ON A COMBINATORIAL CONJECTURE OF TU AND DENG

Guixin Deng
School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, P.R.China
dengguixin@live.com
Pingzhi Yuan
School of Mathematics, South China Normal University, Guangzhou, P.R.China
mcsypz@mail.sysu.edu.cn

Received: 12/22/11, Revised: 4/2/12, Accepted: 8/19/12, Published: 9/3/12

Abstract

Recently, Tu and Deng obtained two classes of Boolean functions with nice properties based on a combinatorial conjecture about binary strings. In this paper, using different approaches, we prove this conjecture is true in several cases.

1. Introduction

Let x be a nonnegative integer. If the binary expansion of x is $x=\sum_{i} x_{i} 2^{i}$, then the Hamming weight of x is $w(x)=\sum_{i} x_{i}$. In [7] Tu and Deng proposed the following conjecture.

Conjecture 1. Let $S_{t}=\left\{(a, b) \mid a, b \in \mathbb{Z}_{2^{n}-1}, a+b \equiv t\left(\bmod 2^{n-1}\right), w(a)+w(b) \leq\right.$ $n-1\}$, where $1 \leq t \leq 2^{n}-2, n \geq 2$. Then $\left|S_{t}\right| \leq 2^{n-1}$.

Based on this conjecture, the authors in [7] constructed some classes of Boolean functions with many nice cryptographic properties.

In this paper we make use of the following bijection from $\mathbb{Z}_{2^{n}-1}$ onto X_{n}, where X_{n} is the set of binary strings of length n except the string consisting of n copies of 1 :

$$
\mathbb{Z}_{2^{n}-1} \rightarrow X_{n}, \quad \sum_{i=0}^{n-1} x_{i} 2^{i} \mapsto x_{0} x_{1} \ldots x_{n-1}
$$

We use $|t|$ to denote the length of a binary string $t=t_{0} t_{1} \ldots t_{n-1}$. Let $-t=$ $\bar{t}_{0} \bar{t}_{1} \ldots \bar{t}_{n-1}$, where $\bar{t}_{i}=1-t_{i}$. We also use the notation $1^{k} 0^{m}:=\underbrace{11 \ldots 1}_{k \text { times }} \underbrace{00 \ldots 0}_{m \text { times }}$.

In [7], Tu and Deng construct an algorithm which they used it to show that the conjecture above is true when $n \leq 29$. Cusick, Li and Stanica [2] show that Con-
jecture 1 is true when $w(t) \leq 2$, or $w(t) \geq|t|-4$. In this paper, we will consider the following conjecture, which is equivalent to Conjecture 1.

Conjecture 2. Let $1 \leq t \leq 2^{n}-2, n \geq 2$. Let $S(t)=\left\{a \mid a \in \mathbb{Z}_{2^{n}-1}, w(x) \geq\right.$ $\left.w(a)+1, t+a \equiv x\left(\bmod 2^{n-1}\right)\right\}$. Then $|S(t)| \leq 2^{n-1}$.

Lemma 3. Let $t=t_{0} t_{1} \ldots t_{n-1}$. The following statements are true:
(i) $|S(t)|=\left|S\left(t_{i} t_{i+1} \ldots t_{n-1} t_{0} \ldots t_{i-1}\right)\right|$ for any i;
(ii) $w(t)+w(-t)=|t|$;
(iii) The map φ : $S_{t} \rightarrow S(-t), \quad \varphi((a, b))=a$, is bijective. Hence $\left|S_{t}\right|=|S(-t)|$.

Proof. The assertions (i) and (ii) are trivial. If $(a, b) \in S_{t}$, then $w(-t+a)=$ $w(-b)=n-w(b) \geq w(a)+1$. Hence $a \in S(-t)$. The map φ is well-defined and injective. Conversely, if $a \in S(-t)$, then $w(-t+a) \geq w(a)+1$ so that

$$
\begin{aligned}
w(a)+w(t-a) & =w(a)+n-w(-t+a) \\
& \leq w(a)+n-w(a)-1=n-1
\end{aligned}
$$

Thus $(a, t-a) \in S_{t}$, and therefore φ is also surjective.
Note that the authors in [3] actually showed that Conjecture 2 is true when $w(t) \geq|t|-2$, or $w(t) \leq 4$ according to Lemma 3 .

The remainder of this paper is organized as follows. In Section 2 we construct a partition on the set of binary strings of fixed length. The partition guarantees us to compute a class of $S(t)$, which reaches the bound of Conjecture 2. In Section 3 we compare $|S(t)|$ and $\left|S\left(t 0^{m}\right)\right|$ based on the partition, and we show that Conjecture 2 is true for some other classes.

2. The Partition \sim_{t} of X_{n}

We begin with a lemma.
Lemma 4. Let $t=t_{0} t_{1} \ldots t_{n-1} \in X_{n}, a=a_{0} a_{1} \ldots a_{n-1} \in X_{n}$. Suppose that $I=$ $\left\{j \mid 0 \leq j \leq n-1, t_{j}=a_{j}\right\}=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$, where $0 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n-1$. Assume that $t+a \neq 0^{n}$. Then

$$
w(t+a)=w(a)+w(t)-\sum_{s \in I, t_{i_{s}}=1}\left(i_{s+1}-i_{s}\right)
$$

where we set $i_{l+1}=i_{1}+n$.
Proof. It is clear that $I=\emptyset$ if and only if $t+a=0^{n}$. Suppose that $t+a=$ $x_{0} x_{1} \ldots x_{n-1}$. If $j \notin I$, then $j<i_{1}$ or there exists an $s \geq 1$ such that $i_{s}<j<i_{s+1}$.

If $i_{s}<j<i_{s+1}$, by a simple computation we obtain $x_{j}=1-t_{i_{s}}$. If $j<i_{1}$, then $x_{j}=1-t_{i_{l}}$. On the other hand, if $j=i_{s} \in I$, then $x_{j}=t_{i_{s-1}}$ if $s>1$, and $x_{j}=t_{i_{l}}$ if $s=1$. Let $I_{j}=\left\{i_{s} \mid 1 \leq s \leq l, t_{i_{s}}=a_{i_{s}}=j\right\}, j=0,1$. Then

$$
\begin{aligned}
w(t)+w(a)-w(t+a) & =\left(n+\left|I_{1}\right|-\left|I_{0}\right|\right)-\left(\sum_{i_{s} \in I_{0}}\left(i_{s+1}-i_{s}-1\right)+\left|I_{1}\right|\right) \\
& =n-\sum_{i_{s} \in I_{0}}\left(i_{s+1}-i_{s}\right) \\
& =\sum_{i_{s} \in I}\left(i_{s+1}-i_{s}\right)-\sum_{i_{s} \in I_{0}}\left(i_{s+1}-i_{s}\right) \\
& =\sum_{i_{s} \in I_{1}}\left(i_{s+1}-i_{s}\right)
\end{aligned}
$$

Let $S_{i}(t)=\left\{a \in X_{n} \mid w(t)+w(a)-w(t+a)=i\right\}$ for any $t \in X_{n}$. Then $S(t)=\cup_{i=0}^{w(t)-1} S_{i}(t)$ and $X_{n}=\cup_{i=0}^{n-1} S_{i}(t)$ are both disjoint unions. We construct a partition \sim_{t} on X_{n} according to Lemma 4.

Definition 5. Let $t=t_{0} t_{1} \ldots t_{n-1}$ be a binary string of length n. Suppose that $w(t)=r$, and $t_{m_{1}}=t_{m_{2}}=\cdots=t_{m_{r}}=1$, where $0 \leq m_{1}<m_{2}<\cdots<m_{r} \leq n-1$. Let $a=a_{0} a_{1} \ldots a_{n-1}$ be a binary string. Suppose that $I_{a}=\left\{0 \leq j \leq n-1: a_{j}=\right.$ $\left.t_{j}\right\}=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$, where $0 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n-1$ and set $i_{l+1}=i_{1}+n$. We define $\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$ to be the subset of X_{n} such that $a \in\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$ if and only if the following two conditions hold
(i) $x_{j}=i_{s+1}-i_{s}$ if $m_{j}=i_{s} \in I_{a}$;
(ii) $x_{j}=0$ if $m_{j} \notin I_{a}$.

Moreover, we will use the notation $a^{t}:=\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$ if $a \in\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$.
Remark 6. The idea of this partition comes from the "carries" in [5]. It is a refinement of the partition $X_{n}=\cup_{i} S_{i}(t)$. So we can obtain more information about the structure of $S(t)$.

Definition 7. Let $t=t_{0} t_{1} \ldots t_{n-1}, a=a_{0} a_{1} \ldots a_{n-1}$ be two given binary strings of length n. For any $0 \leq m \leq n-1$, we set $a_{m}^{t}=i$, if $b_{m}=i$ for all $b \in a^{t}, i=0,1$. Moreover, we say that a_{m}^{t} is free if there exist two strings b^{\prime} and $b^{\prime \prime}$ in a^{t} such that $b_{m}^{\prime}=0$ and $b_{m}^{\prime \prime}=1$.

Example 8. Let $t=010010010, a=011000011, b=110110110$, and $c=100110111$. Then $t_{1}=t_{4}=t_{7}=1$, and $I_{a}=\{0,1,3,5,6,7\}, I_{b}=\{1,2,4,5,7,8\}$, and $I_{c}=\{2,4,5,7\}$. So $a \in(2,0,2)^{t}, b \in(1,1,1)^{t}$, and $c \in(0,1,4)^{t}$.

Moreover, by definition $5 a^{\prime} \in a^{t}$ if and only if $a^{\prime}=01100 * * 11$, where $*=0$ or 1. That is, a_{5}^{t} and a_{6}^{t} are both free and $\left|a^{t}\right|=4$. Moreover, $b^{\prime} \in b^{t}$ if and only if $b^{\prime}=* 10 * 10 * 10, c^{\prime} \in c^{t}$ if and only if $c^{\prime}=100 * 10 * 11$, where $*=0$ or 1 .

It follows that $a^{t}=\left(x_{i}\right)^{t} \subseteq S_{\sum_{i=1}^{r} x_{i}}(t)$ from Definition 5 and Lemma 4. Moreover, if k is the number of indices such that a_{i}^{t} is free, then $\left|a^{t}\right|=2^{k}$. Let

$$
a_{i}(j)=\sharp\left\{\left(x_{1}, x_{2}, \ldots, x_{j}\right) \mid x_{j} \in \mathbb{N}, \quad \sum_{k=1}^{j} x_{k}=i\right\}=\binom{i+j-1}{i} .
$$

The proof of the following lemma is easy so we omit it.
Lemma 9. For any $r \geq 1$,

$$
\sum_{i=0}^{l} c_{i} a_{i}(r)=\sum_{i=0}^{l}\left(c_{i}-\sum_{j=i+1}^{l} c_{j}\right) a_{i}(r+l-i+1)
$$

In particular, $\sum_{i=0}^{l} 2^{-i} a_{i}(r)=2^{-l} \sum_{i=0}^{l} a_{i}(r+l-i+1)$.
The results of Theorem 10 and Lemma 11 have been proved in [5]. Here we give another proof.

Theorem 10. Let $t=10^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r}}$, where $s_{i} \geq r-1$ and $w(t)=r$. Then $|S(t)|=2^{|t|-1}$.

Proof. Suppose that $|t|=n, a \in\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$ and $\sum_{i=1}^{r} x_{i} \leq r-1$. Then a is of the form

$$
*_{1} \underbrace{11 \ldots 1}_{k_{1}} 00 \ldots 0 *_{2} \underbrace{11 \ldots 1}_{k_{2}} 00 \ldots 0 \ldots . . *_{r} \underbrace{11 \ldots 1}_{k_{r}} 00 \ldots 0
$$

where $*_{i}=1$ and $k_{i}=x_{i}$ if $x_{i}>0$, and $*_{i}=0, k_{i}=0$ if $x_{i}=0$. Observe that there are exactly $n-r-\sum_{i=1}^{r} x_{i}$ free indices of $\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}$ if $x_{i} \leq s_{i}$. Since $S(t)=\cup_{i=0}^{r-1} S_{i}(t)$ is a disjoint union, one has

$$
\begin{aligned}
|S(t)|=\sum_{i=0}^{r-1}\left|S_{i}(t)\right|=\sum_{i=0}^{r-1} \sum_{\sum_{j=1}^{r} x_{j}=i}\left|\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{t}\right| & =\sum_{i=0}^{r-1} 2^{n-r-i} a_{i}(r) \\
& =2^{n-2 r+1} \sum_{i=0}^{r-1}\binom{2 r-1}{i} \\
& =2^{n-2 r+1} \cdot 2^{2 r-2} \\
& =2^{n-1}
\end{aligned}
$$

Lemma 11. Let $t=1^{k} 0^{m}$. Then $\left|S_{j}(t)\right|=b_{j} 2^{m-j}$, where

$$
b_{j}=\left\{\begin{aligned}
1, & j=0 \\
\frac{4^{j}-1}{3}, & 1 \leq j \leq k \\
\frac{4^{k}-1}{3}, & k<j \leq m
\end{aligned}\right.
$$

Proof. The case $j=0$ is trivial. In fact for any $1<j \leq m$,

$$
\begin{aligned}
\left|S_{j}(t)\right| & =\sum_{\sum_{i=1}^{k} x_{i}=j}\left|\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{t}\right| \\
& =\sum_{i=k-j+1}^{k} \sum_{x_{i}>0, \sum_{i} x_{i}=j}\left|\left(0, \ldots, 0, x_{i}, x_{i+1}, \ldots, x_{k}\right)^{t}\right| \\
& =\sum_{i=k-j+1}^{k} 2^{k-i} \cdot 2^{m-j+k-i} \\
& =2^{m-j} \sum_{i=k-j+1}^{k} 2^{2(k-i)} \\
& =b_{j} 2^{m-j}
\end{aligned}
$$

Theorem 12. Let $t=1^{k} 0^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r-k+1}}$, where $w(t)=r, k \geq 1$ and $s_{i} \geq r-1$. Then $|S(t)| \leq 2^{|t|-1}$.

Proof. Suppose that $t^{\prime}=1^{k} 0^{s_{1}}, t^{\prime \prime}=10^{s_{2}} \ldots 10^{s_{r-k+1}}$ such that $\left|t^{\prime}\right|=n_{1},\left|t^{\prime \prime}\right|=n_{2}$, and $|t|=n$. Let b_{j} satisfy $\left|S_{j}\left(t^{\prime}\right)\right|=b_{j} 2^{n_{1}-k-j}$. Then

$$
\begin{aligned}
|S(t)|= & \sum_{i=1}^{r-1}\left|S_{i}(t)\right| \\
= & \sum_{i=0}^{r-1} \sum_{j=0}^{r-i-1}\left|S_{i-j}\left(t^{\prime \prime}\right)\right|\left|S_{j}\left(t^{\prime}\right)\right| \\
= & 2^{n-r}\left[\sum_{i=0}^{r-1} \sum_{j=0}^{r-i-1} b_{j} 2^{-i-j} a_{i}(r-k)\right] \\
= & 2^{n-r}\left[\sum_{i=0}^{r-1} c_{i} a_{i}(r-k)\right] \\
= & 2^{n-r}\left[\sum_{i=0}^{r-k-1} 2^{k-i-1} a_{i}(r-k+1)+\sum_{i=r-k}^{r-2} 2^{r-2 i-2} a_{i}(r-k+1)\right. \\
& \left.\quad+2^{-r+1} a_{r-1}(r-k+1)\right],
\end{aligned}
$$

where $c_{i}=2^{k-i}-\frac{2^{-r+2 k+1}-2^{-r+1}}{3}$ if $0 \leq i \leq r-k-1$, and $c_{i}=\frac{2^{r-2 i}+2^{-r+1}}{3}$ if $r-k \leq i \leq r-1$.

Let $T=1^{k-1} 0^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r-k+1}+1}$. Then $|T|=n$ and $w(T)=r-1$. Similarly,

$$
\begin{aligned}
|S(T)|= & 2^{n-r+1}\left[\sum_{i=0}^{r-k-1} 2^{k-i-2} a_{i}(r-k+1)+\sum_{i=r-k}^{r-3} 2^{r-2 i-3} a_{i}(r-k+1)\right. \\
& \left.\quad+2^{-r+2} a_{r-2}(r-k+1)\right] \\
= & 2^{n-r}\left[\sum_{i=0}^{r-k-1} 2^{k-i-1} a_{i}(r-k+1)+\sum_{i=r-k}^{r-3} 2^{r-2 i-2} a_{i}(r-k+1)\right. \\
& \left.\quad+2^{-r+3} a_{r-2}(r-k+1)\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
|S(T)|-|S(t)| & =2^{n-2 r+1}\left[2 a_{r-2}(r-k+1)-a_{r-1}(r-k+1)\right] \\
& =2^{n-2 r+1}\left[2\binom{2 r-k-2}{r-2}-\binom{2 r-k-1}{r-1}\right] \\
& =\frac{k-1}{r-1}\binom{2 r-k-2}{r-2} 2^{n-2 r+1}>0
\end{aligned}
$$

It follows by induction that $|S(t)| \leq\left|S\left(10^{s_{1}+k-1} 10^{s_{2}} \ldots 10^{s_{r-k+1}+k-1}\right)\right|=2^{n-1}$.

3. A Comparison Lemma and its Application

It was conjectured in [5] that the converse of Theorem 10 is true. Let $t=t_{0} t_{1} \ldots t_{n-1}$ and $T=t 0^{N-n}$ be two binary strings, where $N-n \geq w(t)-1$. Another question is whether $|S(T)| \geq 2^{N-n}|S(t)|$. We cannot prove that, but we have the following result based on the partition on X_{n}. We consider what happens if we add some $0^{\prime} s$ in the string.
Lemma 13. Let $t=10^{s_{1}} \ldots 10^{s_{u}} 10^{s_{u+1}} \ldots 10^{s_{r}}, T=10^{s_{1}} \ldots 10^{s_{u}} 10^{r-1} 10^{r-1} \ldots 10^{s_{r}^{\prime}}$ such that $|t|=|T|=n, w(t)=w(T)=r$. Suppose that $s_{i} \geq r-1$ for any $i \geq u+2$, $s_{r}^{\prime} \geq r-1$. Let $m_{l}=\sum_{i=l}^{u+1}\left(s_{i}+1\right)$ for any $1 \leq l \leq u+1$. Then

$$
\begin{aligned}
&|S(T)|-|S(t)|= \sum_{l=1}^{u+1} \\
& \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l} x_{i}=j} 2^{-r+j+1}\left[a_{r-j-1}(r-u-1)-a_{r-j-2}(r-u)\right] \\
& \times\left|\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l}, 0, \ldots, 0\right)^{T}\right|
\end{aligned}
$$

Proof. Suppose that $l \leq u+1$ and $x_{l}<m_{l}$. By comparing the free indices the cardinality of $\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{t}$ is equal to the cardinality of $\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{T}$. Let

$$
I_{1}=\sum_{l=1}^{u+1} \sum_{x_{l} \geq m_{l}, \sum_{i} x_{i} \leq r-1}\left|\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{T}\right|
$$

$$
I_{2}=\sum_{l=1}^{u+1} \sum_{x_{l} \geq m_{l}, \sum_{i} x_{i} \leq r-1}\left|\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{t}\right|
$$

Then $\Delta=|S(T)|-|S(t)|=I_{1}-I_{2}$.
For any given $\left(x_{1}, x_{2}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{t}$ such that $x_{l} \geq m_{l}$, one has $x_{u+2}=0$ if $x_{l}>m_{l}, x_{u+2}>0$ if $x_{l}=m_{l}$. Moreover, if $x_{l}>m_{l}$, the cardinality of $\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, x_{u+3}, \ldots, x_{r}\right)^{t}$ is equal to the cardinality of $\left(x_{1}, \ldots, x_{l-1}, m_{l}, 0, \ldots, 0, x_{u+2}=x_{l}-m_{l}, x_{u+3}, \ldots, x_{r}\right)^{t}$. So

$$
\begin{aligned}
I_{2} & =2 \sum_{l=1}^{u+1} \sum_{x_{l}=m_{l}, x_{u+2}>0, \sum_{i=1}^{r} x_{i} \leq r-1}\left|\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, \ldots, x_{r}\right)^{t}\right| \\
& =4 \sum_{l=1}^{u+1} \sum_{x_{u+2}>0, \sum_{i=1}^{r} x_{i} \leq r-1}\left|\left(x_{1}, \ldots, x_{l}=m_{l}, 0, \ldots, 0, x_{u+2}, \ldots, x_{r}\right)^{T}\right| \\
& =4 \sum_{l=1}^{u+1} \sum_{j=0}^{r-2} \sum_{\sum_{i=1}^{l} x_{i}=j} \sum_{\sum_{i=u+2}^{r} x_{i} \leq r-j-1, x_{u+2}>0}\left|\left(x_{1}, \ldots, x_{l}=m_{l}, 0, \ldots, 0, x_{u+2}, \ldots, x_{r}\right)^{T}\right| \\
& =4 \sum_{l=1}^{u+1} \sum_{j=0}^{r-2} \sum_{\sum_{i=1}^{l} x_{i}=j} \sum_{k=0}^{r-j-2} 2^{-1-k} a_{k}(r-u-1)\left|\left(x_{1}, \ldots, x_{l}=m_{l}, 0, \ldots, 0\right)^{T}\right| .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
I_{1} & =\sum_{l=1}^{u+1} \sum_{x_{l} \geq m_{l}, \sum_{i=1}^{l} x_{i} \leq r-1}\left|\left(x_{1}, \ldots, x_{l}, 0, \ldots, 0, x_{u+2}, \ldots, x_{r}\right)^{T}\right| \\
& =\sum_{l=1}^{u+1} \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l-1} x_{i}+m_{l}=j} \sum_{y+\sum_{i=u+2}^{r} \leq r-j-1}\left|\left(x_{1}, \ldots, m_{l}+y, 0, \ldots, 0, x_{u+2}, \ldots, x_{r}\right)^{T}\right| \\
& =\sum_{l=1}^{u+1} \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l} x_{i}=j} \sum_{k=0}^{r-j-1} 2^{-k} a_{k}(r-u)\left|\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l}, 0, \ldots, 0\right)^{T}\right|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Delta= & I_{1}-I_{2} \\
= & \sum_{l=1}^{u+1} \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l} x_{i}=j}\left[\sum_{k=0}^{r-j-1} 2^{-k} a_{k}(r-u)-\sum_{k=0}^{r-j-2} 2^{1-k} a_{k}(r-u-1)\right] \\
& \quad \times\left|\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l}, 0, \ldots, 0\right)^{T}\right| \\
= & \sum_{l=1}^{u+1} \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l} x_{i}=j} 2^{-r+j+1}\left[a_{r-j-1}(r-u-1)-a_{r-j-2}(r-u)\right] \\
& \quad \times\left|\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l}, 0, \ldots, 0\right)^{T}\right| .
\end{aligned}
$$

This finishes the proof.
Theorem 14. Let $t=10^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r-1}} 10^{s_{r}}$, where $s_{i} \geq i-2$. Then $|S(t)| \leq$ $2^{|t|-1}$. In particular, $|S(t)| \leq 2^{|t|-1}$ if $s_{1}<s_{2}<\cdots<s_{r}$.

Proof. It is clear that $2^{m}|S(t)| \leq\left|S\left(t 0^{m}\right)\right|=2^{m-1}|S(t 0)|$ for any $m \geq 1$ since $s_{r} \geq r-2$. So we can assume that s_{r} is sufficiently large. We set

$$
t^{(i)}=10^{s_{1}} 10^{s_{2}} \ldots 10^{s_{i}} 10^{r-1} 10^{r-1} \ldots 10^{s_{r, i}}
$$

such that $\left|t^{(i)}\right|=n, w\left(t^{i}\right)=r$, and $s_{r, i} \geq r-1$. Let $m_{l, u+1}=\sum_{i=l}^{u+1}\left(s_{i}+1\right)$ for any $l \leq u+1 \leq r-1$. By Lemma 13,

$$
\begin{aligned}
\Delta_{u}= & \left|S\left(t^{(u)}\right)\right|-\left|S\left(t^{(u+1)}\right)\right| \\
= & \sum_{l=1}^{u+1} \sum_{j=0}^{r-1} \sum_{\sum_{i=1}^{l} x_{i}=j} 2^{-r+j+1}\left[a_{r-j-1}(r-u-1)-a_{r-j-2}(r-u)\right] \\
& \quad \times\left|\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l, u+1}, 0, \ldots, 0\right)^{t^{(u)}}\right|
\end{aligned}
$$

Suppose that $\left(x_{1}, \ldots, x_{l-1}, x_{l}=m_{l, u+1}, 0, \ldots, 0\right)^{t^{(u)}} \neq \emptyset$, where $\sum_{i=1}^{l} x_{i}=j \leq r-1$ and $m_{l, u+1} \geq s_{u+1}+1$. Then $r-j-1 \leq r-s_{u+1}-2 \leq r-u-1$ since $s_{u+1} \geq u-1$. It follows that $a_{r-j-1}(r-u-1)-a_{r-j-2}(r-u) \geq 0$ and $\Delta_{u} \geq 0$. By induction $|S(t)| \leq\left|S\left(t^{(r-2)}\right)\right| \leq\left|S\left(t^{(r-3)}\right)\right| \leq \cdots \leq\left|S\left(t^{(0)}\right)\right|=2^{n-1}$.

Theorem 15. Let $t=10^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r-1}} 10^{s_{r}}$. Suppose that $s_{i}+s_{j} \geq r-2$ for any $1 \leq i, j \leq r$. Then $|S(t)| \leq 2^{|t|-1}$.

Proof. We can assume that $s_{r}<r-1$. Let $T=10^{s_{1}} 10^{s_{2}} \ldots 10^{s_{r-1}} 10^{r-1}$. Suppose that $|T|=N,|t|=n$. It suffice to show that $|S(T)| \geq 2^{N-n}|S(t)|$. Similar to the proof of Lemma 13, one has

$$
\begin{aligned}
&|S(T)|-2^{N-n}|S(t)|= \sum_{\sum x_{i} \leq r-1, x_{r} \geq s_{r}+1}\left|\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{T}\right| \\
&-2^{N-n+1} \sum_{\sum x_{i} \leq r-1, x_{1}>0}\left|\left(x_{1}, x_{2}, \ldots, x_{r}=s_{r}+1\right)^{t}\right| .
\end{aligned}
$$

But

$$
\begin{aligned}
& I_{1}=\sum_{\sum x_{i} \leq r-1}\left|\left(x_{1}, x_{2}, \ldots, x_{r} \geq s_{r}+1\right)^{T}\right|=\sum_{j=0}^{r-s_{r}-2} 2^{N-r-j-s_{r}-1} a_{j}(r), \\
& I_{2}=2 \sum_{\sum x_{i} \leq r-1, x_{1}>0}\left|\left(x_{1}, x_{2}, \ldots, x_{r}=s_{r}+1\right)^{t}\right|=\sum_{j=0}^{r-s_{r}-3} 2^{N-r-s_{r}-j} a_{j}(r-1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
|S(T)|-2^{N-n}|S(t)| & =I_{1}-I_{2} \\
& =2^{N-r-s_{r}-1}\left[\sum_{j=0}^{r-s_{r}-2} a_{j}(r)-\sum_{j=0}^{r-s_{r}-3} 2^{1-j} a_{j}(r-1)\right] \\
& =2^{N-r-s_{r}-1}\left[a_{r-s_{r}-2}(r-1)-a_{r-s_{r}-3}(r)\right] \geq 0 .
\end{aligned}
$$

The proof is completed.
Corollary 16. $|S(t)| \leq 2^{|t|-1}$ if $w(t) \leq 6$.
Proof. We only treat the case $w(t)=6$. Suppose that $t=10^{s_{1}} 10^{s_{2}} 10^{s_{3}} 10^{s_{4}} 10^{s_{5}} 10^{s_{6}}$. Let $t^{\prime}=10^{r_{1}} 10^{r_{2}} 10^{r_{3}} 10^{r_{4}} 10^{r_{5}} 10^{r_{6}}$, where $r_{i}=\min \left\{s_{i}, 5\right\}$. Then $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right.$, $\left.x_{6}\right)^{t} \mapsto\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)^{t^{\prime}}$ is a bijection between $\frac{S(t)}{\sim_{t}}$ and $\frac{S\left(t^{\prime}\right)}{\sim_{t^{\prime}}}$. Moreover, by comparing the number of free indices $\left|\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)^{t}\right|=2^{|t|-\left|t^{\prime}\right|} \mid\left(x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, x_{5}, x_{6}\right)^{t^{\prime}} \mid$. Therefore, $|S(t)|=2^{|t|-\left|t^{\prime}\right|}\left|S\left(t^{\prime}\right)\right|$.

It remains to show that $\left|S\left(t^{\prime}\right)\right| \leq 2^{n^{\prime}-1}$. We can assume that $\left|t^{\prime}\right| \geq 30$. If $\min _{1 \leq i \leq 6}\left\{r_{i}\right\} \geq 2$, then $r_{i}+r_{j} \geq w(t)-2=4$ for any $1 \leq i, j \leq 6$. If $\min _{1 \leq i \leq 6}\left\{r_{i}\right\}=$ $r_{1}=1$, then $\min _{2 \leq i \leq 6}\left\{r_{i}\right\} \geq 3$. If $\min _{1 \leq i \leq 6}\left\{r_{i}\right\}=r_{1}=0$, then $\min _{2 \leq i \leq 6}\left\{r_{i}\right\} \geq 4$. We have $r_{i}+r_{j} \geq w(t)-2=4$ for any $1 \leq i, j \leq 6$. The corollary follows from Theorem 15.

References

[1] C. Carlet, On a weakness of the Tu-Deng functions and its repair. IACR Crypotology ePrint Archive 606 (2009).
[2] G. Cohen, Jean-P. Flori, On a generalized combinatorial conjecture involving addition mod $2^{k}-1$. IACR Cryptology ePrint Archive 400 (2011).
[3] T. W. Cusick, Y. Li, and P. Stănică, On a combinatorial conjecture. Integers 11 (2011), 185-203.
[4] Jean-P. Flori, H. Randriam, G. Cohen, and S. Mesnager, On a conjecture about binary strings distribution. Sequences and Their Applications SETA 2010, LNCS 6338 (2010), 346-358.
[5] Jean-P. Flori, H. Randriam, G. Cohen, and S. Mesnager, On a conjecture about binary strings distribution. IACR Cryptology ePrint Archive 170 (2010).
[6] Jean-P. Flori, H. Randriam, On the number of carries occuring in an addition mod $2^{k}-1$. Integers 12 (2012).
[7] Z. Tu and Y. Deng, A conjecture on binary string and its application on constructing Boolean Functions of optimal algebraic immunity. Designs, Codes and Cryptography 60 (2010), 1-14.
[8] Z. Tu and Y. Deng, A class of 1-Resilient function with high nonlinearity and algebraic immunity. IACR Cryptology ePrint Archive 179 (2010).

