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Abstract
If E is a subset of Z then the n-th characteristic ideal of the algebra of rational
polynomials taking integer values on E, Int(E, Z), is the fractional ideal consisting
of 0 and the leading coefficients of elements of Int(E, Z) of degree no more than n.
For p a prime the characteristic sequence of Int(E, Z) is the sequence of negatives
of the p-adic values of these ideals. We give recursive formulas for these sequences
for the sets {nd : n = 0, 1, 2, . . . } by describing how to recursively p-order them in
the sense of Bhargava. We describe the asymptotic behavior of these sequences and
identify primes, p, and exponents, d, for which there is a formula in closed form for
the terms.

1. Introduction

For any subset E of Z the ring of integer-valued polynomials on E is defined to be

Int(E, Z) = {f(x) ∈ Q[x] : f(E) ⊆ Z}.

Associated to this ring is its sequence of characteristic ideals, {In : n = 0, 1, 2, . . . },
with In the fractional ideal formed by 0 and the leading coefficients of the elements
of Int(E, Z) of degree no more than n. For p a prime the sequence of negatives
of the p-adic valuations of the ideals In, {α(n) : n = 0, 1, 2, . . . }, is called the
characteristic sequence of E with respect to p. In this paper we will give a recursive
method for computing these sequences, and so the characteristic ideals, of the power
sets E = {nd : n = 0, 1, 2, . . . } for any prime p and any positive integer exponent d
and identify cases in which a nonrecursive formula exists.

Our results are based on the idea of a p-ordering of a subset E of Z as introduced
in [1], [2] and we will, in the course of establishing our results, also give recursive
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methods for constructing p-orderings of these sets. A p-ordering of E is a sequence
{an : n = 0, 1, 2, . . . } ⊆ E with the property that for each n the element an

minimizes the p-adic valuation νp(
∏n−1

i=0 (x − ai)) over x ∈ E. It is shown in [1],
[2] that the sequence {νp(

∏n−1
i=0 (an − ai)) : n = 0, 1, 2, . . . } coincides with the

characteristic sequence of E for the prime p. To state our main result we use the
following notation:

Definition 1. If E is a subset of Z, p a prime, and 0 ≤ s < p, let Es = {x ∈ E :
x ≡ s (mod p)}. Also, if {α(n) : n = 0, 1, 2, . . . } is the characteristic sequence of
E with respect to p, let {αs(n) : n = 0, 1, 2, . . . } denote the characteristic sequence
of Es.

Theorem 2. If d is a positive integer and E = {nd : n = 0, 1, 2, . . . }, then the
characteristic sequence {αs(n)} has the properties:

(a) α0(n) = dn + α(n).

(b) if s &= 0, and p ! d, then αs(n) = n + νp(n!).

(c) if p | d and d = pcd1 with p ! d1, then αs(n) = (c + 1)n + νp(n!) for p ≥ 3 and
αs(n) = (c + 2)n + ν2(n!) if p = 2.

(d) if s &= 0 and a is such that ad ≡ s (mod p), then the increasing order on
{(np + a)d : n = 0, 1, 2, . . . } is a p-ordering for Es.

(e) the map φ(nd) = (pn)d from E to E0 gives a one-to-one correspondences
between the p-orderings of these two sets.

Since, by Lemma 3.5 of [6], the characteristic sequence {α(n) : n = 0, 1, 2, . . . }
of E is the shuffle of the sequences {αs(n) : n = 0, 1, 2, . . . } for s = 0, 1, . . . , p − 1
into nondecreasing order, it follows that for each n the value of α(n) is equal to
αs(m) for some s and some m < n and so that parts (a), (b) and (c) of this theorem
determine α(n) for all n. Also, a p-ordering of E is given by combining p-orderings
of the Es’s using the same shuffle and so is determined as well by parts (d) and (e).

For example, for d = 3 and p = 2 the sequence {α(n) : n = 0, 1, 2, . . . } is the
nondecreasing shuffle of the sequence

{α1(n) : n = 0, 1, 2, . . . } = {n + ν2(n) : n = 0, 1, 2, . . . }
= {0, 1, 3, 4, 7, 8, 10, 11, 15, . . . }

with the sequence {α0(n) : n = 0, 1, 2, . . . } which satisfies the equation α0(n) =
3n + α(n). Thus

{α0(n) : n = 0, 1, 2, . . . } = {0, 3, 7, 12, 15, 19, 25, 28, 32, . . . }

and
{α(n) : n = 0, 1, 2, . . . } = {0, 0, 1, 3, 3, 4, 7, 7, 8, . . . }.
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The corresponding 2-ordering is {0, 1, 27, 8, 125, 343, 216, 729, 1331, . . . }. Similar
calculations for the primes 3, 5, and 7 show that the sequence of inverses of char-
acteristic ideals of the set of cubes is

{(1), (1), (2), (72), (72), (2160), (51840), (362880), (6531840), . . . }.

Combining the results of Theorem 2 with those of [7] allows us to determine the
asymptotic behavior of the characteristic sequences, i.e., the values of the limits
limn→∞ α(n)/n.

Theorem 3. If E = {nd : n = 0, 1, 2, . . . }, the sets Es are nonempty for e + 1
distinct residue classes modulo p and L = limn→∞ α(n)/n, then

(a) if p ! d, then L satisfies the equation

e(p− 1)L2 + ed(p− 1)L− pd = 0.

(b) if p | d and d = pcd1 with p ! d1, then for p ≥ 3 the limit L satisfies the
equation

e(p− 1)L2 + ed(p− 1)L− d((p− 1)(c + 1) + 1) = 0,

while for p = 2 it satisfies

L2 + dL− d(c + 3) = 0.

The question of whether or not these limits are rational can be settled by exam-
ining the discriminants of the quadratic equations above.

Theorem 4. If S = {nd : n = 0, 1, 2, . . . } and {α(n) : n = 0, 1, 2, . . . } is the
characteristic sequence of S for the prime p, then the limit L = limn→∞ α(n)/n is
rational if and only if d | p− 1 or d = p = 2.

In those cases where this limit is rational there is a closed form formula for the
characteristic sequence:

Theorem 5. If d | p− 1 and {α(n) : n = 0, 1, 2, . . . } is the characteristic sequence
of the set S = {nd : n = 0, 1, 2, . . . } then α(n) = νp((dn)!).

2. Characteristic Sequences and p-Orderings

The assertions in Theorem 2, parts (a) and (e), concerning E0 and α0(n) are obvious.
We will, therefore, assume from this point on that s &= 0 and provide a proof of the
other assertions in the theorem. For this we need some preliminary results about
the sets Es.
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Lemma 6. The congruence xd ≡ 1 (mod p) has gcd(d, p − 1) distinct solutions
modulo p.

Proof. Let t = gcd(d, p − 1). The multiplicative group (Z/(p))∗ is cyclic of order
p− 1 and so has a unique subgroup of order t consisting of those elements of Z/(p)
whose multiplicative order divides t. Since t is a divisor of d, all elements of this
subgroup are solutions of the given congruence. On the other hand, if x ∈ Z/(p) is
a solution of this congruence then its order must be a divisor of d and also of the
order of (Z/(p))∗, i.e., of t.

Let r be a generator of the cyclic subgroup of (Z/(p))∗ consisting of the solutions
of xd ≡ 1 (mod p) and, for 0 ≤ i ≤ gcd(d, p− 1)− 1, let ri be the representative of
ri (mod p) which is between 1 and p− 1 (so that in particular r0 = 1 and r1 = r).

Corollary 7. If ad ≡ s (mod p), then the set Es is the disjoint union of the sets
Es,i = {(np + ria)d : n = 0, 1, 2, . . . } for 0 ≤ i < gcd(d, p− 1) together with a finite
(possibly empty) set. In particular, the disjoint union of the sets Es,i is p-adicly
dense in Es.

Lemma 8. If ad ≡ s (mod p) and Es and the sets Es,i are as above, then Es,0 is
p-adicly dense in Es.

Proof. In order to prove that Es,0 is p-adicly dense in Es, we need only prove that for
every k ∈ N, every i such that 0 ≤ i ≤ gcd(d, p−1)−1 and every (yp+ria)d ∈ Es,i,
there exists (xp + a)d ∈ Es,0 such that νp((yp + ria)d − (xp + a)d) ≥ k.

Let x ∈ Z be a solution of the congruence rpk

i x ≡ y (mod pk−1). Such a solution
exists because ri is not divisible by p and so rpk

i is a unit modulo pk−1. For such
an x we have

p(y − rpk

i x) ≡ 0 ≡ a(rpk

i − ri) (mod pk)

which is equivalent to

(py + ria) ≡ rpk

i (px + a) (mod pk)

and so we have, taking d-th powers,

(py + ria)d ≡ rdpk

i (px + a)d ≡ (px + a)d (mod pk)

as required.

Since Es,0 is p-adicly dense in Es, a p-ordering of Es,0 will be one of Es also and
these sets will have the same characteristic sequences. To calculate this character-
istic sequence some preliminary results concerning p-adic values of d-th powers are
needed.
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Let α ∈ Z(p) \ {1} be such that νp(α − 1) ≥ 1 and let d ≥ 1. We then have
αd − 1 = (α − 1)(

∑d−1
0 (αk − 1) + d) and so, in particular, if p does not divide d,

then νp(αd − 1) = νp(α− 1). If p does divide d, then we have the following:

Lemma 9. [([4], Prop 8)] If α ∈ Z(p) \ {1} is such that νp(α − 1) ≥ 1, then for
every d ∈ N such that p divides d we have

νp(αd − 1) =
{

νp(α− 1) + νp(d) if p ≥ 3 or p = 2 and νp(α− 1) ≥ 2
νp(α + 1) + νp(d) if p = 2 and νp(α− 1) = 1

Lemma 10. If ad ≡ s (mod p) and (xp + a)d and (yp + a)d are elements of Es,0,
then:

i. if p ≥ 3 then,

νp

(
(xp + a)d − (yp + a)d

)
= 1 + νp(x− y) + νp(d).

ii. if p = 2 and νp(x− y) ≥ 1, then

νp

(
(xp + a)d − (yp + a)d

)
= 1 + νp(x− y) + νp(d).

iii. if p = 2 and νp(x− y) = 0, then

νp

(
(xp + a)d − (yp + a)d

)
= 1 + νp(x + y + a) + νp(d).

Proof. We have:

νp

(
(px + a)d − (py + a)d

)
= νp

((
px + a

py + a

)d

− 1

)
.

Since νp

((
px + a

py + a

)
− 1

)
= νp

(
p(x− y)
py + a

)
≥ 1, using Lemma 9 we have:

i. if p ≥ 3 or νp(x− y) ≥ 1, then

νp

(
(px + a)d − (py + a)d

)
= νp

(
p(x− y)
py + a

)
+ νp(d)

= νp

((
px + a

py + a

)
− 1

)
+ νp(d)

= 1 + νp(x− y) + νp(d).

ii. if p = 2 and νp(x− y) ≥ 1, then

νp

(
(px + a)d − (py + a)d

)
= 1 + νp(x− y) + νp(d).
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iii. if p = 2 and νp(x− y) = 0, then

νp

(
(px + a)d − (py + a)d

)
= νp

((
px + a

py + a

)
+ 1

)
+ νp(d)

= 1 + νp(x + y + a) + νp(d).

In fact, if p = 2 and d = 2m, then

νp

(
(px + a)d − (py + a)d

)
=νp

((
px + a

py + a

)2m

− 1

)

=νp

((
px + a

py + a
+ 1

)(
px + a

py + a
− 1

))
+ νp(m)

=νp

(
p2(x + y + a)(x− y)

)
+ νp(m)

=1 + νp

(
(x2 + ax)− (y2 + ay)

)
+ νp(d).

We are now ready to prove Theorem 2.

Proof. Since, as previously noted, Es,0 is dense in Es these two sets have the same
characteristic sequence. For parts (b) and (d) we show by induction on n that the
sequence {((np+a)d) : n = 0, 1, 2, . . . } is a p-ordering for Es,0. Since p ! d it follows
from Lemma 10 that

n−1∑

i=0

νp

(
(xp + a)d − (ip + a)d

)
= n +

n−1∑

i=0

νp(x− i).

The term n in this sum is independent of x and the remaining sum is the same
as that occurring in showing that the usual increasing order is a p-ordering of the
integers. It is, therefore, minimized by taking x = n in which case the value of the
sum, which equals αs(n), is n + νp(n!) .

For part (c), if p ≥ 3 and p | d with d = pcd1 and p ! d1, then the same argument
shows that

n−1∑

i=0

νp

(
(xp + a)d − (ip + a)d

)
= n + nνp(d) +

n−1∑

i=0

νp(x− i)

is minimized by taking x = n which results in αs(n) = (c + 1)n + νp(n!).
For p = 2 and s = 1 we may take a = 1. The corresponding expression is

n−1∑

i=0

νp

(
(2x + 1)d − (2i + 1)d

)
= n + nν2(d) +

n−1∑

i=0

ν2

(
(x2 + x)− (i2 + i)

)

and, since the increasing ordering on {n2 + n | n ∈ N} is known to be a 2-ordering,
it follows that x = n minimizes the sum in this case also.
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3. Limits

By Proposition 7 of [7] the limit L = limn→∞ α(n)/n satisfies the equation

1
L

=
∑ 1

Ls

if Ls = limn→∞ αs(n)/n and the sum is taken over the residue classes for which
Es is infinite. Recall that if the expression of n in base p is n =

∑
nipi, then

νp(n!) = (n −
∑

ni)/(p − 1). It thus follows from part (b) of Theorem 2 that for
s &= 0 and p ! d

Ls = lim
n→∞

(n + νp(n!))/n = lim
n→∞

(n +
n−

∑
ni

p− 1
)

n
= p/(p− 1)

while for s = 0 part (a) implies

L0 = L + d.

We thus have that
1
L

=
1

d + L
+

∑ p− 1
p

in which the sum has e = (p − 1)/ gcd(d, p − 1) terms. Simplifying this equation
yields the quadratic

e(p− 1)L2 + ed(p− 1)L− pd = 0.

If d = pcd1 with c > 0, then for p ≥ 3 we have

Ls = lim
n→∞

((c + 1)n + νp(n!))/n = ((c + 1)(p− 1) + 1)/(p− 1)

and, for p = 2,
Ls = lim

n→∞
((c + 2)n + ν2(n!)) = c + 3.

This gives, for p ≥ 3, the equation
1
L

=
1

d + L
+

∑ p− 1
(c + 1)(p− 1) + 1

and, for p = 2,
1
L

=
1

d + L
+

∑ 1
c + 3

.

The corresponding quadratics are, for p ≥ 3,

e(p− 1)L2 + ed(p− 1)L− d((p− 1)(c + 1) + 1) = 0

and, for p = 2,
L2 + dL− d(c + 3) = 0.

The fact that these limits are roots of quadratic equations raises the natural
question of whether or not these limits are rational. The answer is as follows:
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Proposition 11. If {α(n) : n = 0, 1, 2, . . . } is the characteristic sequence for the
set {nd : n = 0, 1, 2, . . . } with respect to the prime p and L = limn→∞ α(n)/n, then
L ∈ Q if and only if d divides p− 1 or d = p = 2.

Proof. We consider separately the four cases p > 2 and p ! d, p > 2 and p | d, p = 2
and d odd, and p = 2 and d even. In each case we determine whether or not the
discriminant of the quadratic equation given above is a square.

If p > 2 does not divide d, then the discriminant in question is (ed(p − 1))2 +
4ed(p− 1)p = (ed(p− 1) + 2p)2 − 4p2. If this is a square, y2 say, then (2p, y, ed(p−
1)+2p) is a Pythagorean triple. A general Pythagorean triple with common divisor
k is of the form (kx, ky, kz) with gcd(x, y, z) = 1 and exactly one of x or y even.
By a theorem of Euler if y is even, then there exist m,n such that x = m2 − n2,
y = 2mn and z = m2 + n2. In our case k = 2, since p is an odd prime, and so we
must have p = m2 − n2 = (m − n)(m + n). Since p is prime the only solution is
m = (p + 1)/2 and n = (p− 1)/2. Since 2(m2 + n2) = ed(p− 1) + 2p we have

(p + 1)2/2 + (p− 1)2/2 = p2 + 1 = ed(p− 1) + 2p

and so p− 1 = ed. Since ed = d(p− 1)/ gcd(d, p− 1) = lcm(d, p− 1) this can occur
if and only if d is a divisor of p− 1.

If p > 2 divides d with d = pc$, then the discriminant is (ed(p− 1))2 + 4de(p−
1)((p− 1)(c + 1) + 1) = (ed(p− 1) + 2((p− 1)(c + 1) + 1))2 − 4((p− 1)(c + 1) + 1)2.
As in the previous case, if this forms a Pythagorean triple (2((p − 1)(c + 1) +
1), y, ed(p− 1)+2((p− 1)(c+1)+1)), then the greatest common divisor, k, is even
and there exist integers m > n such that 2((p − 1)(c + 1) + 1) = k(m2 − n2) and
k(m2 + n2) = ed(p − 1) + 2((p − 1)(c + 1) + 1). Let D = 2((p − 1)(c + 1) + 1). If
k(m2 − n2) = D, then k(m2 + n2) = 2kn2 + D. This is an increasing function of
n and so is largest when n is largest subject to the constraint m > n, i.e., when
m = n+1 in which case n = ((D/k)−1)/2 and m = ((D/k)+1)/2. For these values
k(m2 +n2) = (D2/2k)+(k/2) which is largest if k = 2 (since k is even). Combining
this with our second equation we have the inequality D2/4 + 1 ≥ D + ed(p− 1) or

(p− 1)2(c + 1)2 − 1 ≥ (p− 1)lcm(d, p− 1)
= (p− 1)pclcm($, p− 1)
≥ (p− 1)2pc.

This implies (c + 1)2 ≥ pc which can occur only if p = 3 and c = 1 or c = 2. In
both of these cases no pair m,n exists.

If p = 2 and d is odd, then the discriminant is d2 + 8d = (d + 4)2 − 42. In this
case in order for (4, y, d + 4) to be a Pythagorean triple there must exist integers k
and m > n such that 4 = 2kmn and k(m2 + n2) = 4 + d. Since the first equation
implies m = 2 and k = n = 1 the only possible value of d is d = 1.
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If p = 2 and d = 2c$, then the discriminant is d2+4d(c+3) = (d+2(c+3))2−4(c+
3)2 and so we must consider possible Pythagorean triples (2(c + 3), y, 2(c + 3) + d).
Since d is even the greatest common divisor, k, must be even also and either ν2(2(c+
3)+ d) < ν2(2(c+3)) or ν2(2(c+3)+ d) = ν2(2(c+3)). In the first case there exist
integers m > n such that c+3 = kmn with k(m2+n2) = d+2(c+3) = 2c$+2(c+3).
The quantity k(m2 + n2) is subject to the constraints c + 3 = kmn, m > n and
k even and so is largest if n = 1, k = 2 and m = (c + 3)/2. We thus have
2(((c + 3)/2)2 + 1) ≥ 2c$ + 2(c + 3), which implies (c + 1)2 ≥ 2c+1 and so c ≤ 3.
The only value of c in this range for which there is a solution is c = 1 with k = 2,
$ = 1, m = 2 and n = 1. In the second case there must exist integers m > n such
that 2(c + 3) = k(m2 − n2) and k(m2 + n2) = d + 2(c + 3) = 2c$ + 2(c + 3). As in
the case p > 2, above, the first of these equations implies that

k(m2 + n2) ≤ k((
2(c + 3)/k − 1

2
)2 + (

2(c + 3)/k + 1
2

)2).

The right-hand side is largest if k = 2 and simplifies to give

k(m2 + n2) ≤ (c + 3)2 + 1.

Combining this with the second equation gives the inequality

(c + 3)2 + 1 ≥ 2(c + 3) + d

or
(c + 2)2 ≥ d = 2c$

which occurs only if c ≤ 6 and no value for c in this range has ν2(2(c + 3) + d) =
ν2(2(c + 3)).

Proposition 12. If d divides p − 1, then the characteristic sequence {α(n) : n =
0, 1, 2, . . . } of the set {nd : n = 0, 1, 2, . . . } is given by α(n) = νp((dn)!).

Proof. Let e = (p − 1)/d and let β(n) = νp((dn)!). Also let φ and {ψs : s =
1, 2, . . . , e} be the following maps from Z≥0 to Z≥0:

φ(n) = dn

ψs(n) = en + (n/d)+ s.

It is straightforward to verify that these e + 1 maps define a shuffle, i.e., that each
is strictly increasing and that any element of Z≥0 is in the image of exactly one of
them. By Theorem 2 {α(n) : n = 0, 1, 2, . . . } is the nondecreasing shuffle of the e
sequences {αs(n) : n = 0, 1, 2, . . . } with αs(n) = n + νp(n!) for s = 1, 2, . . . , e and
the sequence {α0(n) : n = 0, 1, 2, . . . } with α0(n) = dn + α(n). Thus it will suffice,
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by induction on n, to show that {β(n) : n = 0, 1, 2, . . . }, which is nondecreasing, is
the (φ,ψ1, . . . ,ψs)-shuffle of dn + β(n) and the sequences α1, . . . ,αs.

For the first of these let
∑

nipi be the base p expansion of dn and note that the
base p expansion of pdn will then be

∑
nipi+1. We thus have

β(φ(n)) = β(pn)
= νp(pdn!)

=
pdn−

∑
ni

p− 1

= dn +
dn−

∑
ni

p− 1
= dn + β(n).

For the others, note that for 0 ≤ r < d we have ψs(dn + r) = pn + er + s and so,
that

β(ψs(dn + r)) = β(pn + er + s) = νp((pdn + (p− 1)r + ds)!)

while
αs(dn + r) = νp((p(dn + r))!) = νp((pdn + pr)!).

Since (p − 1)r + ds − pr = ds − r and 1 ≤ ds − r < p these two p-adic norms are
equal, i.e., β(ψs(dn + r)) = αs(dn + r).
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