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Abstract
Let (bn) = (b1, b2, . . . ) be a sequence of integers. A primitive prime divisor of a
term bk is a prime which divides bk but does not divide any of the previous terms of
the sequence. A zero orbit of a polynomial ϕ(z) is a sequence of integers (cn) where
the n-th term is the n-th iterate of ϕ at 0. We consider primitive prime divisors of
zero orbits of polynomials. In this note, we show that for c, d in Z, where d ≥ 2 and
c "= ±1, every iterate in the zero orbit of ϕ(z) = zd + c contains a primitive prime
divisor whenever zero has an infinite orbit. If c = ±1, then every iterate after the
first contains a primitive prime divisor.

1. Introduction

A dynamical system is a pair (ϕ, S) where S is a set and ϕ is a map from S to itself.
Given such a pair, the orbit of an element α ∈ S under ϕ is the set

{ϕ(α),ϕ2(α), . . . ,ϕn(α), . . . }

where
ϕn(z) = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n times

(z).

Such an element α can classified according to the size of the orbit. If the orbit
contains only finitely many values, then α is a preperiodic point. If the orbit contains
infinitely many values, then α is a wandering point. If we restrict to the case where
S = Z and ϕ ∈ Z[z], the orbit of a wandering point α, will yield an infinite sequence
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of integers. Some very natural questions about prime factorization and divisibility
in these sequences arise. In particular, one can ask which iterates in the orbit
contain prime divisors not dividing any previous term.

Definition 1. Let (bn) = (b1, b2, . . . ) be a sequence of integers. We say that the
term bn contains a primitive prime divisor if there exists a prime p such that p | bn,
but p ! bi for i < n.

Questions about terms containing primitive prime divisors have been asked for a
number of different recurrence sequences. Classical results by Bang [1] (for b = 1)
and Zsigmondy [11] showed that for any a, b ∈ N, every term in the sequence an−bn

has a primitive prime divisor past the sixth term. The question of primitive prime
divisors in second-order linear recurrence sequences was completely solved by Bilu,
Hanrot, and Voutier in [2].

Recent papers have addressed the question of primitive prime divisors in nonlin-
ear recurrence sequences. Elliptic divisibility sequences, for example, were consid-
ered by Silverman in [8], and later by Everest, Mclaren, and Ward in [3] and Yabuta
in [10]. In our paper, we consider recurrence sequences generated by the orbit of
wandering points of non-linear polynomials. This question was first addressed by
Rice [7].

Theorem 2. (Rice 2007) Let ϕ(z) ∈ Z[z] be a monic polynomial of degree d ≥ 2.
Suppose that (bn) = ϕn(0) has infinite orbit under iteration of ϕ such that (bn)
is a rigid divisibility sequence. Then all but finitely many terms of the sequence
(α,ϕ(α),ϕ2(α), . . . ) contain a primitive prime divisor.

See Section 2 for a definition of rigid divisibility sequences. Rice also showed that
if zero is a preperiodic point of a monic polynomial of degree ≥ 2, then the orbit
of any wandering point has finitely many terms which contain no primitive prime
divisor. Silverman and Ingram [5] later generalized this result to arbitrary rational
maps over number fields. Faber and Granville [4] also considered rational maps,
φ, over number fields, but they looked at primitive prime divisors in the sequence
generated by

(
φn+∆(α)− φn(α)

)
for a wandering point α and a fixed integer ∆ ≥ 1.

Silverman and Ingram use Roth’s theorem to prove their result, and therefore
their proof does not give a means to find an effective upper bound on the terms
without primitive prime divisors. Rice also remarks that though his bounds are
effectively computable, he does not compute them. Silverman [9] proposed that it
would be of interest to compute explicit upper bounds on n for the terms which
contain no primitive prime divisor, when the polynomial ϕ(z) and α are fixed. In
this paper, we answer this question for a certain class of polynomials. We prove

Theorem 3. Let ϕ ∈ Z[z] be the polynomial ϕ(z) = zd + c, where c, d ∈ Z and
d ≥ 2. Suppose that zero is a wandering point of ϕ and write bn = ϕn(0). Then

1. If c = ±1, then bn contains a primitive prime for all n ≥ 2.
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2. For all other c ∈ Z, bn contains a primitive prime for all n ≥ 1.

We prove Theorem 3 in two parts. We begin by showing that for the sequence
(bn), defined in the statement of the theorem, there is an upper bound on the size of
the product of all prime divisors of a term bn which are not primitive prime divisors.
We then show that the sequence grows too fast for any one term to not contain a
primitive prime divisor (other than possibly the first term).

Acknowledgements. The authors would like to thank Joe Silverman for originally
drawing their attention to the problem. They would also like to thank Michelle
Manes and Rafe Jones for the helpful comments and suggestions. Thanks also goes
to the organizers of the NSF-funded Arizona Winter School, at which the initial
research for this paper took place.

2. Rigid Divisibility Sequences

In order to prove Theorem 3, we make use of a special type of divisibility sequence,
with terminology taken from Jones [6] and Rice [7]. For α ∈ Z, let vp(α) denote
the valuation at p of α. A sequence (bn) of integers is said to be a rigid divisiblity
sequence if for every prime p the following two properties hold:

1. If vp(bn) > 0 then vp(bnk) = vp(bn) for all k ≥ 1, and

2. If vp(bn) > 0 and vp(bm) > 0 then vp(bn) = vp(bm) = vp(bgcd(m,n)).

Lemma 4. (Rice [7]) Let ϕ ∈ Z[z] be the polynomial ϕ(z) = zd + c, where c, d ∈ Z
and d ≥ 2. Let zero be a wandering point of ϕ and write bn = ϕn(0). Then (bn) is
a rigid divisibility sequence.

Proof. Let p be a prime and suppose vp(bn) = e > 0 for some n, e ∈ N. Then
bn = pem for some m where p ! m. Then

bn+1 = pedmd + c = pe+1
(
pe(d−1)−1md

)
+ c ≡ c (mod pe+1),

with the last congruence possible because d ≥ 2. But b1 = c so bn+1 ≡ b1

(mod pe+1). By induction on t, we have bn+t ≡ bt (mod pe+1), and so in general for
k ≥ 1, bkn+r ≡ br (mod pe+1), and in particular, for r = 0, we get vp(bkn) = vp(bn).

Now suppose m,n ∈ N such that vp(bm) > 0 and vp(bn) > 0. Without loss of
generality, suppose m < n and m !n (the case where m|n has already been covered).
Let s, t ∈ N such that t ≥ 1 and sm + tn = gcd(m,n). Then

bgcd(m,n) = bsm+tn ≡ btn ≡ bn (mod pe+1),

therefore vp

(
bgcd(m,n)

)
= vp(bn), and since m is a positive multiple of gcd(m,n), we

also conclude vp

(
bgcd(m,n)

)
= vp(bm).
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Remark 5. Rice actually proves a more general result than Lemma 4. In Propo-
sitions 3.1 and 3.2 from [7], he shows that for any polynomial ϕ of degree d ≥ 2
that has a wandering orbit at zero, then the sequence bn as defined in Lemma 4 is
a rigid divisibility sequence if and only if the coefficient of the linear term of ϕ is
zero.

Suppose (bn) is a rigid divisibility sequence. For every n, we can write

bn = pe1
1 pe2

2 . . . pek
k qf1

1 . . . qf!

!

where pi are the primitive prime divisors of bn and qj are the prime divisors of bn

which are not primitive. Let

Pn = pe1
1 . . . pek

k = the primitive part of bn and

Nn = qf1
1 . . . qf!

! = the non-primitive part of bn.

Lemma 6. Let (bn) be a rigid divisibility sequence and let Pn and Nn be as above.
Then

Nn =
∏

d|n,d"=n

Pd.

Proof. Let p be a prime divisor in the non-primitive part of bn. Then there exists
some positive integer d < n such that p is a primitive prime divisor of bd. By
Property 2 of rigid divisibility sequences, vp(bn) = vp(bd) = vp(bgcd(d,n)). Since p is
a primitive prime divisor of bd, we must have gcd(d, n) ≥ d and so d | n. Therefore
Nn divides

∏
d|n,d"=n Pd.

Now suppose d | n and suppose q is a primitive prime divisor of bd. Then
by Property 1, vq(bd) = vq(bn). Therefore the product

∏
d|n,d"=n Pd divides Nn,

completing the proof.

Armed with these two results, we are now able to proceed with the main theorem
of this paper.

3. Proof of Main Result

We begin this section with two useful lemmas.

Lemma 7. Let ϕ ∈ Z[z] be the polynomial ϕ(z) = zd + c, where c, d ∈ Z and d ≥ 2.
Let a ∈ Z, and for nonnegative n ∈ Z, define the sequence (ba,n) by

ba,0 = a and ba,n+1 = ϕ(ba,n)

and let Ba,n = |ba,n|. If |a| ≥ |c| and |a| > 2 then (Ba,n) is an increasing sequence.
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Proof. We prove this by induction. For the base case,

Ba,1 = |ϕ(a)| =
∣∣ad + c

∣∣ > |2a|− |c| ≥ |a| .

Now suppose (Ba,n) is increasing on n ≤ N . Then

Ba,N+1 = |ϕ(ba,N )| =
∣∣(ba,N )d + c

∣∣ > |2ba,N |− |c| > Ba,N + |a|− |c| ≥ Ba,N ,

completing the proof.

The statement of Theorem 3 requires zero to be a wandering point of ϕ. In
the next lemma, we characterize all polynomials over Z of the form zd + c for
which zero is a preperiodic point. Rice proves a more general result by giving a
complete classification of monic polynomials for which the orbit of zero is finite (see
[7, Proposition 2.1]). Nevertheless, the special case where ϕ(z) = zd +c is a relevant
lemma with a straightforward proof. We therefore provide a full proof.

Lemma 8. Let ϕ ∈ Z[z] be the polynomial ϕ(z) = zd + c, where c, d ∈ Z and d ≥ 2.
Then either

1. Zero is a wandering point and the sequence (Bn), defined by Bn = |ϕn(0)|, is
an increasing sequence, or

2. Zero is a preperiodic point and exactly one of the following is true

(a) c = 0,

(b) c = −1 and d is even, or

(c) c = −2 and d = 2.

Proof. Note that ϕ(0) = c, so if c /∈ {0,±1,±2}, then (Bn) is an increasing sequence
by Lemma 7, and so zero must be a wandering point.

For c > 0, a simple induction shows that (ϕn(0)) is an increasing sequence, and
so zero is a wandering point.

If c = 0 then ϕ(0) = 0 and zero is a preperiodic point.
Now suppose c = −1. If d is even, then ϕ(0) = −1 and ϕ(−1) = 0 and therefore

zero is a preperiodic point. If d is odd then ϕ(0) = −1, ϕ(−1) = −2, and ϕ(−2) =
(−2)d − 1. Since |ϕ(−2)| > 2, we can apply Lemma 7 to show that all subsequent
iterates grow in absolute value.

Finally, suppose c = −2. If d = 2 then ϕ(0) = −2, ϕ(−2) = 2, and ϕ(2) = 2. If
d > 2 then ϕ(0) = −2 and ϕ(−2) = (−2)d − 2. But

∣∣(−2)d − 2
∣∣ ≥ 2d − 2 ≥ 23 − 2 = 6.

We can therefore apply Lemma 7 to conclude that zero is a wandering point.
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We now are ready to prove Theorem 3.

Proof of Theorem 3. Note first that if c = 0, then zero would not be a wandering
point, so we must have c "= 0. Also, b1 = ϕ(0) = c, so b1 will have a primitive prime
divisor if and only if c "= ±1. For b2, note that

b2 = ϕ(b1) = cd + c = c(cd−1 + 1),

and since b1 = c, we see that b2 will contain a primitive prime divisor, except when
c = 0 or when c = −1 and d is even. In both cases, by Lemma 8, zero would not
be a wandering point.

Now let m ∈ N with m ≥ 3. We will prove that bm contains a primitive prime.
Let |·| denote the Euclidean absolute value. Then

|bm| =
∣∣∣(bm−1)

d + c
∣∣∣

≥
∣∣∣(bm−1)

d
∣∣∣− |c|

≥ |bm−1|2 − |b1| because b1 = ϕ(0) = c and d ≥ 2

> |bm−1|2 − |bm−1| . because (bn) is increasing and m ≥ 3.

We can factor the last line to obtain

|bm| > |bm−1| · (|bm−1|− 1) . (1)

To complete the proof, we first need to show that for all m ≥ 3,
m−1∏

k=1

|bk| < |bm| .

We prove this claim by induction. The base case is trivially true. Now assume that∏m−2
k=1 |bk| < |bm−1|. In particular, this implies

m−2∏

k=1

|bk| ≤ |bm−1|− 1. (2)

Combining (2) with (1),
m−1∏

k=1

|bk| = |bm−1| ·
m−2∏

k=1

|bk| ≤ |bm−1| · (|bm−1|− 1) < |bm| .

Finally, by Lemma 4, we know that (bn) is a rigid divisibility sequence. For all
m ∈ N, let Pm and Nm denote the primitive part and the non-primitive part of bm

respectively. Then |bm| = PmNm and by Lemma 6

Nm =
∏

d|m,d"=m

Pd ≤
m−1∏

k=1

Pk ≤
m−1∏

k=1

|bk| < |bm|

Therefore Pm > 1 and bm contains a primitive prime.
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