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Abstract
Let sq be the sum-of-digits function in base q, q � 2. If t is a positive integer, we
denote by tR the unique integer that is obtained from t by reversing the order of
the digits of the proper representation of t in base q. In this work we prove that for
all α ∈ R and all positive integers t the correlation measure

γ(α, t) = lim
x→∞

1
x

�

n<x

e2πiα(sq(n+t)−sq(n))

satisfies γ(α, t) = γ(α, tR). From this we deduce that for all integers d the sets
{n ∈ N : sq(n + t) − sq(n) = d} and {n ∈ N : sq(n + tR) − sq(n) = d} have the
same asymptotic density. The proof involves methods coming from the study of
q-additive functions, linear algebra, and analytic number theory.

1. Introduction and Main Results

Throughout this work, q is a fixed positive integer � 2. For a real number x, the
expression e(x) denotes e2πix. Every integer n > 0 has a unique representation in
base q of the form

n =
ν�

j=0

εj(n)qj , εj(n) ∈ {0, . . . , q − 1},

with εν(n) �= 0. We set εj(n) = 0 for j > ν. The sum-of-digits function sq(n) in base
q is defined by sq(n) =

�
j�0 εj(n). If � � ν, we write n = (ε�(n)ε�−1(n) . . . ε0(n))q.

1The author was supported by the Austrian Science Foundation FWF, grant P21209.
2The author was supported by the Austrian Science Foundation FWF, grant S9604, which

is part of the National Research Network “Analytic Combinatorics and Probabilistic Number
Theory”.



INTEGERS: 12 (2012) 2

In the case that � = ν (that is, ε�(n) �= 0), this is called the proper representation
of n. If t = (εν(t)εν−1(t) . . . ε0(t))q with εν(t) �= 0, we set

tR = (ε0(t) . . . εν(t))q,

that is, tR is obtained from t by reversing the order of the digits in base q. Moreover,
we set 0R = 0. Note that palindromes (in base q) are exactly those integers that
satisfy t = tR. Note furthermore that the function t �→ tR restricted to positive
integers not congruent to 0 modulo q is bijective. In particular, if t = qk · t̂ with
(t̂, q) = 1 and k � 0, then we have tRR = t̂. For t � 0 we set

γ(α, t) = lim
x→∞

1
x

�

n<x

e(α(sq(n + t)− sq(n))).

In the case that α = 1/2 and q = 2 it was proven by Mahler [7] that the limits
actually exist and that γ(1/2, t) �= 0 for infinitely many t. For general α and q � 2 it
follows from [1] that the limits exist for all t � 0. Interestingly, γ(1/2, t) is equal to
the t-th Fourier coefficient of the correlation measure associated to the Thue-Morse
dynamical system (see [6]). Our main result deals with these correlation measures
for an integer t and its associated integer tR. Even though there seems to be no
simple relation between sq(n + t) and sq(n + tR), we have the following result:

Theorem 1. Let q � 2, α ∈ R and t � 0. Then we have γ(α, t) = γ(α, tR).

This theorem implies that the set of positive integers n such that sq(n+t)−sq(n)
is a fixed integer d satisfies a similar property. For d ∈ Z and t � 0 let δ(d, t) be
the asymptotic density of the set {n ∈ N : sq(n + t)− sq(n) = d}, that is,

δ(d, t) = lim
x→∞

1
x

#{n < x : sq(n + t)− sq(n) = d}.

(The existence of the limit follows from [1, Lemma 1], which tells us that the set
{n ∈ N : sq(n + t)− sq(n) = d} is a union of arithmetic progressions.)

Corollary 2. Let q � 2, d ∈ Z and t � 0. Then we have δ(d, t) = δ(d, tR).

Our research was motivated by a question of Thomas W. Cusick [2]: Let ct be
defined for t � 0 by

ct = lim
x→∞

1
x

#{n < x : sq(n + t) � sq(n)}.

He asked whether it is true that ct > 1/2 for all integers t � 0. This question arose
while he was working on a combinatorial problem proposed by Tu and Deng [8]
that is strongly related to Boolean functions with optimal cryptographic properties.
In [3] some cases of this conjecture have been proved, and there are several other
recent papers dealing with this subject, see for example [5, 4]). Although we could
not answer Cusick’s original question, Theorem 1 implies the following interesting
result:
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Corollary 3. Let q � 2 and t � 0. Then we have ct = ctR .

2. Proof of Theorem 1

Bésineau [1, Section II.6] showed that the quantities γ(α, t) satisfy the following
recurrence relation: We have γ(α, 0) = 1 and

γ(α, qt + k) =
q − k

q
e(αk)γ(α, t) +

k

q
e(−α(q − k))γ(α, t + 1)

for t � 0 and 0 � k < q. In particular, we have γ(α, qt) = γ(α, t) and u := γ(α, 1) =
(q − 1)/(q e(−α) − e(−αq)). It is not difficult to see that γ(α, t) can be explicitly
computed with the help of transition matrices. Set

A(k) =

�
q−k

q e(αk) k
q e(−α(q − k))

q−k−1
q e(α(k + 1)) k+1

q e(−α(q − k − 1))

�
.

Then we have

γ(α, t) = (1 , 0)A(ε0(t)) · · ·A(εν(t))
�

1
u

�
. (1)

Note that it is not important whether the proper representation of t is used in
order to calculate γ(α, t). Indeed, this follows from the fact that (1 , u)T is a right
eigenvector of A(0) to the eigenvalue 1. Note furthermore that γ(α, qt) = γ(α, t)
corresponds to the fact that (1 , 0) is a left eigenvector of A(0) to the eigenvalue 1.
Set

S =
�

1 ū
0 1

�
.

Proposition 4. Let � � 0 and (ε0, . . . , ε�) ∈ {0, . . . , q − 1}�+1. Then we have

(1 , 0)S−1A(ε0) · · ·A(ε�)
�

1
u

�
= (1 , 0)A(ε�) · · ·A(ε0)S

�
1− |u|2

0

�
(2)

and

(0 , ū)S−1A(ε0) · · ·A(ε�)
�

1
u

�
= (1 , 0)A(ε�) · · ·A(ε0)S

�
0
u

�
. (3)

This proposition immediately implies Theorem 1. Indeed, if we sum up (2)
and (3) we obtain

(1 , ū)S−1A(ε0) · · ·A(ε�)
�

1
u

�
= (1 , 0)A(ε�) · · ·A(ε0)S

�
1− |u|2

u

�
.

Since (1 , ū)S−1 = (1 , 0) and S(1 − |u|2 , u)T = (1 , u)T , relation (1) implies that
γ(α, t) = γ(α, tR).
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Proof of Proposition 4. We will show this result by induction on �. For notational
convenience we set

A(ε) =
�

a1(ε) a2(ε)
a3(ε) a4(ε)

�
and S−1A(ε)S =

�
s1(ε) s2(ε)
s3(ε) s4(ε)

�
.

Throughout the proof, we will use (at several places) the relation

a1(ε)|u|2 + a2(ε)u = a3(ε)ū + a4(ε)|u|2 (4)

which holds for 0 � ε < q. The validity of (4) is easily seen by multiplying both
sides by |u|−2 and evaluating them: This gives

e(αε)
q − 1

(q − ε− 1 + ε e(−α(q − 1)))

on the left hand side as well as on the right hand side. If � = 0 we have to show
that

(1 , 0)S−1A(ε0)
�

1
u

�
= (1 , 0)A(ε0)S

�
1− |u|2

0

�
(5)

and

(0 , ū)S−1A(ε0)
�

1
u

�
= (1 , 0)A(ε0)S

�
0
u

�
. (6)

Equation (5) is satisfied if a1(ε0)+a2(ε0)u−a3(ε0)ū−a4(ε0)|u|2 = a1(ε0)(1− |u|2).
Using (4), we see that this holds true indeed. Equation (6) is also equivalent to (4)
and we are done. Assume now that � � 1. Set

�
a
b

�
= S−1A(ε1) . . . A(ε�)

�
1
u

�
and (a� , b�) = (1 , 0)A(ε�) · · ·A(ε1)S.

The induction hypothesis implies that

a = a�(1− |u|2) and bū = b�u. (7)

In order to prove (2), we have to show that

(1, 0)S−1A(ε0)S
�

a
b

�
= (a� , b�)S−1A(ε0)S

�
1− |u|2

0

�
. (8)

This is equivalent to s1(ε0)a + s2(ε0)b = s1(ε0)(1 − |u|2)a� + s3(ε0)(1 − |u|2)b�.
Using (7), we see that this holds true if s2(ε0)u/ū = s3(ε0)(1 − |u|2). Note that
s2(ε0) and s3(ε0) are given by s2(ε0) = a1(ε0)ū + a2(ε0)− ū2a3(ε0)− ūa4(ε0) and
s3(ε0) = a3(ε0). Using these relations and (4), we see that (8) holds true. The
validity of (3) can be shown the same way. This finally proves Proposition 4.
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3. Proof of Corollary 2 and Corollary 3

Proof of Corollary 2. Using the dominated convergence theorem, we see that

δ(d, t) = lim
x→∞

1
x

#{n < x : sq(n + t)− sq(n) = d}

= lim
x→∞

1
x

�

n<x

� 1

0
e(α(sq(n + t)− sq(n)− d))dα

=
� 1

0
lim

x→∞

�

n<x

1
x

e(α(sq(n + t)− sq(n)− d))dα.

Thus we have δ(d, t) =
� 1
0 γ(α, t) e(−αd)dα. By Theorem 1 we have γ(α, t) =

γ(α, tR) and we get δ(d, t) = δ(d, tR).

Proof of Corollary 3. The sub-additivity of sq(n) implies sq(n + t)− sq(n) � sq(t).
Therefore we have ct =

�sq(t)
k=0 δ(k, t). Since sq(t) = sq(tR), we are done.
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