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Abstract
We demonstrate, by considering each base in the range 2 through 9, that no odd
repdigit with a base in that range is a perfect number.

1. Introduction

Let g ≥ 2. We say a natural number n is a repdigit to base g if there is an integer
a with 1 ≤ a < g and m ≥ 0 such that n = a + ag + ag2 + · · · agm. If a = 1 then
n is called a repunit. If σ(n) is the usual sum of divisors function then n is called
perfect if σ(n) = 2n.

Interest in the relationships between repdigits and perfect numbers was initiated
by Pollack [12] who showed that for a given base g there are only a finite number
of perfect repdigits to that base, and that the set of all such numbers is effectively
computable. He also showed that in base 10 the only perfect repdigit is n = 6.

Base 10 has been of special interest since it has been shown by Oblàth [11],
Bugeaud and Mignotte [3] that the only perfect powers which are also repdigits are
1,4,8 and 9.

Work in showing infinite classes of natural numbers which are not perfect or mul-
tiperfect has been developed by Luca, who has shown that no Fibonacci number is
perfect [6], that no element of a Lucas sequence with odd parameters is multiper-
fect [7] and, with Broughan, González, Lewis, Huguet and Togbé, that no Fibonacci
number is multiperfect [2].

In this paper we continue the work of Pollack, showing in Theorem 1 that there
are no odd perfect repdigits in bases 2 through 9. This is done by using a mixture
of techniques, including Pollack’s original method, a method developed by Pollack
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and Luca, Thue equations with no solutions, properties of rings of integers of the
quadratic fields Q(

√
5), Q(

√
6), and Q(

√
7), quadratic reciprocity, linear forms in

logarithms (LFL) and the known comprehensive sets of solutions for Pellian, Nagel-
Ljunggren and Catalan equations.

The following notations are used. If n is a natural number then P (n) is the
maximum prime divisor of n, vp(n) is the maximum power of the prime p which
divides n and (a, b) is the greatest common divisor (GCD) of the integers a and b.
If g ≥ 2 and n ∈ N let Un := (gn − 1)/(g − 1) and Vn := gn + 1. The expression s2

in equations represents an integer which is a square or possibly 1, and which can
take different values, even in the same context.

Theorem 1. Let g satisfying 2 ≤ g ≤ 10 be the base, a with 1 ≤ a < g a digit and
aUn a repdigit to base g which is odd. Then aUn is not a perfect number.

We also settle the issue of perfect even repunits for all g in terms of Mersenne
primes, and describe the perfect even repdigits up to base g = 100.

2. Preliminary Results

Lemma 2. Let n be a composite natural number, x an integer with x ≥ 2 and
p := P (n). Then

(a) If p > 2 is odd, p2 | n and p | x− 1 then

g :=
(

xn − 1
xp − 1

,
xp − 1
x− 1

)
= p.

(b) If p = 2 and 4 | n = 2m then
(

x2m − 1
x2 − 1

,
x2 − 1
x− 1

)
= 2min(m−1, v2(x+1)).

In all other cases the GCD is 1.

Proof. (a) Let p be odd with p | x− 1 and p2 | n. Let k = n/p. Then

xn − 1
xp − 1

= (xp)k−1 + · · · + xp + 1 ≡ k (mod p) ≡ 0 (mod p).

Thus p | (xn − 1)/(xp − 1). Also

xp − 1
x− 1

= xp−1 + · · · + x + 1 ≡ 0 (mod p),

and therefore
p |

(
xn − 1
xp − 1

,
xp − 1
x− 1

)
.
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By [13, P1.2(iv)], if q is an odd prime and q | x− 1 then

vq

(
xn − 1
x− 1

)
= vq(n).

Thus, letting q = n = p we have p2 ! (xp − 1)/(x − 1); and if q '= p then vq((xp −
1)/(x − 1)) = 0. Hence, the only positive divisors of the GCD other than p are
powers of 2. But (xp − 1)/(x− 1) is odd. Therefore, in this case,

(
xn − 1
xp − 1

,
xp − 1
x− 1

)
= p.

(b) Now let n = 2m with m ≥ 2. We can write

(
x2m − 1
x2 − 1

,
x2 − 1
x− 1

)
=

(
m∏

i=2

Φ2i(x),Φ21(x)

)

and use the fact that [13, P1.9], with i ≥ 2, we have (Φ2i(x),Φ2(x)) = 2 if x is odd
and 1 if x is even, and the given formula follows immediately.

(c) Let p ! (x− 1) and be odd and suppose that a prime q | g. Since p is odd, so
is q. Let e be the order of x modulo q. Because q | xp − 1 we must have e | p so
that e = 1 or e = p. In the first case q | (x− 1) and we can apply [13, P1.2(iv)] to
get

1 ≤ vq

(
xp − 1
x− 1

)
= vq(p) ≤ 1.

Hence p = q | (x − 1), which is false, since we are assuming p '| x − 1. Therefore
e = p so p | q − 1 and hence p < q. But q is odd and q | (xn − 1)/(xp − 1) and
q | xp − 1 so q | n, a contradiction since p = P (n). Therefore the GCD g = 1.

(d) Let p be odd, p | (x− 1) and p2 ! n. If an odd prime q divides the GCD, and
e is the order of x modulo q, then since xp ≡ 1 (mod q) we have e = 1 or e = p.
But the former is equivalent to q | (x − 1) so, as above, vq(p) = 1 so p = q and
thus p | (xn − 1)/(xp − 1). But, as in (a), this ratio is equivalent to n/p modulo p
which is non zero. In the former case where e = p we have p | q − 1 so p < q. But
1 ≤ vq((xn − 1)/(xp − 1)) = vq(n/p) implies q | n, contradicting p = P (n). Hence
in this case the GCD g is 1. !

We note that Un ≡ 1 (mod 4) in exactly the following distinct situations.
(1) g ≡ 0 (mod 4),
(2) g ≡ 1 (mod 4) and n ≡ 1 (mod 4), or
(3) g ≡ 3 (mod 4) and n is odd.

We note also that Un ≡ 3 (mod 4) in exactly the following distinct situations.
(4) g ≡ 1 (mod 4) and n '≡ 1 (mod 4),
(5) g ≡ 2 (mod 4), or
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(6) g ≡ 3 (mod 4) and n is even.

We will use these properties without comment below.

Lemma 3. Let the base be g ≥ 2 and suppose the prime p ≥ max{7, g}. Then the
repunit Up is not perfect.

Proof. We follow the proof of [12, Lemma 10]. Then

σ(Up)
Up

≤ exp
(

1
p

)
exp

(
log (2p log p)

p

)

and this right-hand side is less than 2 when p ≥ 7. !

We need the following classical result.

Lemma 4. (Ljunggren [5]) The only integer solutions (x, n, y) with |x| > 1, n >
2, y > 0, to the equation (xn − 1)/(x− 1) = y2 are (7, 4, 20) and (3, 5, 11), i.e.,

74 − 1
7− 1

= 202 and
35 − 1
3− 1

= 112.

For bases 5 and 9 we also need a result of Laurent, Mignotte and Nesterenko
[4], which we refer to as the method of linear forms in logarithms. To describe
this theorem we need the notion of “logarithmic height” for an algebraic number η,
namely if f(x) = a0

∏d
i=1(x − η(i)) is the factored form of its minimal polynomial

over Z, then its height is replaced by

h(η) :=
1
d

(
log |a0| +

d∑

i=1

log
(
max(|η(i)|, 1)

))
.

Theorem 5. (Corollary 2, Laurent et al. [4]) Let b1, b2 be positive integers and
η1 , η2 algebraic numbers which are real, positive and multiplicatively independent.
Let

Λ = b1 log η1 − b2 log η2

be non-zero. Let D = [Q(η1, η2) : Q]. Let real numbers Aj satisfy, for j = 1, 2

Aj ≥ max(Dh(ηj), | log ηj |, 1).

and define b′ := A1/b2 + A2/b1. Then

log |Λ| ≥ −24.34D2

(
max

{
log b′ + 0.14,

21
D

,
1
2

})2

A1A2.
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3. Perfect Even Repdigits

Lemma 6. A repunit Un to base g > 1 is even and perfect if and only if n = 2 and
g = 2p−1(2p − 1)− 1 where p and 2p − 1 are prime.

Proof. Suppose that Un is even and perfect. Since every repunit in base 2 is odd,
we have g > 2. We are able to write Un = 2p−1(2p − 1) where p is prime and and
2p − 1 is prime. Since Un is even then Un = 1 + g + · · ·+ gn−1 implies g is odd and
n is even, say n = 2m. Then, if Vm := 1+gm, we have VmUm = Un = 2p−1(2p−1).

If m is even then Vm, as the sum of two squares, has a prime divisor q ≡ 1
(mod 4), which is a contradiction since necessarily q = 2p − 1 ≡ 3 (mod 4). Hence
m is odd and so Um is also odd since g is odd. Since 2p − 1 is prime we must
have Um = 2p − 1 so Vm = 2p−1. But we can write Vm = gm − (−1)m = (g +
1)(gm−1 − gm−2 + gm−3 − · · · + 1) and the second factor is odd so must be 1.
Therefore Vm = g + 1 which implies m = 1 and thus n = 2. But this means
Un = 1 + g = 2p−1(2p − 1). !

Example 7. By exhaustive search using Lemma 7, Pollack [12], we found that for
g ∈ {2, 3, 4} there are no perfect even repdigits to base g. For g = 5, 6 is the only
repdigit and for g = 6, 28 is the only even repdigit. For g ≥ 7 each even perfect
number n with n < g is an even repdigit. In addition, 28 is an even repdigit to base
13. Up to base g = 100 the maximum number of even perfect repdigits is 3, namely
6, 28 and 496, and these occur when g = 30 and when g = 61.

4. Perfect Odd Repdigits

Lemma 8. To base 2 there are no odd perfect repdigits.

Proof. If Un is an odd perfect repdigit, using Euler’s structure theorem for odd
perfect numbers we can write 2n−1 = rs2 for some prime r ≡ 1 (mod 4) and n ≥ 2
so 3 ≡ 1 (mod 4). Thus there are none. !

Lemma 9. (Luca and Pollack [9]) Let Un = Un(g) = (gn−1)/(g−1) where n is an
odd positive integer and g ≥ 2 are fixed. If the prime decomposition of n is written
n = p1 · · · pk with p1 ≤ p2 ≤ · · · ≤ pk and we define the partial products n1 = n,
ni+1 = ni/pi 1 ≤ i ≤ k, with nk+1 = 1, then in the factorization

Un =
Un1

Un2

· Un2

Un3

· · · Unk

Unk+1

,

for all 1 ≤ i < j ≤ k if a prime p divides the GCD of the ith and jth terms then

p |
(

Uni

Uni+1

,
Unj

Unj+1

)
,

then p | g − 1 and p = pi = pi+1 = · · · = pj.
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Lemma 10. To base 3 there are no odd perfect repdigits.

Proof. We need only consider a = 1. If Un is an odd perfect repunit to base 3 we
have 3n − 1 = 2rs2 where rs2 ≡ 1 (mod 4) so n is odd.

Let p be an odd prime and define Up := (3p − 1)/(3− 1). Then, by Lemma 3, if
Up is perfect we can assume p ≤ 13. It is easy to show directly that none of these
repunits is perfect.

Now let n be composite and suppose that Un is perfect. Let p = P (n) and write

Un =
(

3n − 1
3p − 1

)(
3p − 1
3− 1

)
= rs2

where r is an odd prime. Since p is odd, cases (a) and (b) of Lemma 2 do not apply
so the GCD (

3n − 1
3p − 1

,
3p − 1
3− 1

)
= 1.

Therefore (3n − 1)/(3p − 1) = s2 or (3p − 1)/2 = s2, where each of these squares is
odd.

If (3n − 1)/(3p − 1) = s2 then by Lemma 4 (in Pollack [12]), since n is odd,
Un = s2 and Up = s2, the former by Lemma 4 in this paper implying n = 5, which
is not possible since n is composite.

Finally we consider 3p − 1 = 2s2 where p is an odd prime. By Lemma 4 in this
paper we must have p = P (n) = 5 so there exists non-negative integers a, b with
n = 3a5b. If 3 | n then 13 = U3 | Un so 13‖Un or 132 | Un. But the order of 3
modulo 132 is 39 so 13 | n which is false. Hence 13‖Un so, since σ(Un) = 2Un, 7 | Un

and therefore 6, the order of 3 modulo 7, divides n which again is false. Therefore
3 ! n.

So we can let n = 5b and assume, after a simple numerical check, that b ≥ 3.
Then Un is odd and let us assume Un is also perfect. Write

Un =
U5b

U5b−1
· U5b−1

U5b−2
· · · U52

U51
· U51

U50
.

By Lemma 9 the greatest common divisor of any two of the factors on the right-hand
side is supported by primes dividing g − 1 = 2. But each of the U5j is odd so each
of the greatest common divisors is 1 and the b factors are pairwise coprime. Since,
by Lemma 4 again, each of the factors on the right-hand side of this expression is
not a square, except the last which is U5 = 112, there must be at least b− 1 prime
factors of Un which appear to an odd power. Therefore ν2(σ(Un)) ≥ b − 1. But
then

ν2(σ(Un)) = ν2(2Un) = 1 ≥ b− 1 ≥ 2

is false. Hence Un is not perfect. !
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Lemma 11. To base 4 there are no odd perfect repdigits.

Proof. We need only consider a = 1, 3. First let a = 3 so aUn = rs2, where r is
an odd prime, implies 4n − 1 = rs2 so (2n − 1)(2n + 1) = rs2. Since the GCD
(2n − 1, 2n + 1) = 1 we must have 2n + 1 = s2 or 2n − 1 = s2. In the first case, for
some natural number x we have 2n = (x− 1)(x + 1) giving x = 3 and 23 + 1 = 32

as the only solution. But aUn = 63 is not perfect.
If 2n − 1 = s2 and n ≥ 2 then 3 ≡ 1 (mod 4), which is false. Thus n = 1 is the

only solution, but this gives the number aUn = 3, which is not perfect.
Now let a = 1, so that (2n − 1)(2n + 1) = 3rs2. If n is even, 3 | 2n − 1 so

(
2n − 1

3

)
(2n + 1) = rs2,

and therefore either 2n + 1 = s2 giving, as we saw before, 23 + 1 = 32 as the only
solution, or 2n − 1 = 3s2. In this latter case let n = 2m so (2m − 1)(2m + 1) = 3s2

giving 2m − 1 = s2 or 2m + 1 = s2. The latter implies n = 6 but then aUn = 1365
which is not perfect. If 2m − 1 = s2, n = 2, so we fail to obtain an odd perfect
number.

If, however, n is odd we have
(

2n + 1
3

)
(2n − 1) = rs2,

so either 2n−1 = s2 or 2n +1 = 3s2, but as we have seen the former requires n = 1
and the latter, taken modulo 4, also requires n = 1, so we fail once more. This
exhausts all possibilities. !

Lemma 12. The diophantine equation 5m + 1 = 6s2 has just one solution m =
1, s2 = 1.

Proof. First let 5m + 1 = 6s2 = 6x2 for some odd m > 1 and x ∈ N, with x > 1.
Then 5m = (

√
6x+1)(

√
6x−1). Now the class number h(Q(

√
6)) = 1 so the ring of

integers R := OQ(
√

6) has unique factorization, and since 6 '≡ 1 (mod 4), its integers
have the form u + v

√
6, u, v ∈ Z. The fundamental unit is ε = 5 + 2

√
6.

Now in R we factor 5 = (
√

6 + 1)(
√

6− 1) into primes, giving

(
√

6 + 1)m(
√

6− 1)m = (
√

6x + 1)(
√

6x− 1).

Note that the GCD of the two factors on the right is 1, since necessarily x is odd,
so therefore

√
6x + 1 = ε±l(

√
6 + 1)m,

√
6x− 1 = ε∓l(

√
6− 1), or

√
6x + 1 = ε±l(

√
6− 1)m,

√
6x− 1 = ε∓l(

√
6 + 1).
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If l = 0 then subtracting each pair of equations clearly leads to m = 1 as the only
solution. Again subtracting, the case

√
6x+1 = εl(

√
6+1)m,

√
6x−1 = ε−l(

√
6−1)

with l > 0 has no solution since 2 < 5 · (
√

6 + 1)m − (
√

6 − 1)m for all m ≥ 1. In
this manner we are left with the only possible situation, with l > 0,

2 = (5− 2
√

6)l(
√

6 + 1)m − (5 + 2
√

6)l(
√

6− 1)m (1)

and
(5− 2

√
6)l(

√
6 + 1)m = 1 +

√
6x = 1 +

√
1 + 5m. (2)

Next we derive an inequality relating l and m. Considering the right-hand side
of Equation (2) we get (5− 2

√
6)l(

√
6 + 1)m > 5m

2 so therefore

m log

(√
6 + 1√

5

)
> l log(5 + 2

√
6).

Also (
√

6 + 1)m < 2 · 5m
2 (5 + 2

√
6)l and therefore

m log

(√
6 + 1√

5

)
< log 2 + l log(5 + 2

√
6).

These inequalities imply 0.189m− 0.303 < l < 0.189m.
Now let Λ := m log

(√
6+1√
5

)
− l log(5 +

√
6). We derive the bounds, valid for all

m ≥ 1,
1

4 · 5m
< |Λ| <

2
5m

2
. (3)

By Equation (2) we have log |Λ| = log((1 +
√

1 + 5m)/5m/2) and the inequality
follows using the relation x/2 < log(1 + x) < x valid for 0 < x < 1.

Now we apply Theorem 5 to Equation (2). Let b1 = m, b2 = l, η1 = (
√

6+1)/
√

5
and η2 = 5 + 2

√
6. Then the minimal polynomial for η1 is 5x4 − 14x2 + 5 and the

degree, D, of the number field is 4. We calculate the lower bound log |Λ| ≥ −15087.
Using the right-hand side of inequality (3) gives

−15087 < log |Λ| < log 2− m

2
log 5 =⇒ m < 18750.

Finally we tested m in the range 2 ≤ m ≤ 18749 numerically. To do this we
solved Equation (2) numerically for each value of m in the given range for l to
twenty decimal places and checked to see whether l was within 1/1010 of an integer,
and found no such integer l. This completes the proof. !

Lemma 13. To base 5 there are no odd perfect repdigits.
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Proof. First consider a = 1 and suppose Un = rs2 for an odd prime r ≡ 1 (mod 4).
By the note above we can assume n is odd. If n is prime then, by Lemma 3, Un is
not odd and perfect for n ≥ 7. Since U2 = 6 is not odd and U5 = 31 and U7 = 19531
not perfect, we can take n to be odd and composite.

Let p = P (n) so p ≥ 3. Then using Pollack’s method we write

5n − 1
5p − 1

· 5p − 1
5− 1

= rs2

and note that, by Lemma 2,
(

5n − 1
5p − 1

,
5p − 1
5− 1

)
= 1.

Therefore
5n − 1
5p − 1

= s2 or
5p − 1
5− 1

= s2,

but both of these are impossible by Lemma 4.
Now let a = 3 so we can assume 3Un = rs2. Since the prime r ≡ 1 (mod 4) we

must have 3 ! r so 3 | 5n − 1, and thus n = 2m is even. Writing

3
(

5m − 1
2

)(
5m + 1

2

)
= rs2

we get 5m+1 = 6s2 or 5m−1 = 2s2 when m is odd, and 5m+1 = 2s2 or 5m−1 = 6s2

when m is even. As we will show below, each of these four possibilities is impossible.
First let 5m + 1 = 6s2 = 6x2 for some odd m > 1 and x ∈ N, with x > 1. Then,

by Lemma 12 the equation has only one solution, m = x = 1, but 3U2 = 18 is not
perfect or odd.

The cases 5m − 1 = 2s2 or 5m − 1 = 6s2 with s2 ≡ 1 (mod 4) are not possible
since the right-hand side is congruent to 0 modulo 4.

Finally let 5m + 1 = 2s2 with m even. The quadratic residue of the left-hand
side modulo 5, (5m + 1|5) = 1, but the residue (2s2|5) = (2|5) = −1 so this fails
also. !

Lemma 14. There are no odd perfect repdigits to base 6.

Proof. We need only consider the case where Un is odd and a ∈ {1, 3, 5}. If a = 1
and Un = rs2 then 6n − 1 = 5rs2 with r ≡ 1 (mod 4), so if n > 1 3 ≡ 1 (mod 4),
while U1 = 1 is not perfect. If a = 3 then 6n − 1 = 15rs2 so 3 | 1, so this case fails.
If a = 5 then 6n − 1 = rs2 so if n > 1, again 3 ≡ 1 (mod 4). !

Lemma 15. There are no odd perfect repdigits to base 7.
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Proof. If a = 1 then 7n − 1 = 6rs2. We have Un ≡ 1 (mod 4) and n must be odd,
and we can assume also composite. Using Pollack’s method, letting p = P (n),

(
7n − 1
7p − 1

)(
7p − 1
7− 1

)
= rs2,

and, by Lemma 1, the GCD ((7n−1)/(7p−1), (7p−1)/(7−1)) = 1 unless p = 3, 9 | n,
and in that case, the GCD is 3 and we must have

(
7n − 1

3(73 − 1)

)(
73 − 1

3(7− 1)

)
=

(
7n − 1

3(73 − 1)

)
19 = rs2,

so r divides the first factor, but 19 is not a square. Hence we can assume the GCD
is 1.

But then
7n − 1
7p − 1

= s2 or
7p − 1
7− 1

= s2.

By Lemma 4 both of these are impossible.
If a = 3 then 7n − 1 = 2rs2. We have Un ≡ 3 (mod 4) and n must be even,

n = 2m. But then the left-hand side is congruent to 0 modulo 4 and the right to 2,
so this is impossible.

Finally if a = 5 if 5(7n − 1) = 6rs2. We have Un ≡ 1 (mod 4) and n must be
odd. If r = 5 we have

7n − 1
7− 1

= s2

which, by Lemma 4, is impossible unless n ≤ 2, but 5U1 and 5U2 are not perfect.
Thus we can assume r > 5 and write 7n − 1 = 30rs2. We may also assume n is
composite so, using Pollack’s method, in case p = P (n) = 3 and 9 | n then

(
7n − 1

3(73 − 1
)
)(

73 − 1
3(7− 1)

)
=

(
7n − 1

3(73 − 1)

)
19 = 5rs2,

where the two factors on the left are coprime. But this is impossible since 5r must
divide the first factor and 19 is not a square. So we can assume p > 3 and in

(
7n − 1
7p − 1

)(
7p − 1
7− 1

)
= 5rs2,

that the two factors in the left are coprime. But this means we must have at least
one of the following.

7n − 1
7p − 1

= s2,
7n − 1
7p − 1

= 5s2,
7p − 1
7− 1

= s2,
7p − 1
7− 1

= 5s2.

The first and third of these are impossible by Lemma 4. The second and fourth are
also not possible because the multiplicative order of 2 modulo 5 is 4 which does not
divide n or p. !
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Lemma 16. Let m ≥ 1 be odd. Then

am :=

(
1 +

√
5

2

)m

+

(
1−

√
5

2

)m

≡






4 (mod 8), m ≡ 0 (mod 3),
1 (mod 4), m ≡ 1 (mod 3),
3 (mod 4), m ≡ 2 (mod 3).

Proof. First increment the equations of this lemma by including the additional set
with left-hand side denoted bm:

√
5

((
1 +

√
5

2

)m

−
(

1−
√

5
2

)m)
≡






2 (mod 8), m ≡ 0 (mod 3),
1 (mod 4), m ≡ 1 (mod 3),
1 (mod 4), m ≡ 2 (mod 3).

Let m = 3n, m = 6n+1, m = 6n+5 to model the three equivalence classes modulo
3 with odd values of m and then, within each class, we use induction on n, the base
being n = 0 which is easily checked.

Let m = 3n. Then

a3(n+1) = (2 +
√

5)

(
1 +

√
5

2

)3n

+ (2−
√

5)

(
1−

√
5

2

)3n

= 2a3n + b3n = 2(4 + 8x) + (2 + 8y), for some integers x, y

≡ 2 (mod 8).

Let m = 6n + 1. Then

a1+6(n+1) = (9 + 4
√

5)

(
1 +

√
5

2

)6n+1

+ (9− 4
√

5)

(
1−

√
5

2

)6n+1

= 9a6n+1 + 4b6n+1 = 9(1 + 4x) + 4(1 + 4y), for some integers x, y

≡ 1 (mod 4).

Finally let m = 6n + 5. Then

a5+6(n+1) = (9 + 4
√

5)

(
1 +

√
5

2

)6n+5

+ (9− 4
√

5)

(
1−

√
5

2

)6n+5

= 9a6n+5 + 4b6n+5 = 9(3 + 4x) + 4(1 + 4y), for some integers x, y

≡ 3 (mod 4).

Thus, by induction on n, the given formula for am is true for all m ≥ 1. !

Lemma 17. For all n ∈ N

an := (16− 6
√

7)(127 + 48
√

7)n + (16 + 6
√

7)(127− 48
√

7)n = 25mn

where mn is odd.
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Proof. First let bn := (16 − 6
√

7)(127 + 48
√

7)n − (16 + 6
√

7)(127 − 48
√

7)n. We
will show by induction that 25‖an and 22‖bn/

√
7. Start the inductive proof with

the calculation a1 = 25, b1 = 22.3. Then note that

an+1 = 127an + 48
√

7bn,

bn+1 = 127bn + 48
√

7an,

and the result follows immediately from these recurrences. !

Lemma 18. There are no odd perfect repdigits to base 8.

Proof. If a = 1 then 8n − 1 = 7rs2. We have Un ≡ 1 (mod 4) and, by Lemma 3 we
can assume n is composite.

First let n be even, n = 2m. Then
(

23m − 1
7

)(
23m + 1

)
= rs2

so 23m − 1 = 7s2 or 23m + 1 = s2. The latter is Catalan’s equation with the single
solution m = 1, [14, 10], leading to 82 − 1 = 7 · 32, but U2 = 9 is not perfect.

For the former, if m = 2l is even then
(

23l − 1
7

)(
23l + 1

)
= s2

so 23l − 1 = 7s2 and 23l + 1 = s2. Subtracting we can write 2 = x2 − 7y2, a Pellian
equation with solutions (x1, y1) = (3, 1) and general solution {(xj , yj) : j ∈ N}
where

xn =
1

2
√

7

(
(3−

√
7)(8 + 3

√
7)n − (3 +

√
7)(8− 3

√
7)n

)

yn =
1
2

(
(3−

√
7)(8 + 3

√
7)n + (3 +

√
7)(8− 3

√
7)n

)
.

Therefore for each l there exists an nl such that 23l + 1 = x2
nl

and 23l − 1 = 7y2
nl

.
Hence x2

nl
+ 7y2

nl
= 23l+1. But for all n ∈ N

x2
n + 7y2

n = (16− 6
√

7)(127 + 48
√

7)n + (16 + 6
√

7)(127− 48
√

7)n

and the maximum power of two dividing the integer which is the right-hand side is,
by Lemma 17 always exactly 5. Since 3l + 1 '= 5 for any l this case does not occur.

So assume 23m − 1 = 7s2 where m is odd. But then, if p is the maximum prime
dividing 3m and we write

(
23m − 1
2p − 1

)(
2p − 1
2− 1

)
= 7s2
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we must have 2p − 1 = s2 or (23m − 1)/(2p − 1) = s2, both of which equations are
impossible by [12, Lemma 4] and the case g = 2 above.

Now let n be odd and we may assume it is not prime.
Let p = P (n) = 7 and suppose also that 72 | n. Then by Lemma 2 we can write

(
8n − 1

7(87 − 1)

)(
8p − 1

72

)
= rs2

so
8n − 1

7(87 − 1)
= s2 or

87 − 1
72

= s2.

Now the left-hand side of the latter equation is 127×337 and if we recast the former
as the Thue equation 2x2 − 7(87 − 1)y2 = 1, which has no integer solutions, we see
that this case yields no solutions.

If p = P (n) '= 7 or 72 ! n then again by Lemma 2 we have
(

8n − 1
8p − 1

,
8p − 1

7

)
= 1,

and since (
8n − 1
8p − 1

)(
8p − 1

7

)
= rs2

we must have at least one of the following.

8n − 1
8p − 1

= s2,
8p − 1

7
= s2.

If (8n − 1)/(8p − 1) = s2 then writing

(8p)
n
p − 1

8p − 1
= s2

and consulting Lemma 4 we see there are no solutions in this case.
If 8p − 1 = 7s2 then, following the case a = 1 we see there are no solutions.
Now let a = 3. The equation 3(8n − 1) = 7rs2 is impossible because 1 '≡ 3

(mod 4).
If a = 5 then 5(8n − 1) = 7rs2. If r = 5 we have 8n − 1 = 7rs2, the same as

the case a = 1, so we assume r '= 5. This gives rise to a rather large number of
diophantine equations as follows.

First assume n = 2m is even. Then splitting as before we must have one of the
cases (i)-(iv) as set out below.
Case (i) If 8m + 1 = s2 then 23m = (x + 1)(x − 1) for some odd x > 1 so m = 1
giving aUn = 45, which is not perfect.
Case (ii) If 8m + 1 = 5s2, a check with Magma [1], using the Thue equation
2x2 − 5y2 = −1, shows there are no solutions if m is odd. If m = 2l is even write

1 = 5x2 − 82l = (
√

5x + 8l)(
√

5x− 8l)
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and note that
√

5x+8l is a unit in the ring R = OQ(
√

5). In this ring the fundamental

unit is η := (1 +
√

5)/2 with norm -1 so there exists an odd integer s such that
±ηs =

√
5x + 8l. But this implies

(
1 +

√
5

2

)s

+

(
1−

√
5

2

)s

= ±2 · 8l.

By Lemma 16 the left-hand side is either odd or congruent to 4 modulo 8, so
8m + 1 = 5s2, with m even, has no solution.
Case (iii) Consider 8m − 1 = 7s2. That this is impossible unless s2 = 1 follows
from the calculations done in case a = 1 above.
Case (iv) If 8m − 1 = 35s2, a check with Magma, using the Thue equation 2x2 −
35y2 = 1, shows there are no solutions if m is odd. If m is even, m = 2l, then
either 8l − 1 = 35s2 and 8l + 1 = s2, so x2 − 35y2 = 2 which has no solutions, or
8l − 1 = 7s2 and 8l + 1 = 5s2 so 5x2 − 7y2 = 2, which again has no solutions.

If n is odd, p = P (n) = 7 and p2 | n, by Lemma 2 the GCD
(

8n − 1
8p − 1

)(
8p − 1

7

)
= 7,

we must have at least one of three cases given below.
Either 87 − 1 = 72s2 or 87 − 1 = 5 · 72s2, both of which are false.

If 872m − 1 = 7(87 − 1)s2, a check with Magma using the Thue equation 2x2 −
7(87 − 1)y2 = 1 shows there are no solutions in this case.

If 872m − 1 = 35(87 − 1)s2, a check with Magma using the Thue equation 2x2 −
35(87 − 1)y2 = 1 shows there are no solutions in this case.

If p '= 7 then the GCD is 1 so we must have at least one of the three cases given
below.

If 8p − 1 = 7s2 this is impossible by Case (iii) above.

If 8p − 1 = 35s2 there are no solutions, by Case (iv).

If 8n − 1 = (8p − 1)s2, this is impossible since by Lemma 4

xn/p − 1
x− 1

= s2

has no solution with x = 8p unless n/p ≤ 2, but n is odd and composite.

If 8n − 1 = 5(8p − 1)s2, this is impossible since 5 | 8n − 1 implies 4 | n, but n is
odd.

Let a = 7. Then the equation 8n− 1 = rs2 is impossible since 3 '≡ 1 (mod 4). !

Using the same approach as for Lemma 12, but working in the unique factoriza-
tion domain which is the ring of integers of Q(

√
7) we obtain the following.
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Lemma 19. The diophantine equation 3m + 1 = 7s2 has just one solution m =
3, s2 = 4.

Lemma 20. There are no odd perfect repdigits to base 9.

Proof. If a = 1 then 9n − 1 = 8rs2. We have Un ≡ 1 (mod 4) and n ≡ 1 (mod 4),
n = 4m + 1. Then (

34m+1 + 1
4

)(
34m+1 − 1

2

)
= rs2

and the GCD of the two factors on the left is 1, so either 34m+1 + 1 = 4s2 or
34m+1 − 1 = 2s2. By Lemma 4 the only solution to the latter equation is m = 1 or
n = 5 and U5 is not perfect. The former is Catalan’s equation [10, 14, 13], so this
has no solution for all m.

Let a = 3. If 3(9n − 1) = 8rs2 then since r ≡ 1 (mod 4) we have 3 | s2 so
9n − 1 = 24rs2 which is not possible since 3 ! 1.

If a = 5 then 5(9n − 1) = 8rs2. We have Un ≡ 1 (mod 4) and n ≡ 1 (mod 4).
If r = 5, 32n − 1 = 2s2 which, by Lemma 4 again is impossible, so assume r > 5.
Then (

34m+1 + 1
4

)(
34m+1 − 1

2

)
= 5rs2

and the factors on the left are coprime so we must have at least one of

34m+1 + 1 = s2, 34m+1 + 1 = 5s2, 34m+1 − 1 = 2s2, 34m+1 − 1 = 10s2.

The second and fourth are impossible, since 34m+1±1 is never a multiple of 5. The
first is impossible since it is Catalan’s equation. The only solution to the third is
m = 1, but 5U5 = 36905 is not perfect.

If a = 7 then 7(9n − 1) = 8rs2. We have Un ≡ 3 (mod 4) and n '≡ 1 (mod 4).
Then 7Un = rs2 implies

(
3n + 1

4

)(
3n − 1

2

)
= 7rs2

so we must have at least one of

3n − 1 = 2s2, 3n − 1 = 14s2, 3n + 1 = s2, 3n + 1 = 7s2.

The first is impossible since 3n − 1)/(3 − 1) = s2 implies, by Lemma 4, n = 5 or
n ≤ 2, but 7U5, 7U2, 7U1 are not perfect.

The second gives 3n ≡ 1 (mod 7), but 6 is the multiplicative order of 3 modulo
7 so 6 | n and n must be even, n = 2m. Then (3m + 1)(3m − 1) = 14s2 so 4 divides
the left-hand side, but the right-hand side is twice an odd number.

The third is Catalan’s equation and has no solution. By Lemma 19 the fourth
has just one solution with n = 3, but 7U3 = 637 is not perfect. !

The proof of Theorem 1, using Lemmas 8, 10, 11, 13, 14, 15, 18, and 20 is now
complete.
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5. Conjectures

Following the result of Pollack, this study, the theorem of Luca [7], that no member
of a Lucas sequence with odd parameters (P,Q) is multiperfect, and the theorem of
Luca and Pollack [9] that no odd repdigit to base 10 is multiperfect, it is natural to
induce there should be no odd perfect repdigits to any base g ≥ 2. This of course
is too difficult since it implies there is no odd perfect number.

Conjecture U: There is no odd repunit which is perfect.

Conjecture R: There exists an infinite set of bases G such that for each g ∈ G no
odd repdigit to base g is multiperfect.
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