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Abstract
A k-sum of a set A C Z is an integer that may be expressed as a sum of k£ distinct
elements of A. How large can the ratio of the number of (k+ 1)-sums to the number
of k-sums be? Writing k A A for the set of k-sums of A we prove that

(k+1)AA] _ A=k
EAAl T k41

whenever |A| > (k?+7k)/2. The inequality is tight — the above ratio being attained
when A is a geometric progression. This answers a question of Ruzsa.

1. Introduction

Given a set A = {ay,...,a,} of n integers we denote by k A A the set of integers
which may be represented as a sum of k distinct elements of A. In this paper we
consider the problem of how large the ratio |(k+1) A A|/|k A A| can be. The upper

bound
[(k+ 1) A A n

|k A Al ~k+1
is easily obtained using a straightforward double-counting argument.
Ruzsa [1] asked whether this inequality may be strengthened to
[(k+1) A A < n—k
|k A Al T k41

(1)

whenever n is large relative to k. We confirm that this is indeed the case.
Theorem 1.1. Let A be a set of n integers and suppose that n > (k*+7k)/2. Then

((k+1)AA] _ n—k

. 2
EAA]l = k1 @)
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Furthermore, in the case that n > (k®+7k)/2, equality holds if and only if |k AN A| =
(}) and |(k+ 1) N A = (kil).

Since the ratio (n — k)/(k + 1) is obtained for all k in the case that A is a
geometric progression this result is best possible for each pair k,n covered by the
theorem. However, we do not believe that n > (k? + 7k)/2 is a necessary condition
for inequality (2). Indeed, we pose the following question.

Question 1.2. Does (2) hold whenever n > 2k?

The inequality n > 2k is necessary. Indeed, for any pair k,n with n/2 < k <
n — 1 the inequality (2) fails for the set A = {1,...,n} (or indeed any arithmetic
progression of length n). To see this note that |k A A = k(n — k) + 1 for each
k=1,...,n, and that the inequality

(k+1(n—k)+1 < n—k
kn—k)+1 — k+1

holds if and only if k£ < (n—1)/2. Thus, we have also verified for the case that A is
an arithmetic progression that (2) holds whenever n > 2k. We also note for any set
A C Z that (2) holds trivially (and with equality) in the case that k = (n — 1)/2.
Indeed this follows immediately from the symmetry |k A A] = |(n — k) A Ak =
1,...,n—1.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is closely related to the double-counting argument one
uses to prove (1). We recall that argument now.

Fix k € {0,...,n — 1} and a set A = {ay,...,a,} of n integers. We say that
an element s € kA A extends tot € (k+ 1) A A if there exist distinct elements
aiy...,ap+1 of Asuchthat s = a; +---4+ax andt = a3 + -+ + ag41 . Define the
bipartite graph G with vertex sets U = {us : s € kAA} and V = {v; : t € (k+1)AA}
and edge set E(G) = {usv; : sextends tot}. We prove (1) by counting e(G) in two
different ways:

(i) e(G) < n|U], since each vertex us € U has at most n neighbours in V.

(ii) e(G) > (k + 1)|V| since each vertex v; € V is adjacent to each vertex
Ut—q, 1 =1,...,k+ 1, where a1 + -+ ap41 is a (k + 1)-sum to t.

Since |U| = |k A A| and |V| =|(k + 1) A A| we obtain that
(k+DI(k+1)AA <elG) <nlkNA|,

completing the proof of (1).
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The alert reader will note that the extremal cases of each of (i) and (ii) occur in
rather different situations. The inequality e(G) < n|U| may be tight only if each
element s € kA A extends to s+a for all a € A. Equivalently, for each s € kA A and
a € A, s may be represented as a k-sum that does not use a, i.e., s=a; + -+ ag
for distinct aq,...,ar € A\ {a}. In particular, the inequality in (¢) may be tight
only if each k-sum has at least two representations. On the contrary, the second
inequality e(G) > (k 4+ 1)|V| may be tight only if each ¢t € (k+ 1) A A may be
represented as a (k+ 1)-sum in a unique way. This simple observation is the key to
our proof.

We put the above observations into action by defining Qx C k A A to be the set
of s € kA A that have a unique representation as a k-sum and S = (kA A) \ Qx
to be the set of s with at least two representations. We immediately obtain a new
upper bound on e(G), namely:

e(G) < (n—k)|Ux| +n|S| = (n—k)|k N A|+k|S]. (3)

Correspondingly, one may define Qi1 to be the set of ¢ € (k+ 1) A A that are
uniquely represented as a (k+1)-sum and T' = ((k+1) A A) \ Q41 to be the set of
t with at least two representations. It then follows (using Lemma 2.2 below) that

e(G) > (k+ D|Ugy1| + (k+3)|T| = (k+D|(k+1) AA| +2|T]. (4)

Unfortunately (3) and (4) do not directly imply Theroem 1.1 since it is non-trivial
to relate |S| and |T'|. For this reason we define a subgraph H of G as follows. Recall
that a pair usv; is an edge of G if there exists a representation s = a;+---+ay of s
as a k-sum of elements of A and a € A\ {a1,...,a} such that t = s+ a. Include an
edge usv; of G in H if and only if there exist two representations s = a1 +---+ax =
b1+ +by of s as a k-sum of elements of A and a € A\ ({a1,...,ap}U{b1,...,bk})
such that s+ a =t. (Note: if an edge ugsv; of G is included in H then in particular
se€eSandteT.)
We begin with two lemmas.

Lemma 2.1. Let the set S C kA A and the graph H C G be as defined above. Then
e(H) > (n —2k)|S].

Proof. For each s € S the vertex us has degree at least n — 2k in H. Indeed,
writing s = a3 + -+~ + ap = by + --- + by we have that usv; € E(H) for each
te{s+a:ae A\ ({a1,...,apfU{b1,...,0p})}. O

Lemma 2.2. Let the set T C (k+ 1) A A be as defined above. Then dg(vy) > k+3
forallt eT.

Proof. An element ¢t € T has at least two representations t = a1 +---+apy+1 = b1 +
-+ ++bi41 as a (k+1)-sum of elements of A. Furthermore the sets {a1,...,ar+1} and
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{b1,...,bg41} cannot have precisely k common elements (as in that case they would
have different sums). It follows that the set B = {a1,...,ar41}U{b1,...,bg+1} has
cardinality at least k + 3. The proof is now complete since usv; is an edge of G for
each s e {t—b:be B} O

Combining Lemma 2.2 with the trivial bound dg(v¢) > dg(vi) for each t € T,
we deduce that

kE+1 2 2d g (vy)
> 2 - — = .
dg(ve) > k+3(k+3)+k+3dH(vt) k+1+ F 43 (5)
Consequently,
2dp (vt) 2e(H)
> _ '
e(@) > (k+1)|Qk+1|+§ ((k+1)+ F 13 ) (k+D|(k+1)ANA|+ 3

teT

The proof of the theorem is now nearly complete. Indeed, applying Lemma 2.1 we
obtain the bound

2(n — 2K)|9]
> - @@/
e(G) > (k+1)|(k+1)NA|l+ 13
which combined with (3) yields
2(n —2k)|S
4+ DIk +1) A A+ 2028 0 iy a AL+ k1S (6)

k+3

Now, since n > (k? + 7k)/2 the second term on the left hand side is at least the
second term on the right hand side. Thus, (k+ 1)|(k+ 1) A 4| < (n — k)|k A A],
completing the proof of the inequality stated in Theorem 1.1.

In the case that n > (k2 +7k)/2, it follows from (6) that the equality (k+1)|(k+
1) ANA| = (n—k)|k A A|l may only occur if |S| = 0. In this case the k-sums of A are
distinct, and so [k A Al = (}) and [(k+ 1) ANA] = (n—k)[k ANA|/(k+1) = (kj_l)
This completes the proof of Theorem 1.1.
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