A REVERSE ORDER PROPERTY OF CORRELATION MEASURES OF THE SUM-OF-DIGITS FUNCTION

Johannes F. Morgenbesser ${ }^{1}$
Universität Wien, Fakultät für Mathematik, Wien, Austria
johannes.morgenbesser@univie.ac.at
Lukas Spiegelhofer ${ }^{2}$
Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wien, Austria
lukas.spiegelhofer@tuwien.ac.at

Received: 1/9/12, Accepted: 7/7/12, Published: 9/3/12

Abstract

Let s_{q} be the sum-of-digits function in base $q, q \geqslant 2$. If t is a positive integer, we denote by t^{R} the unique integer that is obtained from t by reversing the order of the digits of the proper representation of t in base q. In this work we prove that for all $\alpha \in \mathbb{R}$ and all positive integers t the correlation measure $$
\gamma(\alpha, t)=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n<x} e^{2 \pi i \alpha\left(s_{q}(n+t)-s_{q}(n)\right)}
$$ satisfies $\gamma(\alpha, t)=\gamma\left(\alpha, t^{R}\right)$. From this we deduce that for all integers d the sets $\left\{n \in \mathbb{N}: s_{q}(n+t)-s_{q}(n)=d\right\}$ and $\left\{n \in \mathbb{N}: s_{q}\left(n+t^{R}\right)-s_{q}(n)=d\right\}$ have the same asymptotic density. The proof involves methods coming from the study of q-additive functions, linear algebra, and analytic number theory.

1. Introduction and Main Results

Throughout this work, q is a fixed positive integer $\geqslant 2$. For a real number x, the expression $\mathrm{e}(x)$ denotes $e^{2 \pi i x}$. Every integer $n>0$ has a unique representation in base q of the form

$$
n=\sum_{j=0}^{\nu} \varepsilon_{j}(n) q^{j}, \quad \varepsilon_{j}(n) \in\{0, \ldots, q-1\}
$$

with $\varepsilon_{\nu}(n) \neq 0$. We set $\varepsilon_{j}(n)=0$ for $j>\nu$. The sum-of-digits function $s_{q}(n)$ in base q is defined by $s_{q}(n)=\sum_{j \geqslant 0} \varepsilon_{j}(n)$. If $\ell \geqslant \nu$, we write $n=\left(\varepsilon_{\ell}(n) \varepsilon_{\ell-1}(n) \ldots \varepsilon_{0}(n)\right)_{q}$.

[^0]In the case that $\ell=\nu$ (that is, $\left.\varepsilon_{\ell}(n) \neq 0\right)$, this is called the proper representation of n. If $t=\left(\varepsilon_{\nu}(t) \varepsilon_{\nu-1}(t) \ldots \varepsilon_{0}(t)\right)_{q}$ with $\varepsilon_{\nu}(t) \neq 0$, we set

$$
t^{R}=\left(\varepsilon_{0}(t) \ldots \varepsilon_{\nu}(t)\right)_{q},
$$

that is, t^{R} is obtained from t by reversing the order of the digits in base q. Moreover, we set $0^{R}=0$. Note that palindromes (in base q) are exactly those integers that satisfy $t=t^{R}$. Note furthermore that the function $t \mapsto t^{R}$ restricted to positive integers not congruent to 0 modulo q is bijective. In particular, if $t=q^{k} \cdot \hat{t}$ with $(\hat{t}, q)=1$ and $k \geqslant 0$, then we have $t^{R R}=\hat{t}$. For $t \geqslant 0$ we set

$$
\gamma(\alpha, t)=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n<x} \mathrm{e}\left(\alpha\left(s_{q}(n+t)-s_{q}(n)\right)\right)
$$

In the case that $\alpha=1 / 2$ and $q=2$ it was proven by Mahler [7] that the limits actually exist and that $\gamma(1 / 2, t) \neq 0$ for infinitely many t. For general α and $q \geqslant 2$ it follows from [1] that the limits exist for all $t \geqslant 0$. Interestingly, $\gamma(1 / 2, t)$ is equal to the t-th Fourier coefficient of the correlation measure associated to the Thue-Morse dynamical system (see [6]). Our main result deals with these correlation measures for an integer t and its associated integer t^{R}. Even though there seems to be no simple relation between $s_{q}(n+t)$ and $s_{q}\left(n+t^{R}\right)$, we have the following result:

Theorem 1. Let $q \geqslant 2, \alpha \in \mathbb{R}$ and $t \geqslant 0$. Then we have $\gamma(\alpha, t)=\gamma\left(\alpha, t^{R}\right)$.
This theorem implies that the set of positive integers n such that $s_{q}(n+t)-s_{q}(n)$ is a fixed integer d satisfies a similar property. For $d \in \mathbb{Z}$ and $t \geqslant 0$ let $\delta(d, t)$ be the asymptotic density of the set $\left\{n \in \mathbb{N}: s_{q}(n+t)-s_{q}(n)=d\right\}$, that is,

$$
\delta(d, t)=\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n<x: s_{q}(n+t)-s_{q}(n)=d\right\}
$$

(The existence of the limit follows from [1, Lemma 1], which tells us that the set $\left\{n \in \mathbb{N}: s_{q}(n+t)-s_{q}(n)=d\right\}$ is a union of arithmetic progressions.)
Corollary 2. Let $q \geqslant 2, d \in \mathbb{Z}$ and $t \geqslant 0$. Then we have $\delta(d, t)=\delta\left(d, t^{R}\right)$.
Our research was motivated by a question of Thomas W. Cusick [2]: Let c_{t} be defined for $t \geqslant 0$ by

$$
c_{t}=\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n<x: s_{q}(n+t) \geqslant s_{q}(n)\right\}
$$

He asked whether it is true that $c_{t}>1 / 2$ for all integers $t \geqslant 0$. This question arose while he was working on a combinatorial problem proposed by Tu and Deng [8] that is strongly related to Boolean functions with optimal cryptographic properties. In [3] some cases of this conjecture have been proved, and there are several other recent papers dealing with this subject, see for example [5, 4]). Although we could not answer Cusick's original question, Theorem 1 implies the following interesting result:

Corollary 3. Let $q \geqslant 2$ and $t \geqslant 0$. Then we have $c_{t}=c_{t^{R}}$.

2. Proof of Theorem 1

Bésineau [1, Section II.6] showed that the quantities $\gamma(\alpha, t)$ satisfy the following recurrence relation: We have $\gamma(\alpha, 0)=1$ and

$$
\gamma(\alpha, q t+k)=\frac{q-k}{q} \mathrm{e}(\alpha k) \gamma(\alpha, t)+\frac{k}{q} \mathrm{e}(-\alpha(q-k)) \gamma(\alpha, t+1)
$$

for $t \geqslant 0$ and $0 \leqslant k<q$. In particular, we have $\gamma(\alpha, q t)=\gamma(\alpha, t)$ and $u:=\gamma(\alpha, 1)=$ $(q-1) /(q \mathrm{e}(-\alpha)-\mathrm{e}(-\alpha q))$. It is not difficult to see that $\gamma(\alpha, t)$ can be explicitly computed with the help of transition matrices. Set

$$
A(k)=\left(\begin{array}{cc}
\frac{q-k}{q} \mathrm{e}(\alpha k) & \frac{k}{q} \mathrm{e}(-\alpha(q-k)) \\
\frac{q-k-1}{q} \mathrm{e}(\alpha(k+1)) & \frac{k+1}{q} \mathrm{e}(-\alpha(q-k-1))
\end{array}\right)
$$

Then we have

$$
\begin{equation*}
\gamma(\alpha, t)=(1,0) A\left(\varepsilon_{0}(t)\right) \cdots A\left(\varepsilon_{\nu}(t)\right)\binom{1}{u} \tag{1}
\end{equation*}
$$

Note that it is not important whether the proper representation of t is used in order to calculate $\gamma(\alpha, t)$. Indeed, this follows from the fact that $(1, u)^{T}$ is a right eigenvector of $A(0)$ to the eigenvalue 1 . Note furthermore that $\gamma(\alpha, q t)=\gamma(\alpha, t)$ corresponds to the fact that $(1,0)$ is a left eigenvector of $A(0)$ to the eigenvalue 1 . Set

$$
S=\left(\begin{array}{ll}
1 & \bar{u} \\
0 & 1
\end{array}\right)
$$

Proposition 4. Let $\ell \geqslant 0$ and $\left(\varepsilon_{0}, \ldots, \varepsilon_{\ell}\right) \in\{0, \ldots, q-1\}^{\ell+1}$. Then we have

$$
\begin{equation*}
(1,0) S^{-1} A\left(\varepsilon_{0}\right) \cdots A\left(\varepsilon_{\ell}\right)\binom{1}{u}=(1,0) A\left(\varepsilon_{\ell}\right) \cdots A\left(\varepsilon_{0}\right) S\binom{1-|u|^{2}}{0} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(0, \bar{u}) S^{-1} A\left(\varepsilon_{0}\right) \cdots A\left(\varepsilon_{\ell}\right)\binom{1}{u}=(1,0) A\left(\varepsilon_{\ell}\right) \cdots A\left(\varepsilon_{0}\right) S\binom{0}{u} \tag{3}
\end{equation*}
$$

This proposition immediately implies Theorem 1. Indeed, if we sum up (2) and (3) we obtain

$$
(1, \bar{u}) S^{-1} A\left(\varepsilon_{0}\right) \cdots A\left(\varepsilon_{\ell}\right)\binom{1}{u}=(1,0) A\left(\varepsilon_{\ell}\right) \cdots A\left(\varepsilon_{0}\right) S\binom{1-|u|^{2}}{u}
$$

Since $(1, \bar{u}) S^{-1}=(1,0)$ and $S\left(1-|u|^{2}, u\right)^{T}=(1, u)^{T}$, relation (1) implies that $\gamma(\alpha, t)=\gamma\left(\alpha, t^{R}\right)$.

Proof of Proposition 4. We will show this result by induction on ℓ. For notational convenience we set

$$
A(\varepsilon)=\left(\begin{array}{ll}
a_{1}(\varepsilon) & a_{2}(\varepsilon) \\
a_{3}(\varepsilon) & a_{4}(\varepsilon)
\end{array}\right) \quad \text { and } \quad S^{-1} A(\varepsilon) S=\left(\begin{array}{ll}
s_{1}(\varepsilon) & s_{2}(\varepsilon) \\
s_{3}(\varepsilon) & s_{4}(\varepsilon)
\end{array}\right)
$$

Throughout the proof, we will use (at several places) the relation

$$
\begin{equation*}
a_{1}(\varepsilon)|u|^{2}+a_{2}(\varepsilon) u=a_{3}(\varepsilon) \bar{u}+a_{4}(\varepsilon)|u|^{2} \tag{4}
\end{equation*}
$$

which holds for $0 \leqslant \varepsilon<q$. The validity of (4) is easily seen by multiplying both sides by $|u|^{-2}$ and evaluating them: This gives

$$
\frac{\mathrm{e}(\alpha \varepsilon)}{q-1}(q-\varepsilon-1+\varepsilon \mathrm{e}(-\alpha(q-1)))
$$

on the left hand side as well as on the right hand side. If $\ell=0$ we have to show that

$$
\begin{equation*}
(1,0) S^{-1} A\left(\varepsilon_{0}\right)\binom{1}{u}=(1,0) A\left(\varepsilon_{0}\right) S\binom{1-|u|^{2}}{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(0, \bar{u}) S^{-1} A\left(\varepsilon_{0}\right)\binom{1}{u}=(1,0) A\left(\varepsilon_{0}\right) S\binom{0}{u} \tag{6}
\end{equation*}
$$

Equation (5) is satisfied if $a_{1}\left(\varepsilon_{0}\right)+a_{2}\left(\varepsilon_{0}\right) u-a_{3}\left(\varepsilon_{0}\right) \bar{u}-a_{4}\left(\varepsilon_{0}\right)|u|^{2}=a_{1}\left(\varepsilon_{0}\right)\left(1-|u|^{2}\right)$. Using (4), we see that this holds true indeed. Equation (6) is also equivalent to (4) and we are done. Assume now that $\ell \geqslant 1$. Set

$$
\binom{\mathfrak{a}}{\mathfrak{b}}=S^{-1} A\left(\varepsilon_{1}\right) \ldots A\left(\varepsilon_{\ell}\right)\binom{1}{u} \quad \text { and } \quad\left(\mathfrak{a}^{\prime}, \mathfrak{b}^{\prime}\right)=(1,0) A\left(\varepsilon_{\ell}\right) \cdots A\left(\varepsilon_{1}\right) S
$$

The induction hypothesis implies that

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}^{\prime}\left(1-|u|^{2}\right) \quad \text { and } \quad \mathfrak{b} \bar{u}=\mathfrak{b}^{\prime} u \tag{7}
\end{equation*}
$$

In order to prove (2), we have to show that

$$
\begin{equation*}
(1,0) S^{-1} A\left(\varepsilon_{0}\right) S\binom{\mathfrak{a}}{\mathfrak{b}}=\left(\mathfrak{a}^{\prime}, \mathfrak{b}^{\prime}\right) S^{-1} A\left(\varepsilon_{0}\right) S\binom{1-|u|^{2}}{0} \tag{8}
\end{equation*}
$$

This is equivalent to $s_{1}\left(\varepsilon_{0}\right) \mathfrak{a}+s_{2}\left(\varepsilon_{0}\right) \mathfrak{b}=s_{1}\left(\varepsilon_{0}\right)\left(1-|u|^{2}\right) \mathfrak{a}^{\prime}+s_{3}\left(\varepsilon_{0}\right)\left(1-|u|^{2}\right) \mathfrak{b}^{\prime}$. Using (7), we see that this holds true if $s_{2}\left(\varepsilon_{0}\right) u / \bar{u}=s_{3}\left(\varepsilon_{0}\right)\left(1-|u|^{2}\right)$. Note that $s_{2}\left(\varepsilon_{0}\right)$ and $s_{3}\left(\varepsilon_{0}\right)$ are given by $s_{2}\left(\varepsilon_{0}\right)=a_{1}\left(\varepsilon_{0}\right) \bar{u}+a_{2}\left(\varepsilon_{0}\right)-\bar{u}^{2} a_{3}\left(\varepsilon_{0}\right)-\bar{u} a_{4}\left(\varepsilon_{0}\right)$ and $s_{3}\left(\varepsilon_{0}\right)=a_{3}\left(\varepsilon_{0}\right)$. Using these relations and (4), we see that (8) holds true. The validity of (3) can be shown the same way. This finally proves Proposition 4.

3. Proof of Corollary 2 and Corollary 3

Proof of Corollary 2. Using the dominated convergence theorem, we see that

$$
\begin{aligned}
\delta(d, t) & =\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n<x: s_{q}(n+t)-s_{q}(n)=d\right\} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n<x} \int_{0}^{1} \mathrm{e}\left(\alpha\left(s_{q}(n+t)-s_{q}(n)-d\right)\right) \mathrm{d} \alpha \\
& =\int_{0}^{1} \lim _{x \rightarrow \infty} \sum_{n<x} \frac{1}{x} \mathrm{e}\left(\alpha\left(s_{q}(n+t)-s_{q}(n)-d\right)\right) \mathrm{d} \alpha .
\end{aligned}
$$

Thus we have $\delta(d, t)=\int_{0}^{1} \gamma(\alpha, t) \mathrm{e}(-\alpha d) \mathrm{d} \alpha$. By Theorem 1 we have $\gamma(\alpha, t)=$ $\gamma\left(\alpha, t^{R}\right)$ and we get $\delta(d, t)=\delta\left(d, t^{R}\right)$.

Proof of Corollary 3. The sub-additivity of $s_{q}(n)$ implies $s_{q}(n+t)-s_{q}(n) \leqslant s_{q}(t)$. Therefore we have $c_{t}=\sum_{k=0}^{s_{q}(t)} \delta(k, t)$. Since $s_{q}(t)=s_{q}\left(t^{R}\right)$, we are done.

References

[1] J. Bésineau, Indépendance statistique d'ensembles liés à la fonction "somme des chiffres", Acta Arith. 20 (1972), 401-416.
[2] T. W. Cusick, private communication (2012).
[3] T. W. Cusick, Y. Li, and P. Stănică, On a combinatorial conjecture, Integers 11 A17 (2011), 185-203.
[4] J.-P. Flori, H. Randriam, On the Number of Carries Occuring in an Addition mod $2^{k}-1$, Integers 12 A10 (2012), 42pp.
[5] J.-P. Flori, H. Randriambololona, G. Cohen, and S. Mesnager, On a Conjecture about Binary Strings Distribution, Sequences and Their Applications - SETA 2010 Springer Berlin/Heidelberg (Ed.), (2010), 346-358.
[6] M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 335-353.
[7] K. Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions II. On the translation properties of a simple class of arithmetical functions, J. Math. and Physics 6 (1927), 158-163.
[8] Z. Tu and Y. Deng, A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity, Des. Codes Cryptogr. 60 no. 1, 1-14.

[^0]: ${ }^{1}$ The author was supported by the Austrian Science Foundation FWF, grant P21209.
 ${ }^{2}$ The author was supported by the Austrian Science Foundation FWF, grant S9604, which is part of the National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

