right) + \nu_{p}(m)$$
$$= 1 + \nu_{p} \left((x^{2}+ax) - (y^{2}+ay) \right) + \nu_{p}(d).$$

We are now ready to prove Theorem 2.

Proof. Since, as previously noted, $E_{s,0}$ is dense in E_s these two sets have the same characteristic sequence. For parts (b) and (d) we show by induction on n that the sequence $\{((np+a)^d) : n = 0, 1, 2, ...\}$ is a p-ordering for $E_{s,0}$. Since $p \nmid d$ it follows from Lemma 10 that

$$\sum_{i=0}^{n-1} \nu_p \left((xp+a)^d - (ip+a)^d \right) = n + \sum_{i=0}^{n-1} \nu_p (x-i).$$

The term n in this sum is independent of x and the remaining sum is the same as that occurring in showing that the usual increasing order is a p-ordering of the integers. It is, therefore, minimized by taking x = n in which case the value of the sum, which equals $\alpha_s(n)$, is $n + \nu_p(n!)$.

For part (c), if $p \ge 3$ and $p \mid d$ with $d = p^c d_1$ and $p \nmid d_1$, then the same argument shows that

$$\sum_{i=0}^{n-1} \nu_p \left((xp+a)^d - (ip+a)^d \right) = n + n\nu_p(d) + \sum_{i=0}^{n-1} \nu_p(x-i)$$

is minimized by taking x = n which results in $\alpha_s(n) = (c+1)n + \nu_p(n!)$.

For p = 2 and s = 1 we may take a = 1. The corresponding expression is

$$\sum_{i=0}^{n-1} \nu_p \left((2x+1)^d - (2i+1)^d \right) = n + n\nu_2(d) + \sum_{i=0}^{n-1} \nu_2 \left((x^2+x) - (i^2+i) \right)$$

and, since the increasing ordering on $\{n^2 + n \mid n \in \mathbb{N}\}$ is known to be a 2-ordering, it follows that x = n minimizes the sum in this case also.

3. Limits

By Proposition 7 of [7] the limit $L = \lim_{n \to \infty} \alpha(n)/n$ satisfies the equation

$$\frac{1}{L} = \sum \frac{1}{L_s}$$

if $L_s = \lim_{n \to \infty} \alpha_s(n)/n$ and the sum is taken over the residue classes for which E_s is infinite. Recall that if the expression of n in base p is $n = \sum n_i p^i$, then $\nu_p(n!) = (n - \sum n_i)/(p-1)$. It thus follows from part (b) of Theorem 2 that for $s \neq 0$ and $p \nmid d$

$$L_s = \lim_{n \to \infty} (n + \nu_p(n!))/n = \lim_{n \to \infty} \frac{(n + \frac{n - \sum n_i}{p - 1})}{n} = p/(p - 1)$$

_

while for s = 0 part (a) implies

$$L_0 = L + d.$$

We thus have that

$$\frac{1}{L} = \frac{1}{d+L} + \sum \frac{p-1}{p}$$

in which the sum has $e = (p-1)/\operatorname{gcd}(d, p-1)$ terms. Simplifying this equation yields the quadratic

$$e(p-1)L^2 + ed(p-1)L - pd = 0.$$

If $d = p^c d_1$ with c > 0, then for $p \ge 3$ we have

$$L_s = \lim_{n \to \infty} ((c+1)n + \nu_p(n!))/n = ((c+1)(p-1) + 1)/(p-1)$$

and, for p = 2,

$$L_s = \lim_{n \to \infty} ((c+2)n + \nu_2(n!)) = c + 3.$$

This gives, for $p \geq 3$, the equation

$$\frac{1}{L} = \frac{1}{d+L} + \sum \frac{p-1}{(c+1)(p-1)+1}$$

and, for p = 2,

$$\frac{1}{L} = \frac{1}{d+L} + \sum \frac{1}{c+3}.$$

The corresponding quadratics are, for $p \geq 3$,

$$e(p-1)L^{2} + ed(p-1)L - d((p-1)(c+1) + 1) = 0$$

and, for p = 2,

$$L^2 + dL - d(c+3) = 0.$$

The fact that these limits are roots of quadratic equations raises the natural question of whether or not these limits are rational. The answer is as follows:

Proposition 11. If $\{\alpha(n) : n = 0, 1, 2, ...\}$ is the characteristic sequence for the set $\{n^d : n = 0, 1, 2, ...\}$ with respect to the prime p and $L = \lim_{n \to \infty} \alpha(n)/n$, then $L \in \mathbb{Q}$ if and only if d divides p - 1 or d = p = 2.

Proof. We consider separately the four cases p > 2 and $p \nmid d$, p > 2 and $p \mid d$, p = 2 and d odd, and p = 2 and d even. In each case we determine whether or not the discriminant of the quadratic equation given above is a square.

If p > 2 does not divide d, then the discriminant in question is $(ed(p-1))^2 + 4ed(p-1)p = (ed(p-1)+2p)^2 - 4p^2$. If this is a square, y^2 say, then (2p, y, ed(p-1)+2p) is a Pythagorean triple. A general Pythagorean triple with common divisor k is of the form (kx, ky, kz) with gcd(x, y, z) = 1 and exactly one of x or y even. By a theorem of Euler if y is even, then there exist m, n such that $x = m^2 - n^2$, y = 2mn and $z = m^2 + n^2$. In our case k = 2, since p is an odd prime, and so we must have $p = m^2 - n^2 = (m - n)(m + n)$. Since p is prime the only solution is m = (p+1)/2 and n = (p-1)/2. Since $2(m^2 + n^2) = ed(p-1) + 2p$ we have

$$(p+1)^2/2 + (p-1)^2/2 = p^2 + 1 = ed(p-1) + 2p$$

and so p-1 = ed. Since $ed = d(p-1)/\operatorname{gcd}(d, p-1) = \operatorname{lcm}(d, p-1)$ this can occur if and only if d is a divisor of p-1.

If p > 2 divides d with $d = p^c \ell$, then the discriminant is $(ed(p-1))^2 + 4de(p-1)((p-1)(c+1)+1) = (ed(p-1)+2((p-1)(c+1)+1))^2 - 4((p-1)(c+1)+1)^2$. As in the previous case, if this forms a Pythagorean triple (2((p-1)(c+1)+1)+1), y, ed(p-1)+2((p-1)(c+1)+1)), then the greatest common divisor, k, is even and there exist integers m > n such that $2((p-1)(c+1)+1) = k(m^2 - n^2)$ and $k(m^2 + n^2) = ed(p-1) + 2((p-1)(c+1)+1)$. Let D = 2((p-1)(c+1)+1). If $k(m^2 - n^2) = D$, then $k(m^2 + n^2) = 2kn^2 + D$. This is an increasing function of n and so is largest when n is largest subject to the constraint m > n, i.e., when m = n+1 in which case n = ((D/k)-1)/2 and m = ((D/k)+1)/2. For these values $k(m^2+n^2) = (D^2/2k) + (k/2)$ which is largest if k = 2 (since k is even). Combining this with our second equation we have the inequality $D^2/4 + 1 \ge D + ed(p-1)$ or

$$(p-1)^2 (c+1)^2 - 1 \geq (p-1) \operatorname{lcm}(d, p-1) \\ = (p-1) p^c \operatorname{lcm}(\ell, p-1) \\ \geq (p-1)^2 p^c.$$

This implies $(c+1)^2 \ge p^c$ which can occur only if p = 3 and c = 1 or c = 2. In both of these cases no pair m, n exists.

If p = 2 and d is odd, then the discriminant is $d^2 + 8d = (d + 4)^2 - 4^2$. In this case in order for (4, y, d + 4) to be a Pythagorean triple there must exist integers k and m > n such that 4 = 2kmn and $k(m^2 + n^2) = 4 + d$. Since the first equation implies m = 2 and k = n = 1 the only possible value of d is d = 1.

If p = 2 and $d = 2^{c}\ell$, then the discriminant is $d^{2}+4d(c+3) = (d+2(c+3))^{2}-4(c+3)^{2}$ and so we must consider possible Pythagorean triples (2(c+3), y, 2(c+3)+d). Since d is even the greatest common divisor, k, must be even also and either $\nu_{2}(2(c+3)+d) < \nu_{2}(2(c+3))$ or $\nu_{2}(2(c+3)+d) = \nu_{2}(2(c+3))$. In the first case there exist integers m > n such that c+3 = kmn with $k(m^{2}+n^{2}) = d+2(c+3) = 2^{c}\ell+2(c+3)$. The quantity $k(m^{2}+n^{2})$ is subject to the constraints c+3 = kmn, m > n and k even and so is largest if n = 1, k = 2 and m = (c+3)/2. We thus have $2(((c+3)/2)^{2}+1) \geq 2^{c}\ell+2(c+3)$, which implies $(c+1)^{2} \geq 2^{c+1}$ and so $c \leq 3$. The only value of c in this range for which there is a solution is c = 1 with k = 2, $\ell = 1$, m = 2 and n = 1. In the second case there must exist integers m > n such that $2(c+3) = k(m^{2}-n^{2})$ and $k(m^{2}+n^{2}) = d+2(c+3) = 2^{c}\ell+2(c+3)$. As in the case p > 2, above, the first of these equations implies that

$$k(m^2 + n^2) \le k((\frac{2(c+3)/k - 1}{2})^2 + (\frac{2(c+3)/k + 1}{2})^2).$$

The right-hand side is largest if k = 2 and simplifies to give

$$k(m^2 + n^2) \le (c+3)^2 + 1.$$

Combining this with the second equation gives the inequality

$$(c+3)^2 + 1 \ge 2(c+3) + d$$

or

$$(c+2)^2 \ge d = 2^c \ell$$

which occurs only if $c \le 6$ and no value for c in this range has $\nu_2(2(c+3)+d) = \nu_2(2(c+3))$.

Proposition 12. If d divides p - 1, then the characteristic sequence $\{\alpha(n) : n = 0, 1, 2, ...\}$ of the set $\{n^d : n = 0, 1, 2, ...\}$ is given by $\alpha(n) = \nu_p((dn)!)$.

Proof. Let e = (p-1)/d and let $\beta(n) = \nu_p((dn)!)$. Also let ϕ and $\{\psi_s : s = 1, 2, \ldots, e\}$ be the following maps from $\mathbb{Z}^{\geq 0}$ to $\mathbb{Z}^{\geq 0}$:

$$\phi(n) = dn$$

$$\psi_s(n) = en + \lfloor n/d \rfloor + s$$

It is straightforward to verify that these e + 1 maps define a shuffle, i.e., that each is strictly increasing and that any element of $\mathbb{Z}^{\geq 0}$ is in the image of exactly one of them. By Theorem 2 { $\alpha(n) : n = 0, 1, 2, ...$ } is the nondecreasing shuffle of the esequences { $\alpha_s(n) : n = 0, 1, 2, ...$ } with $\alpha_s(n) = n + \nu_p(n!)$ for s = 1, 2, ..., e and the sequence { $\alpha_0(n) : n = 0, 1, 2, ...$ } with $\alpha_0(n) = dn + \alpha(n)$. Thus it will suffice, by induction on *n*, to show that $\{\beta(n) : n = 0, 1, 2, ...\}$, which is nondecreasing, is the $(\phi, \psi_1, \ldots, \psi_s)$ -shuffle of $dn + \beta(n)$ and the sequences $\alpha_1, \ldots, \alpha_s$.

For the first of these let $\sum n_i p^i$ be the base p expansion of dn and note that the base p expansion of pdn will then be $\sum n_i p^{i+1}$. We thus have

$$\begin{aligned} \beta(\phi(n)) &= \beta(pn) \\ &= \nu_p(pdn!) \\ &= \frac{pdn - \sum n_i}{p - 1} \\ &= dn + \frac{dn - \sum n_i}{p - 1} \\ &= dn + \beta(n). \end{aligned}$$

For the others, note that for $0 \le r < d$ we have $\psi_s(dn+r) = pn + er + s$ and so, that

$$\beta(\psi_s(dn+r)) = \beta(pn+er+s) = \nu_p((pdn+(p-1)r+ds)!)$$

while

$$\alpha_s(dn + r) = \nu_p((p(dn + r))!) = \nu_p((pdn + pr)!).$$

Since (p-1)r + ds - pr = ds - r and $1 \le ds - r < p$ these two *p*-adic norms are equal, i.e., $\beta(\psi_s(dn+r)) = \alpha_s(dn+r)$.

References

- Bhargava, M., P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127.
- [2] Bhargava, M., The factorial function and generalizations, Am. Math. Monthly 107 (2000), 783–799.
- [3] Cahen, P.-J. and Chabert, J.-L., Integer Valued Polynomials, Amer. Math. Soc., Providence, R.I., 1997.
- [4] Chabert, J-L, Fan, A-H, and Fares, Y, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems 425 (2009), 751–777.
- [5] Fares, Y and Johnson, K., Characteristic sequences of quadratic sets, submitted.
- [6] Johnson, K., P-orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics 30 (2009), 233–253.
- [7] Johnson, K., Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), 2933–2942.