$(k+1)$-SUMS VERSUS k-SUMS

Simon Griffiths ${ }^{1}$
IMPA, Est. Dona Castorina 110, Jardim Botânico, Rio de Janeiro, Brazil
sgriff@impa.br

Received: 6/7/12, Revised: 8/15/12, Accepted: 9/30/12, Published: 10/8/12

Abstract

A k-sum of a set $A \subseteq \mathbb{Z}$ is an integer that may be expressed as a sum of k distinct elements of A. How large can the ratio of the number of $(k+1)$-sums to the number of k-sums be? Writing $k \wedge A$ for the set of k-sums of A we prove that $$
\frac{|(k+1) \wedge A|}{|k \wedge A|} \leq \frac{|A|-k}{k+1}
$$ whenever $|A| \geq\left(k^{2}+7 k\right) / 2$. The inequality is tight - the above ratio being attained when A is a geometric progression. This answers a question of Ruzsa.

1. Introduction

Given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n integers we denote by $k \wedge A$ the set of integers which may be represented as a sum of k distinct elements of A. In this paper we consider the problem of how large the ratio $|(k+1) \wedge A| /|k \wedge A|$ can be. The upper bound

$$
\begin{equation*}
\frac{|(k+1) \wedge A|}{|k \wedge A|} \leq \frac{n}{k+1} \tag{1}
\end{equation*}
$$

is easily obtained using a straightforward double-counting argument.
Ruzsa [1] asked whether this inequality may be strengthened to

$$
\frac{|(k+1) \wedge A|}{|k \wedge A|} \leq \frac{n-k}{k+1}
$$

whenever n is large relative to k. We confirm that this is indeed the case.
Theorem 1.1. Let A be a set of n integers and suppose that $n \geq\left(k^{2}+7 k\right) / 2$. Then

$$
\begin{equation*}
\frac{|(k+1) \wedge A|}{|k \wedge A|} \leq \frac{n-k}{k+1} \tag{2}
\end{equation*}
$$

[^0]Furthermore, in the case that $n>\left(k^{2}+7 k\right) / 2$, equality holds if and only if $|k \wedge A|=$ $\binom{n}{k}$ and $|(k+1) \wedge A|=\binom{n}{k+1}$.

Since the ratio $(n-k) /(k+1)$ is obtained for all k in the case that A is a geometric progression this result is best possible for each pair k, n covered by the theorem. However, we do not believe that $n \geq\left(k^{2}+7 k\right) / 2$ is a necessary condition for inequality (2). Indeed, we pose the following question.

Question 1.2. Does (2) hold whenever $n>2 k$?
The inequality $n>2 k$ is necessary. Indeed, for any pair k, n with $n / 2 \leq k \leq$ $n-1$ the inequality (2) fails for the set $A=\{1, \ldots, n\}$ (or indeed any arithmetic progression of length $n)$. To see this note that $|k \wedge A|=k(n-k)+1$ for each $k=1, \ldots, n$, and that the inequality

$$
\frac{(k+1)(n-k)+1}{k(n-k)+1} \leq \frac{n-k}{k+1}
$$

holds if and only if $k \leq(n-1) / 2$. Thus, we have also verified for the case that A is an arithmetic progression that (2) holds whenever $n>2 k$. We also note for any set $A \subseteq \mathbb{Z}$ that (2) holds trivially (and with equality) in the case that $k=(n-1) / 2$. Indeed this follows immediately from the symmetry $|k \wedge A|=|(n-k) \wedge A|, k=$ $1, \ldots, n-1$.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is closely related to the double-counting argument one uses to prove (1). We recall that argument now.

Fix $k \in\{0, \ldots, n-1\}$ and a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n integers. We say that an element $s \in k \wedge A$ extends to $t \in(k+1) \wedge A$ if there exist distinct elements a_{1}, \ldots, a_{k+1} of A such that $s=a_{1}+\cdots+a_{k}$ and $t=a_{1}+\cdots+a_{k+1}$. Define the bipartite graph G with vertex sets $U=\left\{u_{s}: s \in k \wedge A\right\}$ and $V=\left\{v_{t}: t \in(k+1) \wedge A\right\}$ and edge set $E(G)=\left\{u_{s} v_{t}: s\right.$ extends to $\left.t\right\}$. We prove (1) by counting $e(G)$ in two different ways:
(i) $e(G) \leq n|U|$, since each vertex $u_{s} \in U$ has at most n neighbours in V.
(ii) $e(G) \geq(k+1)|V|$ since each vertex $v_{t} \in V$ is adjacent to each vertex $u_{t-a_{i}}: i=1, \ldots, k+1$, where $a_{1}+\cdots+a_{k+1}$ is a $(k+1)$-sum to t.

Since $|U|=|k \wedge A|$ and $|V|=|(k+1) \wedge A|$ we obtain that

$$
(k+1)|(k+1) \wedge A| \leq e(G) \leq n|k \wedge A|
$$

completing the proof of (1).

The alert reader will note that the extremal cases of each of (i) and (ii) occur in rather different situations. The inequality $e(G) \leq n|U|$ may be tight only if each element $s \in k \wedge A$ extends to $s+a$ for all $a \in A$. Equivalently, for each $s \in k \wedge A$ and $a \in A, s$ may be represented as a k-sum that does not use a, i.e., $s=a_{1}+\cdots+a_{k}$ for distinct $a_{1}, \ldots, a_{k} \in A \backslash\{a\}$. In particular, the inequality in (i) may be tight only if each k-sum has at least two representations. On the contrary, the second inequality $e(G) \geq(k+1)|V|$ may be tight only if each $t \in(k+1) \wedge A$ may be represented as a $(k+1)$-sum in a unique way. This simple observation is the key to our proof.

We put the above observations into action by defining $Q_{k} \subseteq k \wedge A$ to be the set of $s \in k \wedge A$ that have a unique representation as a k-sum and $S=(k \wedge A) \backslash Q_{k}$ to be the set of s with at least two representations. We immediately obtain a new upper bound on $e(G)$, namely:

$$
\begin{equation*}
e(G) \leq(n-k)\left|U_{k}\right|+n|S|=(n-k)|k \wedge A|+k|S| \tag{3}
\end{equation*}
$$

Correspondingly, one may define Q_{k+1} to be the set of $t \in(k+1) \wedge A$ that are uniquely represented as a $(k+1)$-sum and $T=((k+1) \wedge A) \backslash Q_{k+1}$ to be the set of t with at least two representations. It then follows (using Lemma 2.2 below) that

$$
\begin{equation*}
e(G) \geq(k+1)\left|U_{k+1}\right|+(k+3)|T|=(k+1)|(k+1) \wedge A|+2|T| . \tag{4}
\end{equation*}
$$

Unfortunately (3) and (4) do not directly imply Theroem 1.1 since it is non-trivial to relate $|S|$ and $|T|$. For this reason we define a subgraph H of G as follows. Recall that a pair $u_{s} v_{t}$ is an edge of G if there exists a representation $s=a_{1}+\cdots+a_{k}$ of s as a k-sum of elements of A and $a \in A \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ such that $t=s+a$. Include an edge $u_{s} v_{t}$ of G in H if and only if there exist two representations $s=a_{1}+\cdots+a_{k}=$ $b_{1}+\cdots+b_{k}$ of s as a k-sum of elements of A and $a \in A \backslash\left(\left\{a_{1}, \ldots, a_{k}\right\} \cup\left\{b_{1}, \ldots, b_{k}\right\}\right)$ such that $s+a=t$. (Note: if an edge $u_{s} v_{t}$ of G is included in H then in particular $s \in S$ and $t \in T$.)

We begin with two lemmas.
Lemma 2.1. Let the set $S \subseteq k \wedge A$ and the graph $H \subseteq G$ be as defined above. Then $e(H) \geq(n-2 k)|S|$.

Proof. For each $s \in S$ the vertex u_{s} has degree at least $n-2 k$ in H. Indeed, writing $s=a_{1}+\cdots+a_{k}=b_{1}+\cdots+b_{k}$ we have that $u_{s} v_{t} \in E(H)$ for each $t \in\left\{s+a: a \in A \backslash\left(\left\{a_{1}, \ldots, a_{k}\right\} \cup\left\{b_{1}, \ldots, b_{k}\right\}\right)\right\}$.

Lemma 2.2. Let the set $T \subseteq(k+1) \wedge A$ be as defined above. Then $d_{G}\left(v_{t}\right) \geq k+3$ for all $t \in T$.

Proof. An element $t \in T$ has at least two representations $t=a_{1}+\cdots+a_{k+1}=b_{1}+$ $\cdots+b_{k+1}$ as a $(k+1)$-sum of elements of A. Furthermore the sets $\left\{a_{1}, \ldots, a_{k+1}\right\}$ and
$\left\{b_{1}, \ldots, b_{k+1}\right\}$ cannot have precisely k common elements (as in that case they would have different sums). It follows that the set $B=\left\{a_{1}, \ldots, a_{k+1}\right\} \cup\left\{b_{1}, \ldots, b_{k+1}\right\}$ has cardinality at least $k+3$. The proof is now complete since $u_{s} v_{t}$ is an edge of G for each $s \in\{t-b: b \in B\}$.

Combining Lemma 2.2 with the trivial bound $d_{G}\left(v_{t}\right) \geq d_{H}\left(v_{t}\right)$ for each $t \in T$, we deduce that

$$
\begin{equation*}
d_{G}\left(v_{t}\right) \geq \frac{k+1}{k+3}(k+3)+\frac{2}{k+3} d_{H}\left(v_{t}\right)=k+1+\frac{2 d_{H}\left(v_{t}\right)}{k+3} . \tag{5}
\end{equation*}
$$

Consequently,
$e(G) \geq(k+1)\left|Q_{k+1}\right|+\sum_{t \in T}\left((k+1)+\frac{2 d_{H}\left(v_{t}\right)}{k+3}\right)=(k+1)|(k+1) \wedge A|+\frac{2 e(H)}{k+3}$.
The proof of the theorem is now nearly complete. Indeed, applying Lemma 2.1 we obtain the bound

$$
e(G) \geq(k+1)|(k+1) \wedge A|+\frac{2(n-2 k)|S|}{k+3}
$$

which combined with (3) yields

$$
\begin{equation*}
(k+1)|(k+1) \wedge A|+\frac{2(n-2 k)|S|}{k+3} \leq(n-k)|k \wedge A|+k|S| . \tag{6}
\end{equation*}
$$

Now, since $n \geq\left(k^{2}+7 k\right) / 2$ the second term on the left hand side is at least the second term on the right hand side. Thus, $(k+1)|(k+1) \wedge A| \leq(n-k)|k \wedge A|$, completing the proof of the inequality stated in Theorem 1.1.

In the case that $n>\left(k^{2}+7 k\right) / 2$, it follows from (6) that the equality $(k+1) \mid(k+$ 1) $\wedge A|=(n-k)| k \wedge A \mid$ may only occur if $|S|=0$. In this case the k-sums of A are distinct, and so $|k \wedge A|=\binom{n}{k}$ and $|(k+1) \wedge A|=(n-k)|k \wedge A| /(k+1)=\binom{n}{k+1}$. This completes the proof of Theorem 1.1.

Acknowledgements This work began during the course of Imre Ruzsa on "Sumsets and Structure" [2] at the CRM, Barcelona. Thanks are due to Imre for his excellent course and stimulating problems, and to the organizers and the CRM for their hospitality.

References

[1] I. Ruzsa, Open problem included as Problem 30 (page 202) of the following reference.
[2] A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser Basel, 2008.

[^0]: ${ }^{1}$ currently supported by CNPq Proc. 500016/2010-2.

