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Abstract
We provide bijective proofs of some recent convolution identities for the Stirling
numbers of the first kind, which were proven earlier using algebraic methods, by
defining appropriate sign-changing involutions.

1. Introduction

The Stirling numbers of the first kind, which we’ll denote by s(n, k), may be defined
by the generating function

x(x− 1) · · · (x− n + 1) =
n�

k=0

s(n, k)xk.

Thus, they are the connection constants between two of the most fundamental bases
of the vector space of polynomials in one variable. They are also given, equivalently,
by the triangular recurrence relation

s(n + 1, k) = s(n, k − 1)− ns(n, k), 1 � k � n + 1,

with initial values s(n, 0) = δn,0 and s(0, k) = δ0,k for all non-negative integers n
and k. Note further that s(n, k) = 0 if k � 0 and n < k or if n � 0 > k. Numerous
properties of the s(n, k) can be found, for example, in the books [1, Ch. 24], [5],
and [6] as well as at [8, A008275]. We use the notation s(n, k) for consistency with
[2], though there are some advantages to the bracket notation used in [6] (see also
[7]).

The following convolution identities for s(n, k) are the main results in [2] and
were established there by algebraic methods using recurrences:
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s(n− j, k + m)

(n− j)!
=
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n!

m�

r=0

(−1)rs(n−m,k + r)s(m + 1,m + 1− r), (1)
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(−1)m+1−k+rs(m + 1, k − r)s(n−m, r), (2)
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�
s(n− r, k + m)

(n− r)!
. (3)

They hold for all non-negative integers n, k, and m with n � m and occur as
Theorems 1, 3, and 4, respectively, in [2]. Here, we provide bijective proofs of
these identities in the style of [3] and [4] by defining appropriate sign-changing
involutions. We will use the main combinatorial interpretation of |s(n, k)| as the
number of ways in which to arrange n distinct objects in k cycles. In particular,
recall that c(n, k) := (−1)n−ks(n, k) = |s(n, k)| defines the signless Stirling number
of the first kind, which gives the cardinality of the set consisting of the permutations
of [n] = {1, 2, . . . , n} having k cycles (see, e.g., [9, p. 18]).

We will use the convention that empty sums take the value zero and empty
products the value one. If n � 0, then the binomial coefficient

�n
k

�
is given by

n!
k!(n−k)! if 0 � k � n and is zero if k < 0 or if k > n.

2. Combinatorial Proofs

In this section, we provide bijective proofs of identities (1)–(3). Using s(n, k) =
(−1)n−kc(n, k), the left-hand side of each one of the identities (1)–(3) may be inter-
preted as a signed sum of cardinalities of certain classes of combinatorial objects.
We then define an involution in each case on the union of these classes which re-
verses the sign. The set of survivors of the involution (i.e., the set of unmatched
objects) will comprise a subset of the objects whose (signed) cardinality is given by
the right-hand side of the identity, which establishes it.

2.1. Identity (3)

We first prove identity (3), rewritten slightly in the form

n�
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mj−k−ms(n, j) =
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s(n− r, k + m). (4)
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Proof. We will assume further that n � 1 and 0 � k � n − m, for otherwise
the identity is trivial. If k + m � j � n, then let Aj denote the set of “painted”
permutations of [n] having j cycles wherein exactly k +m cycles are unpainted and
each of the remaining j − k −m is painted with one of m possible colors, labeled
1, 2, . . . ,m. Define the sign of λ ∈ Aj by sgn(λ) = (−1)n−j and let A = ∪n

j=k+mAj .
Then the left-hand side of (4) gives the total signed weight of all of the members of
A according to the number of cycles j.

Let A∗ ⊆ A consist of those permutations in which all painted cycles are single-
tons and no two cycles are painted the same color. Then the right-hand side of (4)
gives the total signed weight of all of the members of A∗ according to the number
of colors used to paint cycles. To see this, suppose that exactly r colors are used to
paint cycles in λ ∈ A∗. Then there are

�m
r

�
choices for the colors,

�n
r

�
choices for the

elements of [n] occurring in painted cycles, and r! ways to assign the colors to the
cycles. The remaining n− r elements of [n] are then arranged in k + m unpainted
cycles, which accounts for the s(n − r, k + m) factor. Note that the sign of λ is
(−1)n−(k+m)−r.

To complete the proof of (4), it suffices to identify a sign-changing involution of
A − A∗. To do so, suppose α ∈ A − A∗ and that io is the smallest index i ∈ [m]
such that there are at least two elements of [n] belonging to cycles painted by color
i. Let a < b denote the two smallest elements of [n] occurring within the cycles of
α that are painted with color io. Let us assume further that the smallest element is
written first within each cycle. If the cycle (a · · · b · · · ) occurs in α, then replace it
with the two shorter cycles (a · · · ), (b · · · ) (both painted color io), and if the cycles
(a · · · ) and (b · · · ) occur in α, then merge them into one large cycle (a · · · b · · · )
(of the same color), leaving the rest of α undisturbed. If α� denotes the resulting
permutation, then α and α� have opposite sign (as the number of! cycles differs by
one) and the mapping α �→ α� is an involution of A−A∗. ✷

To illustrate the involution, suppose n = 20, k = 1, m = 4, and j = 11 and let
α ∈ A11 be given by

α =(1, 3)4, (2, 15)3, (4, 5, 11, 7), (6)4, (8, 12)3, (9)3, (10), (13, 18, 16),
(14), (17)1, (19, 20),

where the color of each painted cycle is denoted by a superscript and the remaining
cycles are unpainted. Then io = 3 and α� ∈ A10 is given by

α� =(1, 3)4, (2, 15, 8, 12)3, (4, 5, 11, 7), (6)4, (9)3, (10), (13, 18, 16), (14),
(17)1, (19, 20).
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2.2. Identity (1)

We next prove identity (1), rewritten as
m�

j=0

n!
(n− j)!

�
m

j

�
s(n− j, k + m) =

m�

j=0

s(n−m,k + j)c(m + 1,m + 1− j). (5)

Proof. We will assume further that n � 1 and 0 � k < n −m, for otherwise the
identity is trivial. Suppose j is fixed, 0 � j � m. Let (α,β) denote an ordered pair,
where α = ((a1, b1), (a2, b2), . . . , (aj , bj)) is itself a sequence of j ordered pairs in
which a1, a2, . . . , aj are distinct elements of [n] (in any order) and each bi belongs to
[m] with b1 < b2 < · · · < bj , and β is a permutation of the set [n]− {a1, a2, . . . , aj}
having k + m cycles. Let Bj denote the set consisting of all such possible ordered
pairs (α,β). Note that |Bj | = n!

(n−j)!

�m
j

�
c(n − j, k + m). Let members of Bj have

sign (−1)n−j−k−m and let B = ∪m
j=0Bj . Then the sum on the left-hand side of (5)

gives the total signed weight of all the members of B.
We describe the members of Bj more closely. Suppose (α,β) ∈ Bj is as given

above. Let S = {b1, b2, . . . , bj} and Sc = [m] − S = {c1, c2, . . . , cm−j}, where
c1 < c2 < · · · < cm−j . For convenience, let c0 = 0 and cm+1−j = m + 1. Note
that for each i ∈ [j], we have ct < bi < ct+1 for some uniquely determined index
t ∈ {0, 1, . . . ,m − j}. Furthermore, we assume that the cycles of the permutation
β are written so that the smallest element is first within each cycle, with the cycles
arranged from left to right in increasing order according to first elements.

Now let B∗j ⊆ Bj consist of those ordered pairs (α,β) satisfying the following
properties:

(i) the first m− j cycles of β from left to right are singletons;
(ii) if i ∈ [j] and (ai, bi) ∈ α, then ai is less than the first element of the (t + 1)-st

cycle of β, where ct < bi < ct+1.

Let B∗ = ∪m
j=0B∗j . In Lemma 2.1 below, we show that

|B∗j | = c(n−m,k + j)c(m + 1,m + 1− j), 0 � j � m,

which implies that the signed weight of all the members of B∗ is given by the
right-hand side of (5).

To complete the proof of (5), it is then enough to define a sign-changing involution
of B − B∗. Suppose λ = (α,β) ∈ B − B∗. Let �o be the smallest index � ∈ [m] such
that one of the following conditions holds:

(i) � = cr for some r ∈ [m− j], with the r-th cycle of β containing at least two
elements;

(ii) � = bi for some i ∈ [j], with ct < bi < ct+1 and ai larger than the first element
of the (t + 1)-st cycle of β.
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If condition (i) holds and �o = cro , then remove the second element w of the ro-th
cycle and insert the ordered pair (w, cro) into α (which can only be done in one
way since the sequence of second entries in α increases). If (ii) holds and �o = bio ,
then remove the ordered pair (aio , bio) from α and add aio to β just after the first
element of the (to + 1)-st cycle, where cto < bio < cto+1. Let λ� denote the member
of B which results from performing either of the above procedures. Then λ and
λ� have opposite parity since j, the length of α, changes by one and the mapping
λ �→ λ� is seen to be an involution of B − B∗. ✷

To illustrate the involution, suppose n = 24, m = 10, and k = 1. We define
λ = (α,β) ∈ B as follows, using the notation in the preceding proof. Let j = 6 and
S = {1, 3, 4, 7, 8, 10} so that b1 = 1, b2 = 3, etc., and c1 = 2, c2 = 5, c3 = 6, and
c4 = 9. Let α be the sequence of ordered pairs (ai, bi) given by

α = ((2, 1), (1, 3), (4, 4), (5, 7), (7, 8), (9, 10)),

and let β be the permutation of [24]− {1, 2, 4, 5, 7, 9} given by

β = (3), (6), (8, 15, 10), (11, 17), (12), (13, 16), (14, 18), (19), (20), (21, 24), (22, 23).

Then λ ∈ B − B∗, with �o = 6, since it is the smallest index � ∈ [10] for which
either condition (i) or (ii) above holds. Note that (i) holds and ro = 3 since c3 = 6.
Applying the involution, we obtain λ� = (α�,β�) ∈ B − B∗ in which

α� = ((2, 1), (1, 3), (4, 4), (15, 6), (5, 7), (7, 8), (9, 10))

and

β� = (3), (6), (8, 10), (11, 17), (12), (13, 16), (14, 18), (19), (20), (21, 24), (22, 23).

Note that λ and λ� have opposite parity since j = 7 in λ� and that �o = 6 in λ� with
condition (ii) holding.

We now prove our claim concerning |B∗j |. In the proof that follows, we use
[m,n] to denote the set {m,m + 1, . . . , n} if m � n are non-negative integers, with
[m,n] = ∅ if m > n.

Lemma 2.1 If B∗j is as defined above, then

|B∗j | = c(n−m,k + j)c(m + 1,m + 1− j), 0 � j � m. (6)

Proof. We may further assume j � n − m − k, for otherwise B∗j = ∅ and the
result is clear. We’ll use the same notation as in the proof above when discussing
(α,β) ∈ B∗j . Note that β must have at least m + 1 − j cycles since m < n and
suppose that r is the smallest member of the (m + 1− j)-th cycle of β. Since each
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ai is less than r, as are the elements comprising the first m− j cycles of β, we have
r � m+1. On the other hand, we also have r � m+1 since r is the smallest element
of the permutation obtained by taking away from β its first m− j cycles; note that
this permutation is of size (n− j)− (m− j) = n−m, with its elements belonging to
[n]. Thus, we have r = m + 1, which implies that the elements of {a1, a2, . . . , aj},
taken together with the elements belonging to the first m− j cycles of β, comprise
the set [m]. Therefore, the remaining cycles of β compr! ise a permutation of the
set [m+1, n] having (k+m)−(m−j) = k+j cycles, whence there are c(n−m,k+j)
choices for these cycles.

So to complete the proof of (6), we need to show that there are c(m+1,m+1−j)
choices for α and the first m − j cycles of β. If 1 � i � m + 1 − j, then let
Ji = [ci−1 + 1, ci − 1]; note that Ji = ∅ if ci = ci−1 + 1. Let Ki = {as : s ∈
[j] with bs ∈ Ji}, construed as a sequence in the obvious way; note that Ki is the
empty sequence if Ji = ∅. Let (di), (d2), . . . , (dm−j) denote the first m− j cycles of
β from left to right. Let us now form the permutation of [m + 1] having m + 1− j
cycles whose i-th cycle comprises the sequence diKi for each i ∈ [m + 1− j], where
dm+1−j = m + 1 and diKi connotes the sequence obtained by writing di before
the sequence Ki so that the (new) first element is di. Note that here the largest
element is written first within the cycles of the resulting permutation. Since the
process just described of forming a permutation of [m+1] havin! g m+1− j cycles
starting from α and the elements di is easily seen to be reversible, there are then
c(m + 1,m + 1− j) choices regarding α and the di, which completes the proof. ✷

We illustrate the correspondence described in the second paragraph of the last
proof. Let m = 11 and j = 7. Suppose α = ((ai, bi))1≤i≤7 is given by

α = ((6, 2), (2, 3), (4, 4), (9, 7), (3, 8), (1, 10), (11, 11)),

whence c1 = 1, c2 = 5, c3 = 6, c4 = 9 and d1 = 5, d2 = 7, d3 = 8, d4 = 10. Then
the resulting permutation σ of [12] having 5 cycles is given by

σ = (5), (7, 6, 2, 4), (8), (10, 9, 3), (12, 1, 11);

note that K1 and K3 are both empty.

2.3. Identity (2)

Combining the arguments for (1) and (3) above will give a combinatorial explanation
of (2), rewritten as

n−k+1�

j=0

�
k − 1 + j

j

�
mjs(n, k − 1 + j) =

k�

j=0

c(m + 1, k − j)s(n−m, j). (7)
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Proof. We will assume further that 1 � k � n + 1, for otherwise the identity is
trivial. If 0 � j � n−k+1, then let Cj denote the set of permutations of [n] having
k− 1+ j cycles wherein j cycles are each painted with one of m possible colors and
the remaining k− 1 cycles are unpainted. Applying the involution used to show (4)
above to C = ∪n−k+1

j=0 Cj yields

n−k+1�

j=0

�
k − 1 + j

j

�
mjs(n, k − 1 + j) =

m�

j=0

j!
�

m

j

��
n

j

�
s(n− j, k − 1).

Note that the right-hand side of this identity gives the total signed weight of the
set of survivors C∗ of the involution, which consists of those members of C whose
painted cycles are all singletons with no two cycles painted the same color. Applying
now a slightly modified version of the involution used to show (5) above to C∗ yields

m�

j=0

j!
�

m

j

��
n

j

�
s(n− j, k − 1) =

k�

j=0

c(m + 1, k − j)s(n−m, j).

Combining the two involutions then gives (7). ✷
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