ON SUPPLEMENTS OF $2 \times$ M BOARD IN TOPPLING TOWERS

Wen An Liu
College of Mathematics and Information Science, Henan Normal University, Xinxiang, P.R. China
liuwenan@126.com
Haifeng Li
College of Mathematics and Information Science, Henan Normal University, Xinxiang, P.R. China
flydazhi@163.com
Yingbin Ma
College of Mathematics and Information Science, Henan Normal University, Xinxiang, P.R. China
mayingbin@yahoo.cn
Bei Li
The Affiliated Middle School of Henan Normal University, Xinxiang, P.R. China
libeixx1985@126.com

Received: 11/11/10, Revised: 3/6/12, Accepted: 9/18/12, Published: 9/21/12

Abstract

We investigate an impartial combinatorial game: Toppling Towers. We will give genera of some positions, and provide all tame positions. Furthermore, all positions which are both tame and P-positions for board sizes of $2 \times m$ are shown.

1. Introduction

By a game we mean an impartial combinatorial game, and we restrict our attention to classical impartial games. The theory of such games can be found in [4] and [5].

Given any game G, we say informally that a P-position is any position u of G from which the previous player can force a win, that is, the opponent of the player moving from u can force a win. An N-position is any position v of G from which the next player can force a win, that is, the player who moves from v can force a win. The set of all P-positions of G is denoted by \mathcal{P}, and the set of all N-positions by \mathcal{N}. By $\operatorname{Op}(u)$ we denote all the options of u, i.e., the set of all positions that can
be reached in one move from the position u. It is clear to see that for each position u of G,

$$
\begin{equation*}
u \in \mathcal{P} \text { if and only if } \operatorname{Op}(u) \subseteq \mathcal{N} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u \in \mathcal{N} \text { if and only if } \operatorname{Op}(u) \cap \mathcal{P} \neq \emptyset \tag{2}
\end{equation*}
$$

Indeed, the player I, beginning from an N -position, will move to a P -position which exists by Eq. (2), and the player II has no choice but to go to an N-position, by Eq. (1). In other words, the set of all positions of every game can be partitioned uniquely into its subsets \mathcal{P} and \mathcal{N}.

Recall that the P-positions and N-positions of a game are not "symmetrical". A position in \mathcal{P} requires that all its options are in \mathcal{N}, which is a relatively rare event. Singmaster [6,7] proved that "almost all" positions are N-positions. This fact may partially explain why a winning strategy of a game is normally given by characterizing its P-positions rather than its N-positions.

There are two rules in an impartial combinatorial game: normal play convention and misère play convention. Under the normal play convention, a player loses if she has no options. Under the misère play convention, a player wins if she has no options. The Sprague-Grundy theorem [2] stated that an impartial game under normal play convention is equivalent to a Nim heap of a certain size. However, there is not a similar result under misère play convention. The traditional tool for the analysis of an impartial game under misère play convention is the genus symbol or the misère Grundy value, which was developed by Conway ([4, Chapter 13] and [5, Chapter 12]).

The Toppling Towers game is played as follows: Given an $n \times m$ board, along with the placement of $k \leq n \times m$ towers on the board. On her turn, a player can "topple" a tower in one of the four cardinal directions. Upon falling, the tower then also topples all contiguous towers in the direction in which it was toppled. Towers that have been toppled are then removed from the board. Under the normal play convention, a player loses if she has no towers to topple. Under the misère play convention, a player wins if she has no towers to topple.

Allen [1] investigated $1 \times m$ board in Toppling Towers game, and proved that

$$
\Gamma\left((\boxtimes)^{n}\right)= \begin{cases}1^{031}, & \text { if } n=1 \tag{3}\\ n^{n(n \oplus 2)}, & \text { if } n>1\end{cases}
$$

Moreover, Allen [1] obtained the following results: Let

$$
G=(\bigotimes)^{i_{1}}+(\bigotimes)^{i_{2}}+\cdots+(\bigotimes)^{i_{n}}+\sum_{k=1}^{m} \boxtimes
$$

where $i_{j} \geq 2$ for $j \in\{1,2, \cdots, n\}$, and let $v=0$ if $m \equiv 0 \bmod (2), v=1$ if $m \equiv 1 \bmod (2)$. Then

$$
\begin{equation*}
G \in \mathcal{P} \text { under the misère play convention } \Leftrightarrow i_{1} \oplus i_{2} \oplus \cdots \oplus i_{n} \oplus v=0 . \tag{4}
\end{equation*}
$$

Thus all P-positions of the $1 \times m$ board in Toppling Towers game under the misère play convention have been determined completely.

Allen [1] also investigated $2 \times m$ board in Toppling Towers game. However, we find that she gave some inaccurate conclusions on tame position for this board size. By means of the theory of genus, we revise some conclusions of [1] in section 3. To do this, section 2 will present more genera of some positions, and give all positions which are both tame and P-positions for board sizes of $2 \times m$.

2. The Genera of Some Positions

Definition 1. Let S be any finite subset of $\mathbb{Z}^{\geq 0}=\{n \in \mathbb{Z} \mid n \geq 0\}$. We define the minimum excluded value of S by the smallest nonnegative integer not in S. It will be denoted by $\operatorname{mex}(S)$. In particular, $\operatorname{mex}(\emptyset)=0$.

Definition 2 ([1]). Given nonnegative integers n and m, their Nim sum, denoted by $n \oplus m$, is defined by the exclusive or of their binary representation. Equivalently, the Nim sum of n and m can be determined by writing each of them as a sum of distinct powers of two, and then canceling any power of two which occurs an even number of times.

Definition 3 ([1]). Given a game G. We define

$$
\mathcal{G}^{+}(G)= \begin{cases}0, & \text { if } G \text { has no options, } \\ \operatorname{mex}\left\{\mathcal{G}^{+}\left(G^{\prime}\right) \mid G^{\prime} \text { is an option of } G\right\}, & \text { else }\end{cases}
$$

and

$$
\mathcal{G}^{-}(G)= \begin{cases}1, & \text { if } G \text { has no options } \\ \operatorname{mex}\left\{\mathcal{G}^{-}\left(G^{\prime}\right) \mid G^{\prime} \text { is an option of } G\right\}, & \text { else }\end{cases}
$$

Definition $4([1])$. The genus of a game G, denoted by $\Gamma(G)$, is defined by the list of the form $g^{g_{0} g_{1} g_{2} g_{3} \cdots}$, where

$$
\left\{\begin{array}{l}
g=\mathcal{G}^{+}(G) \\
g_{0}=\mathcal{G}^{-}(G) \\
g_{n}=\mathcal{G}^{-}\left(G+\sum_{i=1}^{n} \mathbb{T}\right) \quad\left(n \in \mathbb{Z}^{\geq 1}\right)
\end{array}\right.
$$

and \mathbb{T} denotes a Nim heap with 2 tokens.

Definition $5([1])$. For a game G, we say that the genus of $G, g^{g_{0} g_{1} g_{2} g_{3} \cdots}$, stabilizes if there exists an integer $N \in \mathbb{Z}^{\geq 0}$ such that for any integer $n \geq N, g_{n+1}=g_{n} \oplus 2$.

Let G be an impartial game. Then the genus of G stabilizes ([1, Theorem 2.1.5]). If $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$ stabilizes at g_{N}, i.e., $g_{N+1}=g_{N} \oplus 2$, then the digits in the superscript of $\Gamma(G)$ alternate between g_{N} and g_{N+1} ([1, Lemma 2.1.4]). Thus we abbreviate the genus symbol $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$ to $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots g_{N}\left(g_{N} \oplus 2\right)}$. Recently, Allen [8] also examined the periodicity of the genus sequences of the heaps of finite quaternary games.

How is the genus $\Gamma(G)$ of G calculated? Lemma 7 gives a kind of method. Lemma 6 presents some properties of operation \oplus, which are used in the proofs of the main results. Lemma 6 can be obtained by the properties of Nim sum, while Lemma 7 is a result which was proved in [4].

Lemma 6. Given $a, b \in \mathbb{Z}^{\geq 0}$ and $a \geq b$. We have
(1) $a=b \Leftrightarrow a \oplus b=0$.
(2) $a-b \leqslant a \oplus b \leqslant a+b$.
(3) $a \oplus b=1 \Leftrightarrow a-b=1$ and $a \equiv 1 \bmod (2)$.
(4) (i) If $a \equiv 1 \bmod (2)$ and $b \equiv 0 \bmod (2)$, then $a \oplus b \equiv 1 \bmod (2)$.
(ii) If $a \equiv 1 \bmod (2)$ and $b \equiv 1 \bmod (2)$, then $a \oplus b \equiv 0 \bmod (2)$.
(iii) If $a \equiv 0 \bmod (2)$ and $b \equiv 0 \bmod (2)$, then $a \oplus b \equiv 0 \bmod (2)$.
(5) $a \oplus 1=a+1$ if a is even, $a \oplus 1=a-1$ if a is odd.

Lemma 7 ([4]). Suppose that G is a game with options $G_{a}, G_{b}, G_{c}, G_{d}, \cdots$ such that

$$
\begin{aligned}
\Gamma\left(G_{a}\right) & =a^{a_{0} a_{1} a_{2} a_{3} \cdots} \\
\Gamma\left(G_{b}\right) & =b^{b_{0} b_{1} b_{2} b_{3} \cdots} \\
\Gamma\left(G_{c}\right) & =c^{c_{0} c_{1} c_{2} c_{3} \cdots} \\
\Gamma\left(G_{d}\right) & =d^{d_{0} d_{1} d_{2} d_{3} \cdots} \\
& \vdots .
\end{aligned}
$$

Then $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$, where

$$
\begin{aligned}
g & =\operatorname{mex}\{a, b, c, d, \cdots\} \\
g_{0} & =\operatorname{mex}\left\{a_{0}, b_{0}, c_{0}, d_{0}, \cdots\right\} \\
g_{1} & =\operatorname{mex}\left\{g_{0}, g_{0} \oplus 1, a_{1}, b_{1}, c_{1}, d_{1}, \cdots\right\} \\
g_{2} & =\operatorname{mex}\left\{g_{1}, g_{1} \oplus 1, a_{2}, b_{2}, c_{2}, d_{2}, \cdots\right\} \\
& \vdots \\
g_{n} & =\operatorname{mex}\left\{g_{n-1}, g_{n-1} \oplus 1, a_{n}, b_{n}, c_{n}, d_{n}, \cdots\right\}
\end{aligned}
$$

Berlekamp [4] proved the following results: Given an impartial game G with genus $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$. Then
under the normal play convention, $G \in \mathcal{P} \Leftrightarrow g=0$,
and
under the misère play convention, $G \in \mathcal{P} \Leftrightarrow g_{0}=0$.

Thus, the genus of a game G is the perfect tool to determine the outcome class of G under the normal play convention, or under the misère play convention. In the literature, when this is the only information which is sought, the genus of a game is abbreviated to $g^{g_{0}}$. However, we will not use this convention as we are interested in whether a game is tame or not which cannot be determined by the base g and the first superscript g_{0} of the genus.

Definition 8 ([1]). Given an impartial game G under the misère play convention. G is tame if the following conditions hold: (1) $\Gamma(G) \in\left\{0^{120}, 1^{031}, k^{k(k \oplus 2)} \mid k=\right.$ $0,1,2, \cdots\}$; (2) For every option G^{\prime} of G, G^{\prime} is tame. An impartial game G is wild if it is not tame.

Since a tower can only effect contiguous towers, we see that a Toppling Towers game can be thought of as the disjunctive sum of each of the contiguous components, ignoring any empty squares. For example, if $G=$ as the disjunctive sum of the games $G_{1}=\boxtimes$ and $G_{2}=\boxtimes$.

How is the genus of the disjunctive sum of two games G_{1} and G_{2} calculated? Lemma 9 gives partial result.

Lemma 9 ([5]). Let G and H be two tame games. Then $G+H$ is also a tame game and
$\Gamma(G+H)= \begin{cases}\Gamma(H), & \text { if } \Gamma(G)=0^{120}, \\ 0^{120}, & \text { if } \Gamma(G)=\Gamma(H)=1^{031}, \\ (n \oplus 1)^{(n \oplus 1)(n \oplus 3)}, & \text { if } \Gamma(G)=1^{031}, \Gamma(H)=n^{n(n \oplus 2)}, \\ (n \oplus m)^{(n \oplus m)(n \oplus m \oplus 2)}, & \text { if } \Gamma(G)=n^{n(n \oplus 2)}, \Gamma(H)=m^{m(m \oplus 2)} .\end{cases}$

For $n \in \mathbb{Z} \geq 0$, by $G=(\bigotimes)^{n}$ we represent a row of n towers, and by $(\bigotimes)^{n}$ we
represent two rows of n towers stacked on top of each other. Similarly, we also have the meanings of $(\square)^{n},(\not)^{n}$, and $(\square)^{n}$.

Theorem 10. Let $G=(\not)^{a} \not \bigotimes(\searrow)^{b}$ with $a, b \in \mathbb{Z}^{\geq 0}$. Then

$$
\Gamma(G)= \begin{cases}m_{0}^{m_{0}\left(m_{0} \oplus 2\right)}, & \text { if } a \equiv 0 \bmod 2 \text { and } b \equiv 0 \bmod 2 \\ ((a+b+1) \oplus 1)^{((a+b+1) \oplus 1)((a+b+1) \oplus 3)}, & \text { else },\end{cases}
$$

where $m_{0}=f(a, b)$ is a unique nonnegative integer depending on both a and b. Moreover, $m_{0} \in\{2, \cdots, a+b+2\}$.

Proof. It follows from [1, Theorem 4.3.2] that G is tame. Thus

$$
\Gamma(G) \in\left\{0^{120}, 1^{031}, k^{k(k \oplus 2)} \mid k=0,1,2, \cdots\right\}
$$

It follows from [1, Proposition 4.3.3] that for $a=0$ and $b \geq 0$,

$$
\begin{equation*}
\Gamma(G)=\Gamma\left((\searrow)^{0} \not \searrow(\searrow)^{b}\right)=(b+2)^{(b+2)((b+2) \oplus 2)} \tag{7}
\end{equation*}
$$

By [1, Proposition 4.3.4], for $a=1$ and $b \geq 0$, we have

$$
\begin{equation*}
\Gamma(G)=\Gamma\left((\not)^{1} \bigotimes(\bigotimes)^{b}\right)=((b+2) \oplus 1)^{((b+2) \oplus 1)((b+2) \oplus 3)} \tag{8}
\end{equation*}
$$

It is sufficient to consider $a \geq 2$ and $b \geq 2$. We proceed by the induction on $k=a+b$.

For $k=4$, we have $a=b=2$. It follows from [1, Appendix B] that $\Gamma(G)=2^{20}$, which shows the base case.

Suppose that the conclusions of Theorem 10 are true for all $k<n$. We now prove that the conclusions are also true for $k=n$. We distinguish four cases: (i) $a \equiv 1 \bmod (2)$ and $b \equiv 1 \bmod (2)$, (ii) $a \equiv 1 \bmod (2)$ and $b \equiv 0 \bmod$ (2), (iii) $a \equiv 0 \bmod (2)$ and $b \equiv 1 \bmod (2)$ and (iv) $a \equiv 0 \bmod (2)$ and $b \equiv 0 \bmod (2)$.

All options of G are listed as follows:
(i) $a \equiv 1 \bmod (2)$ and $b \equiv 1 \bmod (2)$.

In this case, $(a+b+1) \oplus 1=a+b$. In order to prove

$$
\Gamma(G)=((a+b+1) \oplus 1)^{((a+b+1) \oplus 1)((a+b+1) \oplus 3)}=(a+b)^{(a+b)((a+b) \oplus 2)}
$$

by Lemma 7, we need only to prove the following two facts:
Fact I For any $\eta \in\left\{0^{120}, 1^{031}, m^{m(m \oplus 2)} \mid m=2,3, \cdots, a+b-1\right\}$, there exists an option G^{\prime} of G such that $\Gamma\left(G^{\prime}\right)=\eta$;
Fact II There is no option G^{\prime} of G such that $\Gamma\left(G^{\prime}\right)=(a+b)^{(a+b)((a+b) \oplus 2)}$.
Proof of Fact I.

- Consider E_{y}. If $y=a$, then $\Gamma\left(E_{a}\right)=\Gamma(\bigotimes)=1^{031}$ by Eq. (3). If $y=a-1$, then $\Gamma\left(E_{a-1}\right)=\Gamma(\boxtimes+\boxtimes)=0^{120}$ by Lemma 9 and Eq. (3). If $0 \leq y \leq a-2$, then

$$
\Gamma\left(E_{y}\right)=\Gamma\left((\bigotimes)^{a-y}+\bigotimes\right)=((a-y) \oplus 1)^{((a-y) \oplus 1)((a-y) \oplus 3)}
$$

Note that $0 \leq y \leq a-2$, thus $(a-y) \oplus 1$ ranges from 2 to a by Lemma 6(5).

- Consider D_{x}. By the induction hypothesis, we have

$$
\Gamma\left(D_{x}\right)=((a+b-x+1) \oplus 1)^{((a+b-x+1) \oplus 1)((a+b-x+1) \oplus 3)}
$$

Note that if $x=1$, then $(a+b-x+1) \oplus 1=a+b+1$. The fact $2 \leq x \leq b$ means $a+1 \leq(a+b-x+1) \oplus 1 \leq a+b-1$, thus $(a+b-x+1) \oplus 1$ ranges from $a+1$ to $a+b-1$ by Lemma 6(5).

Proof of Fact II.

- Consider A_{i}. By the induction hypothesis, we have

$$
\Gamma\left(A_{i}\right)=((a+b-i+1) \oplus 1)^{((a+b-i+1) \oplus 1)((a+b-i+1) \oplus 3)}
$$

If $i=1$, then $(a+b-i+1) \oplus 1=a+b+1$. If $i=2$, then $(a+b-i+1) \oplus 1=a+b-2$. If $3 \leq i \leq a$, by Lemma 6(2), then

$$
(a+b-i+1) \oplus 1 \leq(a+b-i+1)+1 \leq a+b-1<a+b
$$

- Consider B_{j}. If $j=b$, then $\Gamma\left(B_{b}\right)=1^{031}$. If $j=b-1$, then $\Gamma\left(B_{b-1}\right)=0^{120}$. If $j=0$, then

$$
\Gamma\left(B_{0}\right)=(b-1)^{(b-1)((b-1) \oplus 2)}
$$

If $1 \leq j \leq b-2$, then

$$
\Gamma\left(B_{j}\right)=((b-j) \oplus 1)^{((b-j) \oplus 1)((b-j) \oplus 3)}
$$

with $(b-j) \oplus 1 \leq b-j+1 \leq b<a+b$.

- Consider C. It follows from Eq. (3) that $\Gamma(C)=(a+b+1)^{(a+b+1)((a+b+1) \oplus 2)}$.
- Consider F_{z}. Let $F_{z 1}=\left({ }_{\mathrm{s}}\right)^{z}$ and $F_{z 2}=\left({ }_{\mathrm{s}}\right)^{a-z-1}\left({ }_{\mathrm{s}}\right)^{b}$. Then
$\Gamma\left(F_{z}\right)=\Gamma\left(F_{z 1}\right)+\Gamma\left(F_{z 2}\right)$. Note that $\Gamma\left(F_{z 1}\right)=z^{z(z \oplus 2)}$. By the induction hypothesis, the fact $b \equiv 1 \bmod (2)$ means

$$
\Gamma\left(F_{z 2}\right)=((a-z+b) \oplus 1)^{((a-z+b) \oplus 1)((a-z+b) \oplus 3)} .
$$

It follows from Lemma 7 that

$$
\Gamma\left(F_{z}\right)=(z \oplus(a-z+b) \oplus 1)^{(z \oplus(a-z+b) \oplus 1)(z \oplus(a-z+b) \oplus 3)}
$$

Recall that $a+b \equiv 0 \bmod (2)$, and for any $z \in\{1,2, \cdots, a-1\}, z \oplus(a-z+b) \equiv$ $0 \bmod (2)$. Thus the fact $z \oplus(a-z+b) \oplus 1 \equiv 1 \bmod (2)$ implies $z \oplus(a-z+b) \oplus 1 \neq$ $a+b$, i.e., $\Gamma\left(F_{z}\right) \neq(a+b)^{(a+b)((a+b) \oplus 2)}$.

- Consider $H . \Gamma(H)=\Gamma\left((\bigotimes)^{a}+\triangle+(\bigotimes)^{b}\right)=(a \oplus b \oplus 1)^{(a \oplus b \oplus 1)(a \oplus b \oplus 3)}$. The given conditions $a \equiv 1 \bmod (2)$ and $b \equiv 1 \bmod (2)$ imply that $a \oplus b \leq a+b-2<a+b$. Thus $a \oplus b \oplus 1 \leq a+b-2+1=a+b-1<a+b$.
- Consider $I . \Gamma(I)=\Gamma\left((\boxtimes)^{a}+(\boxtimes)^{b}\right)=(a \oplus b)^{(a \oplus b)(a \oplus b \oplus 2)}$. It is easy to see that $a \oplus b \leq a+b-2<a+b$.
- Consider J_{u}. Let $J_{u 1}=\left(\varepsilon_{s}\right)^{a}\left(\varepsilon^{s}\right)^{b-u-1}$ and $J_{u 2}=\left({ }_{\varepsilon}\right)^{u}$. Then $\Gamma\left(J_{u}\right)=\Gamma\left(J_{u 1}\right)+$ $\Gamma\left(J_{u 2}\right)$. It is easy to see that $\Gamma\left(J_{u 2}\right)=u^{u(u \oplus 2)}$. By the induction hypothesis, the fact $a \equiv 1 \bmod (2)$ means

$$
\Gamma\left(J_{u 1}\right)=((a+b-u) \oplus 1)^{((a+b-u) \oplus 1)((a+b-u) \oplus 3)} .
$$

It follows from Lemma 7 that

$$
\Gamma\left(J_{u}\right)=((a+b-u) \oplus 1 \oplus u)^{((a+b-u) \oplus 1 \oplus u)((a+b-u) \oplus 3 \oplus u)}
$$

Note that $a+b \equiv 0 \bmod (2)$, and $(a+b-u) \oplus u \equiv 0 \bmod (2)$ for any $u \in\{1,2, \cdots, b-$ $1\}$. Thus the fact $(a+b-u) \oplus 1 \oplus u \equiv 1 \bmod (2)$ implies $(a+b-u) \oplus 1 \oplus u \neq a+b$, i.e., $\Gamma\left(J_{u}\right) \neq(a+b)^{(a+b)((a+b) \oplus 2)}$.

The above analysis shows that for any option G^{\prime} of $G, \Gamma\left(G^{\prime}\right) \neq(a+b)^{(a+b)((a+b) \oplus 2)}$. The proof of Fact II is completed.

Cases (ii) and (iii) can be proved similarly.
For Case (iv), we have $a \equiv 0 \bmod (2)$ and $b \equiv 0 \bmod (2)$.
In order to prove $\Gamma(G)=m_{0}^{m_{0}\left(m_{0} \oplus 2\right)}$ for $m_{0} \leq a+b+2$, by Lemma 7 , we need only to prove the following two facts:

Fact I There exist two options G_{1} and G_{2} of G such that $\Gamma\left(G_{1}\right)=0^{120}$ and $\Gamma\left(G_{2}\right)=1^{031}$.

Fact II For any option G^{\prime} of G, if $\Gamma\left(G^{\prime}\right)=n_{0}^{n_{0}\left(n_{0} \oplus 2\right)}$, then $n_{0}<a+b+2$.
Proof of Fact I : Consider B_{j}. If $j=b$, then $\Gamma\left(B_{b}\right)=1^{031}$. If $j=b-1$, then $\Gamma\left(B_{b-1}\right)=0^{120}$.

Proof of Fact II:

- Consider A_{i}. If $i \equiv 0 \bmod (2)$, then $a-i \equiv 0 \bmod (2)$. By the induction hypothesis, there exists an integer $m_{0} \in\{2,3, \cdots, a-i+b+2\}$ such that $\Gamma\left(A_{i}\right)=$ $m_{0}^{m_{0}\left(m_{0} \oplus 2\right)}$. Note that $m_{0} \leq a-i+b+2 \leq a+b+1<a+b+2$.

If $i \equiv 1 \bmod (2)$, then $a-i \equiv 1 \bmod (2)$. By the induction hypothesis,

$$
\Gamma\left(A_{i}\right)=((a-i+b+1) \oplus 1)^{((a-i+b+1) \oplus 1)((a-i+b+1) \oplus 3)}
$$

It follows Lemma $6(2)$ that $(a-i+b+1) \oplus 1 \leq a-i+b+1+1<a+b+2$.

- Consider B_{j}. If $j=b$, then $\Gamma\left(B_{b}\right)=1^{031}$. If $j=b-1$, then $\Gamma\left(B_{b-1}\right)=0^{120}$. If $0 \leq j \leq b-2$, then

$$
\Gamma\left(B_{j}\right)=((b-j) \oplus 1)^{((b-j) \oplus 1)((b-j) \oplus 3)}
$$

It follows Lemma $6(2)$ that $(b-j) \oplus 1 \leq b-j+1 \leq b+1<a+b+2$.

- $\Gamma(C)=(a+b+1)^{(a+b+1)((a+b+1) \oplus 2)}$.
- $D_{x}, 1 \leq x \leq b$, is similar to $A_{i}, 1 \leq i \leq a$.
- Consider E_{y}. If $y=a$, then $\Gamma\left(E_{a}\right)=1^{031}$. If $y=a-1$, then $\Gamma\left(E_{a-1}\right)=0^{120}$. If $0 \leq y \leq a-2$, then

$$
\Gamma\left(E_{y}\right)=((a-y) \oplus 1)^{((a-y) \oplus 1)((a-y) \oplus 3)}
$$

It follows Lemma $6(2)$ that $(a-y) \oplus 1 \leq a-y+1 \leq a+1<a+b+2$.

- Consider F_{z}. Let $F_{z 1}=\left({ }_{\circ}\right)^{z}$ and $F_{z 2}=()^{a-z-1}{ }^{\circ}(\theta)^{b}$. Then
$\Gamma\left(F_{z}\right)=\Gamma\left(F_{z 1}\right)+\Gamma\left(F_{z 2}\right)$. Note that $\Gamma\left(F_{z 1}\right)= \begin{cases}1^{031}, & \text { if } z=1, \\ z^{z(z \oplus 2)}, & \text { if } z>1 .\end{cases}$
If $z \equiv 0 \bmod (2)$, then $a-z-1 \equiv 1 \bmod (2)$. By the induction hypothesis,

$$
\Gamma\left(F_{z 2}\right)=((a-z+b) \oplus 1)^{((a-z+b) \oplus 1)((a-z+b) \oplus 3)} .
$$

It follows from Lemma 9 that

$$
\Gamma\left(F_{z}\right)=(z \oplus(a-z+b) \oplus 1)^{(z \oplus(a-z+b) \oplus 1)(z \oplus(a-z+b) \oplus 3)}
$$

Note that $z \oplus(a-z+b) \oplus 1 \leq a+b+1<a+b+2$.
If $z \equiv 1 \bmod (2)$, then $a-z-1 \equiv 0 \bmod (2)$. By the induction hypothesis, there exists an integer $m_{0} \in\{2,3, \cdots, a-z-1+b+2\}$ such that $\Gamma\left(F_{z 2}\right)=m_{0}^{m_{0}\left(m_{0} \oplus 2\right)}$. It follows from Lemma 9 that $\Gamma\left(F_{z}\right)=\left(m_{0} \oplus z\right)^{\left(m_{0} \oplus z\right)\left(m_{0} \oplus z \oplus 2\right)}$. Note that $m_{0} \oplus z \leq$ $(a-z-1+b+2) \oplus z \leq a+b+1<a+b+2$.

- $\Gamma(H)=(a \oplus b \oplus 1)^{(a \oplus b \oplus 1)(a \oplus b \oplus 3)}$, and $a \oplus b \oplus 1 \leq a+b+1<a+b+2$.
- $\Gamma(I)=(a \oplus b)^{(a \oplus b)(a \oplus b \oplus 2)}$, and $a \oplus b \leq a+b<a+b+2$.
- Consider J_{u}. Let $J_{u 1}=\left({ }_{\varepsilon}\right)^{z}$ and $J_{u 2}=\left({ }_{\Omega}\right)^{a} \cdot\left(\varepsilon^{b-u-1}\right.$. Then
$\Gamma\left(J_{u}\right)=\Gamma\left(J_{u 1}\right)+\Gamma\left(J_{u 2}\right)$. Note that $\Gamma\left(J_{u 1}\right)= \begin{cases}1^{031}, & \text { if } u=1, \\ u^{u(u \oplus 2)}, & \text { if } u>1 .\end{cases}$
If $u \equiv 0 \bmod (2)$, then $b-u-1 \equiv 1 \bmod (2)$. By the induction hypothesis,

$$
\Gamma\left(J_{u 2}\right)=((a-u+b) \oplus 1)^{((a-u+b) \oplus 1)((a-u+b) \oplus 3)}
$$

It follows from Lemma 9 that

$$
\Gamma\left(J_{u}\right)=((a+b-u) \oplus 1 \oplus u)^{((a+b-u) \oplus 1 \oplus u)((a+b-u) \oplus 3 \oplus u)}
$$

Note that $(a+b-u) \oplus 1 \oplus u \leq a+b+1<a+b+2$.
If $u \equiv 1 \bmod (2)$, then $b-u-1 \equiv 0 \bmod (2)$. By the induction hypothesis, there exists an integer $m_{0} \in\{2,3, \cdots, a-u-1+b+2\}$ such that $\Gamma\left(J_{u 2}\right)=m_{0}^{m_{0}\left(m_{0} \oplus 2\right)}$. It follows from Lemma 9 that $\Gamma\left(J_{u}\right)=\left(m_{0} \oplus u\right)^{\left(m_{0} \oplus u\right)\left(m_{0} \oplus u \oplus 2\right)}$. Note that $m_{0} \oplus u \leq$ $(a+b-u-1+2) \oplus u \leq a+b+1<a+b+2$.

The proofs of Theorem 10 are completed.

3. Tame Positions in Toppling Towers Game

Theorem 11. Let $G_{1}=$ and $\Gamma\left(G_{1}\right)=0^{02}, \Gamma\left(G_{2}\right)=1^{031}$.

Proof. G_{1} has two options up to symmetry: $A=\square$ and $B=\square$. We now calculate $\Gamma(A) . A$ has three options: $A_{1}=\square, A_{2}=\square$ and $A_{3}=\square$.
By Eq. (3), we have $\Gamma\left(A_{1}\right)=\Gamma(B)=2^{20}$ and $\Gamma\left(A_{2}\right)=1^{031}$. It follows Lemma 9 that $\Gamma\left(A_{3}\right)=\Gamma(\bigotimes)+\Gamma(\bigotimes)=0^{120}$. By Lemma 7 , we have $\Gamma(A)=3^{31}$ and $\Gamma\left(G_{1}\right)=0^{02}$. Note that the options A and B of G_{1} are tame. Hence, G_{1} is tame.
G_{2} has four options: $C=\square, D=\square, E=\square$, and $F=$ $\triangle X$. It follows from Lemma 9 and Eq. (3) that $\Gamma(D)=2^{20}, \Gamma(E)=\Gamma(A)=$
$3^{31}, \Gamma(C)=\Gamma(\not \bigotimes)+\Gamma(\bigotimes)=3^{31}$, and $\Gamma(F)=\Gamma(\boxtimes)+\Gamma(\boxtimes)=0^{120}$. By Lemma 7 , we have $\Gamma\left(G_{2}\right)=1^{031}$. Note that the options C, D, E and F of G_{2} are tame. Hence, G_{2} is tame.

Allen [1] proved that the game G defined by Theorem 12 is tame if and only if $n \equiv 0 \bmod (4)$. Theorem 12 obtains the explicit representation of $\Gamma(G)$ which contains Allen's result.

Theorem 12. Let $G=\nsupseteq(\bigotimes)^{n} \npreceq$ for $n \in \mathbb{Z}^{\geq 1}$. Then

$$
\Gamma(G)= \begin{cases}1^{031}, & \text { if } n \equiv 0 \bmod (4) \\ 1^{(n+4) 31}, & \text { if } n \equiv 1 \operatorname{or} 3 \bmod (4), \\ (n+4)^{0(n+2)((n+2) \oplus 2)}, & \text { if } n \equiv 2 \bmod (4)\end{cases}
$$

Proof. We proceed by the induction on n. Allen [1] determined the following four genera, which show the base cases:

$$
\begin{aligned}
& \Gamma\left(\nless \nless 1^{531}, \quad \Gamma\left(\not \subset()^{2}{ }_{\mathrm{a}}\right)=6^{046},\right. \\
& \Gamma\left(\bigotimes\left({ }_{\mathrm{\imath}}\right)^{3}{ }_{\mathrm{o}}\right)=1^{731}, \quad \Gamma\left(\bigotimes\left({ }_{\mathrm{v}}\right)^{4}{ }_{\mathrm{g}}\right)=1^{031} .
\end{aligned}
$$

Suppose the conclusions of Theorem 12 are true for $\forall n<m$. We now consider $n=m$. All options of G, up to symmetry, can be listed as follows:

The genus of each option of G can be determined:

- $\Gamma(A)=a^{a_{0} a_{1} a_{2} a_{3} \cdots}=((m+2) \oplus 1)^{((m+2) \oplus 1)((m+2) \oplus 3)}$, by Lemma 9 and Eq. (7).
- $\Gamma\left(B_{i}\right)=b_{i}^{b_{i 0} b_{i 1} b_{i 2} b_{i 3} \cdots}=((m-i+2) \oplus 1)^{((m-i+2) \oplus 1)((m-i+2) \oplus 3)}$ for $1 \leq i \leq m$, by Lemma 9 and Eq. (7).
- $\Gamma(C)=c^{c_{0} c_{1} c_{2} c_{3} \cdots}=0^{120}$, by Lemma 9 and Eq. (3).
- $\Gamma(D)=d^{d_{0} d_{1} d_{2} d_{3} \cdots}=(m+3)^{(m+3)((m+3) \oplus 2)}$, by Eq. (7).
- $\Gamma(E)=e^{e_{0} e_{1} e_{2} e_{3} \cdots}=(m+2)^{(m+2)((m+2) \oplus 2)}$, by Eq. (7).
- Let $F_{j 1}^{\prime}=\bigotimes(\searrow)^{j}$ and $F_{j 2}^{\prime}=(\mathrm{s})^{m-j-1}$. . It follows from Eq. (7) that

$$
\begin{gathered}
\Gamma\left(F_{j 1}^{\prime}\right)=(j+2)^{(j+2)((j+2) \oplus 2)} \\
\Gamma\left(F_{j 2}^{\prime}\right)=(m-j+1)^{(m-j+1)((m-j+1) \oplus 2)}
\end{gathered}
$$

By Lemma 9, we have

$$
\Gamma\left(F_{j}\right)=f_{j}^{f_{j 0} f_{j 1} f_{j 2} f_{j 3} \cdots}=((m-j+1) \oplus(j+2))^{((m-j+1) \oplus(j+2))((m-j+1) \oplus(j+2) \oplus 2)}
$$

for $0 \leq j \leq\left\lfloor\frac{m-1}{2}\right\rfloor$.
It is easy to see that all options A, B, C, D, E and F are tame, and none of the genera for A, B, D, E and F is 1^{031}. We distinguish the following three cases:

Case 1. $m \equiv 0 \bmod (4)$.
In this case, G is tame by [1, Theorem 4.3.5]. Thus the genus

$$
\Gamma(G) \in\left\{0^{120}, 1^{031}, n^{n(n \oplus 2)} \mid n \in \mathbb{Z}^{\geq 0}\right\}
$$

Let $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$. We will prove that $g=1$ and $g_{0}=0$. Hence we have $\Gamma(G)=1^{031}$.

In fact, $m \geq 1, m+2 \geq 3$ and $m+3 \geq 4$. Thus

$$
\begin{aligned}
& a=a_{0}=(m+2) \oplus 1=m+3 \neq 0 \text { or } 1, \\
& d=d_{0}=m+3 \neq 0 \text { or } 1 \\
& e=e_{0}=m+3 \neq 0 \text { or } 1
\end{aligned}
$$

Note that for $1 \leq i \leq m$, we have $m-i+2 \geq 2$, and so

$$
b_{i}=b_{i 0}=(m-i+2) \oplus 1 \geq 2
$$

It remains to examine $\Gamma\left(F_{j}\right)$. Recall that $0 \leq j \leq\left\lfloor\frac{m-1}{2}\right\rfloor=\frac{m-2}{2}$. We will prove that for $0 \leq j \leq \frac{m-2}{2}$,

$$
f_{j}=f_{j 0}=(m-j+1) \oplus(j+2) \neq 0 \text { or } 1
$$

In fact, if $0 \leq j \leq \frac{m-4}{2}$, by Lemma $6(2)$, we have

$$
f_{j}=f_{j 0}=(j+2) \oplus(m-j+1) \leq(m-j+1)+(j+2)=m+3
$$

and

$$
f_{j}=f_{j 0}=(j+2) \oplus(m-j+1) \geq(m-j+1)-(j+2) \geq 3
$$

If $j=\frac{m-2}{2}$, then $j+2=\frac{m+2}{2}$ is odd, and $m-j+1=\frac{m+4}{2}$ is even, and $\frac{m+4}{2}-\frac{m+2}{2}=$ 1. It follows from Lemma 6 that $\left(\frac{m+2}{2} \oplus \frac{m+4}{2}\right) \neq 0$ or 1 .

Note that $c=0$ and $c_{0}=1$. By Lemma 7, we have

$$
\begin{aligned}
& g=\operatorname{mex}\left\{a, b_{i}(1 \leq i \leq m), c, d, e, f_{j}\left(0 \leq j \leq \frac{m-2}{2}\right)\right\}=1 \\
& g_{0}=\operatorname{mex}\left\{a_{0}, b_{i 0}((1 \leq i \leq m)), c_{0}, d_{0}, e_{0}, F_{j 0}\left(\left(0 \leq j \leq \frac{m-2}{2}\right)\right)\right\}=0
\end{aligned}
$$

Case 2. $m \equiv 1$ or $3 \bmod (4)$.
In this case, G is wild by [1, Theorem 4.3.5]. The genus of each option of G can be determined:

Subase 2.1. $\Gamma(A)=a^{a_{0} a_{1} a_{2} a_{3} \cdots}=(m+1)^{(m+1)((m+1) \oplus 2)} ; \Gamma(C)=c^{c_{0} c_{1} c_{2} c_{3} \cdots}=$ $0^{120} ; \Gamma(D)=d^{d_{0} d_{1} d_{2} d_{3} \cdots}=(m+3)^{(m+3)((m+3) \oplus 2)}$.

Subase 2.2. Consider B_{i}. $\Gamma\left(B_{1}\right)=(m+2)^{(m+2)((m+2) \oplus 2)}$. For $2 \leq i \leq m$, we have $2 \leq(m-i+2) \oplus 1 \leq m$. Thus

$$
\begin{aligned}
& \left\{\Gamma\left(B_{i}\right)=b_{i}^{b_{i 0} b_{i 1} b_{i 2} b_{i 3} \cdots} \mid i=1,2,3, \cdots, m\right\} \\
= & \left\{2^{20}, 3^{31}, 4^{46}, \cdots, m^{m(m \oplus 2)},(m+2)^{(m+2)((m+2) \oplus 2)}\right\} .
\end{aligned}
$$

Subase 2.3. Consider F_{j}. Note that $0 \leq j \leq\left\lfloor\frac{m-1}{2}\right\rfloor=\frac{m-1}{2}$. We will prove that for every integer $j \in\left\{0,1, \cdots, \frac{m-1}{2}\right\}$,

$$
\Gamma\left(F_{j}\right) \neq 1^{13} \text { or }(m+4)^{(m+4)((m+4) \oplus 2)}
$$

In fact, if $0 \leq j \leq \frac{m-5}{2}$, by Lemma 6 , we have

$$
f_{j}=f_{j 0}=(j+2) \oplus(m-j+1) \leq(j+2)+(m-j+1)=m+3
$$

and

$$
f_{j}=f_{j 0}=(j+2) \oplus(m-j+1) \geq(m-j+1)-(j+2) \geq 4
$$

If $j=\frac{m-3}{2}$, by Lemma 6 , we have

$$
2 \leq f_{j}=f_{j 0}=(j+2) \oplus(m-j+1)=\frac{m+1}{2} \oplus \frac{m+5}{2} \leq m+3
$$

If $j=\frac{m-1}{2}$, then $f_{j}=f_{j 0}=(j+2) \oplus(m-j+1)=\frac{m+3}{2} \oplus \frac{m+3}{2}=0$.
We now prove that $\Gamma(G)=1^{(m+4) 31}$. Let $\Gamma(G)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$ and

$$
\begin{aligned}
\mathcal{M} & =\left\{a, b_{i}(1 \leq i \leq m), c, d, e, f_{j}\left(0 \leq j \leq \frac{m-1}{2}\right)\right\}, \\
\mathcal{M}_{0} & =\left\{a_{0}, b_{i 0}(1 \leq i \leq m), c_{0}, d_{0}, e_{0}, f_{j 0}\left(0 \leq j \leq \frac{m-1}{2}\right)\right\}, \\
\mathcal{M}_{1} & =\left\{g_{0}, g_{0} \oplus 1, a_{1}, b_{i 1}(1 \leq i \leq m), c_{1}, d_{1}, e_{1}, f_{j 1}\left(0 \leq j \leq \frac{m-1}{2}\right)\right\}, \\
\mathcal{M}_{2} & =\left\{g_{1}, g_{1} \oplus 1, a_{2}, b_{i 2}(1 \leq i \leq m), c_{2}, d_{2}, e_{2}, f_{j 2}\left(0 \leq j \leq \frac{m-1}{2}\right)\right\}, \\
\mathcal{M}_{3} & =\left\{g_{2}, g_{2} \oplus 1, a_{3}, b_{i 3}(1 \leq i \leq m), c_{3}, d_{3}, e_{3}, f_{j 3}\left(0 \leq j \leq \frac{m-1}{2}\right)\right\}, \\
& \vdots
\end{aligned}
$$

By Lemma 7, we have
(g) $0=c \in \mathcal{M}$ and $1 \notin \mathcal{M}$. Thus $g=\operatorname{mex}(\mathcal{M})=1$.
$\left(g_{0}\right) 0=f_{\frac{m-1}{2} 0} \in \mathcal{M}_{0}, 1=c_{0} \in \mathcal{M}_{0}, m+1=a_{0} \in \mathcal{M}_{0}, m+3=e_{0} \in \mathcal{M}_{0}$, $m+4 \notin \mathcal{M}_{0}$, and

$$
\left\{b_{i 0} \mid i=1,2,3, \cdots, m\right\}=\{2,3,4, \cdots, m, m+2\} \subset \mathcal{M}_{0}
$$

Thus $g_{0}=\operatorname{mex}\left(\mathcal{M}_{0}\right)=m+4$.
$\left(g_{1}\right)$ Note that $\Gamma\left(B_{i}\right)=b_{i}^{b_{i 0} b_{i 1} b_{i 2} b_{i 3} \cdots}=((m-i+2) \oplus 1)^{((m-i+2) \oplus 1)((m-i+2) \oplus 3)}$. For $i=m-1, \Gamma\left(B_{i}\right)=2^{20}$, and thus $b_{(m-1) 1}=0 \in \mathcal{M}_{1}$. For $i=m, \Gamma\left(B_{m}\right)=3^{31}$, and thus $b_{m 1}=1 \in \mathcal{M}_{1}$. Moreover, $2=c_{1} \in \mathcal{M}_{1}$ and $3 \notin \mathcal{M}_{1}$. Thus $g_{1}=$ $\operatorname{mex}\left(\mathcal{M}_{1}\right)=3$.
$\left(g_{2}\right) 0=c \in \mathcal{M}_{2}$ and $1 \notin \mathcal{M}_{2}$. Thus $g_{2}=\operatorname{mex}\left(\mathcal{M}_{2}\right)=1$.
$\left(g_{3}\right)$ For $i=m-1, \Gamma\left(B_{m-1}\right)=2^{2020 \cdots}$, thus $b_{(m-1) 3}=0 \in \mathcal{M}_{3}$. For $i=m$, $\Gamma\left(B_{m}\right)=3^{3131 \cdots}$, so $b_{m 3}=1 \in \mathcal{M}_{3}$. $2=c_{3} \in \mathcal{M}_{3}$ and $3 \notin \mathcal{M}_{3}$. Thus $g_{3}=$ $\operatorname{mex}\left(\mathcal{M}_{3}\right)=3$.
\vdots.
Hence $\Gamma(G)=1^{(m+4) 31}$.
Case 3. $m \equiv 2 \bmod (4)$.
In this case, G is wild by [1, Theorem 4.3.5]. The genus of each option of G can be determined:

Subase 3.1. $\Gamma(A)=a^{a_{0} a_{1} a_{2} a_{3} \cdots}=(m+3)^{(m+3)((m+3) \oplus 2)} ; \Gamma(C)=c^{c_{0} c_{1} c_{2} c_{3} \cdots}=$ $0^{120} ; \Gamma(D)=d^{d_{0} d_{1} d_{2} d_{3} \cdots}=(m+3)^{(m+3)((m+3) \oplus 2)}$.

Subase 3.2. Consider B_{i}. For $1 \leq i \leq m$, we have $2 \leq(m-i+2) \oplus 1 \leq m+1$. Thus

$$
\left\{\Gamma\left(B_{i}\right) \mid i=1,2,3, \cdots, m\right\}=\left\{2^{20}, 3^{31}, 4^{46}, \cdots,(m+1)^{(m+1)((m+1) \oplus 2)}\right\}
$$

Subase 3.3. Consider F_{j}. Note that $0 \leq j \leq\left\lfloor\frac{m-1}{2}\right\rfloor=\frac{m-2}{2}$. We will prove that for every integer $j \in\left\{0,1, \cdots, \frac{m-2}{2}\right\}, \Gamma\left(F_{j}\right) \notin\left\{0^{02},(m+4)^{(m+4)((m+4) \oplus 2)}\right\}$.

In fact, if $0 \leq j \leq \frac{m-4}{2}$, by Lemma 6 , we have $3 \leq(j+2) \oplus(m-j+1) \leq m+3$. If $j=\frac{m-2}{2}$, then $j+2=\frac{m+2}{2} \equiv 0 \bmod (2)$, and $m-j+1=\frac{m+4}{2} \equiv 1 \bmod (2)$, and $\frac{m+4}{2}-\frac{m+2}{2}=1$. It follows from Lemma 6 that $\frac{m+2}{2} \oplus \frac{m+4}{2}=1$.

We can determine $\Gamma(G)=(m+4)^{0(m+2)((m+2) \oplus 4)}$ by the same method as Case 2.

Allen [1, Corollary 4.3.6] stated that for $G=(\boxtimes)^{n} \not \searrow(\square)^{4 m}$ with $n, m \in$ $\mathbb{Z}^{\geq 0}, G$ is tame. Let $G_{n}=(\square)^{n}$. Then G_{n} is obtained by letting $m=0$ in
G. It follows from [1, Appendix B] that $\Gamma\left(G_{1}\right)=5^{146}$, so G_{1} is wild. For $n \geq 2$, G_{n} has an option G_{1}. It follows from the definition of wild position that G_{n} is wild. Thus Corollary 4.3.7, Corollary 4.3 .8 and Theorem 4.3.9 of [1] are inaccurate conclusions. We will revise them, and give our new results.

Denote by \mathcal{T} the set of all tame positions of $2 \times m$ board in the Toppling Towers game. Similarly, denote by \mathcal{W} the set of all wild positions. Obviously, the set of all positions of $2 \times m$ board in the Toppling Towers game can be uniquely partitioned into \mathcal{T} and \mathcal{W}. Recall that the set of all positions of a game can be uniquely partitioned into \mathcal{P} and \mathcal{N}.

It follows from Eqs. (5) and (6) that the outcome class (\mathcal{P} or \mathcal{N}) of a position G can be determined by its genus $\Gamma(G)$ under both the normal and misère play conventions.

Given a position G, how can we determine $G \in \mathcal{T}$ or $G \in \mathcal{W}$? By Definition 8, if G has an option G^{\prime} which is wild, then G is wild. Allen [1, Example 2.2.2] proved that all options of G being tame does not imply that G is tame. Lemma 13 gives the answer to the case that G has only tame options.

Lemma 13 ([4]). Suppose G is a position with only tame options. Then G is wild if and only if among the options of G, the following conditions hold: (1) G has options with genera equal to one, but not both, of 0^{120} or 1^{031}; (2) G has options with genera equal to one, but not both, of 0^{02} or 1^{13}.

Let

$$
\begin{aligned}
S= & \{u \mid u \text { is a position of the } 2 \times m \text { board in the Toppling Towers game }\}, \\
S^{0}= & \{u \in S \mid u \text { contains no in the up-down direction }\}, \\
S^{>0}= & \{u \in S \mid u \text { contains at least one } \text { in the up-down direction }\}, \\
S_{\text {notsum }}^{>0}= & \left\{u \in S^{>0} \mid u\right. \text { can not be considered as the disjunctive sum of two or } \\
& \text { more positions }\}, \\
S_{\text {sum }}^{>0}= & \left\{u \in S^{>0} \mid u\right. \text { can be considered as the disjunctive sum of two or } \\
& \text { more positions }\} .
\end{aligned}
$$

It is easy to see that the set S can be uniquely partitioned into two sets S^{0} and $S^{>0}$, by distinguishing that whether there exists a ${ }_{\mathrm{g}}$ in the up-down direction or
not. Similarly, $S^{>0}$ can be uniquely partitioned into two sets $S_{\text {notsum }}^{>0}$ and $S_{\text {sum }}^{>0}$. For examples, $H_{1}=\not \subset \in S_{\text {notsum }}^{>0}, H_{2}=\not \subset S_{\text {sum }}^{>0}$, since $H_{2}=\not \subset+区$.

For any position $H \in S_{\text {sum }}^{>0}$, H can be thought as the disjunctive sum of H_{1}, H_{2}, \cdots, H_{m}, where $H_{i} \in S_{\text {notsum }}^{>0}$. If all of the components H_{i} are tame, then H is also tame. Thus a key question is that how to determine the outcome class of the
position $G \in S_{\text {notsum }}^{>0}$. Our Theorem 14 gives the answer to this question.
Theorem 14. Suppose that $G \in S_{\text {notsum }}^{>0}$ is a position. Then $G \in \mathcal{T}$ if and only if $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, where, up to symmetry,

$$
\begin{aligned}
G_{1} & = \\
G_{2} & =\text { for all } n, t \in \mathbb{Z}^{\geq 0} \\
G_{3} & =(\bigotimes)^{n} \\
G_{4} & =(\bigotimes)^{n} \text { for all } n, t \in \mathbb{Z}^{2} \geq 0 \text { and } m \in \mathbb{Z}^{2} \geq 1
\end{aligned}
$$

Proof. (\Leftarrow) It follows from Theorem 11 that G_{1} and G_{2} are tame. By Theorem 10 or [1, Theorem 4.3.2], G_{3} is tame. We now consider G_{4} :

If $n=t=0$, then $G_{4}=\nsupseteq(\searrow)^{4 m}$. Thus G_{4} is tame by Theorem 12 or by [1, Theorem 4.3.5].

If $n+t>0$, without loss of generality, let $n \geq 1$. Consider all options of G_{4}. Note that they are tame and G_{4} has options

$$
G_{4}^{\prime}=(\square)^{n} \not \searrow(\square)^{4 m} \nexists(\square)^{t}
$$

and

$$
G_{4}^{\prime \prime}=\triangle(\square)^{n-1} \boxtimes(\square)^{4 m} \boxtimes(\square)^{t}
$$

It follows from Lemma 9 and Eq. (3) that $\Gamma\left(G_{4}^{\prime}\right)=0^{120}$ and $\Gamma\left(G_{4}^{\prime \prime}\right)=1^{031}$. By Lemma $13, G_{4}$ is tame.
(\Rightarrow) Firstly, we define the following four structures:

$$
\begin{aligned}
& \left.H_{1}=(\square)^{2} \not\right)_{2}=\text { where } i \equiv 1 \text { or } 2 \text { or } 3 \bmod (4) \\
& \left.H_{4}={ }_{\mathrm{a}}()^{2}\right)
\end{aligned}
$$

It follows from [1, Appendix B] that $\Gamma\left(H_{1}\right)=5^{146}, \Gamma\left(H_{2}\right)=5^{146}$ and $\Gamma\left(H_{3}\right)=$ 2^{1520}. By the definition of wild, H_{1}, H_{2} and H_{3} are wild. By Theorem 12, H_{4} is wild.

Secondly, it is enough to show that for any $H \in S_{\text {notsum }}^{>0}$ and $H \notin\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, H is wild. We say that a follower of position H is a new position which can be
reached from H after a finite number of moves. We now prove that one of the structures H_{1}, H_{2}, H_{3} and H_{4} must be a follower of H, and thus H is wild, by Definition 8.

In fact, all of the positions in $S_{\text {notsum }}^{>0}$ can be represented in the form K :

(1) $\sum_{i=1}^{k} u_{i}=0$ or $\sum_{i=1}^{k} b_{i}=0$. In this case, K has the form K_{1} :

$$
\begin{aligned}
K_{1}= & (\boxed{\bigotimes})^{u_{1}}(\bigotimes)^{t_{1}}(\bigotimes)^{u_{2}}(\bigotimes)^{t_{2}}()^{u_{3}}()^{t_{3}} \\
& \ldots \cdots(\not)^{u_{k}}(\bigotimes)^{t_{k}}, \text { where } \sum_{i=1}^{k} t_{i} \neq 0
\end{aligned}
$$

If there exists an integer $j \in\{1,2, \cdots, k\}$ such that $t_{j} \geq 3$, then H_{3} is a follower of H. If there exists an integer $j \in\{1,2, \cdots, k\}$ such that $t_{j}=2$, then $H \neq G_{1}$ implies that H_{2} is a follower of H. If $t_{j} \leq 1$ and $j=1,2, \cdots, k$, the facts $H \neq G_{3}$ and $H \neq G_{4}$ imply that H_{4} is a follower of H.
(2) $\sum_{i=1}^{k} u_{i} \neq 0$ and $\sum_{i=1}^{k} b_{i} \neq 0$. In this case, H must contain the structures $(\searrow)^{u}$ and $\left({ }_{\mathrm{s}}\right)^{b}$. Moreover, $H \in S_{\text {notsum }}^{>0}$ implies that H must contain the structure $(\not)^{u}(\bigotimes)^{t}(\square)^{b}$, where $u, b, t \geq 1$. If $t \geq 3$, then H_{3} is a follower of H. If $t=2$, then H_{2} is a follower of H. If $t=1$, then $H \neq G_{2}$ implies that H_{1} is a follower of H.
 $\mathbb{Z}^{\geq 1}$. Suppose that $G \in S_{\text {notsum }}^{>0}$ and G be a tame position. Then
(1) Under the normal play convention, $G \in \mathcal{P}$ if and only if $G=G^{\prime}$.
(2) Under the misère play convention, $G \in \mathcal{P}$ if and only if $G=G^{\prime}, G^{\prime \prime}$ or $G^{\prime \prime \prime}$.

Proof. It follows from Theorem 11 that $\Gamma\left(G^{\prime}\right)=0^{02}$ and $\Gamma\left(G^{\prime \prime}\right)=1^{031}$. By Theorem 12, we have $\Gamma\left(G^{\prime \prime \prime}\right)=1^{031}$.
$(1)(\Leftarrow)$ By Theorem $14, G^{\prime} \in \mathcal{T} . G^{\prime}$ is a P-position under the normal play convention by Eq. (5), i.e., $G^{\prime} \in \mathcal{P}$.
(\Rightarrow) By Theorem 14, $G \in \mathcal{T}$ implies $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, where $G_{i}(i=1,2,3,4)$ is defined in Theorem 14. We will prove that G_{2}, G_{3}, G_{4} are N-positions under the normal play convention, thus $G \notin\left\{G_{2}, G_{3}, G_{4}\right\}$.

It follows from Eq. (5) that $G_{1}=G^{\prime}$ is a P-position under the normal play convention, and $G_{2}=G^{\prime \prime}$ is an N-position under the normal play convention.

We now consider G_{3}. Let $\Gamma\left(G_{3}\right)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$. If $n+t=0$, then $\Gamma\left(G_{3}\right)=$ $\Gamma(\nsupseteq)=2^{20}$. Thus G_{3} is an N-position under the normal play convention by

Eq. (5), as $g \neq 0$. If $n+t>0$, without loss of generality, let $n \geq 1$. In this case, G_{3} has options $G_{3}^{\prime}=\square$ and $G_{3}^{\prime \prime}=$ 。 . Note that $\Gamma\left(G_{3}^{\prime}\right)=0^{120}$ and $\Gamma\left(G_{3}^{\prime \prime}\right)=1^{031}$. By Lemma $7, \mathcal{G}^{+}\left(G_{3}\right)=g \neq 0$ and $\mathcal{G}^{-}\left(G_{3}\right)=g_{0} \neq 0$. So G_{3} is an N-position under the normal play convention.

We now consider G_{4}. Let $\Gamma\left(G_{4}\right)=g^{g_{0} g_{1} g_{2} g_{3} \cdots}$. If $n+t=0$, then $G_{4}=G^{\prime \prime \prime}$ is an N -position under the normal play convention by Eq. (5). If $n+t>0$, without loss
 $\Gamma\left(G_{4}^{\prime}\right)=1^{031}$ and $\Gamma\left(G_{4}^{\prime \prime}\right)=0^{120}$. By Lemma $7, \mathcal{G}^{+}\left(G_{4}\right)=g \neq 0$ and $\mathcal{G}^{-}\left(G_{4}\right)=g_{0} \neq 0$. Hence G_{4} is an N-position under the normal play convention.
$(2)(\Leftarrow) G^{\prime}, G^{\prime \prime}$ and $G^{\prime \prime \prime}$ are P-positions under the misère play convention by Eq. (6). By Theorem 14, $G^{\prime}, G^{\prime \prime}$ and $G^{\prime \prime} \in \mathcal{T}$. Thus $G=G^{\prime}, G^{\prime \prime}$ or $G^{\prime \prime \prime} \in \mathcal{T} \cap \mathcal{P}$.
(\Rightarrow) By Theorem 14, $G \in \mathcal{T}$ implies $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, where $G_{i}(i=1,2,3,4)$ is defined in Theorem 14.

Note that $G_{1}=G^{\prime}$ and $G_{2}=G^{\prime \prime}$ are P-positions under the misère play convention by Eq. (6).

Consider G_{3}. It follows from case (1) that $\mathcal{G}^{-}\left(G_{3}\right) \neq 0$. By Eq. (6), G_{3} is an N -position under the misère play convention.

Consider G_{4}. If $n+t>0$, it follows from case (1) that $\mathcal{G}^{-}\left(G_{4}\right) \neq 0$, thus G_{4} is an N -position under the misère play convention. If $n+t=0$, then $G_{4}=G^{\prime \prime \prime}$. Recall that $\mathcal{G}^{-}\left(G_{4}\right)=\mathcal{G}^{-}\left(G^{\prime \prime \prime}\right)=0$, thus $G^{\prime \prime \prime}$ is a P-position under the misère play convention by Eq. (6).

Thus $G=G^{\prime}, G^{\prime \prime}$ or $G^{\prime \prime \prime}$.

Acknowledgment The authors are grateful to the responsible editor and the anonymous referees for their valuable comments and suggestions, which have greatly improved the earlier version of this paper. The research is supported by the National Natural Science Foundation of China under Grants 11171368 and 11171094.

References

[1] M. R. Allen, Impartial combinatorial misère games. MSc Thesis, (Dalhousie University), 2006. http://www.reluctantm.com/thesis/meghan.pdf.
[2] P. M. Grundy, Mathematics and games. Eureka, 2: 6-8, 1939.
[3] M. Albert, R. Nowakowski and D. Wolfe, Lessons in play: An introduction to the combinatorial theory of games. A.K. Peters Ltd., Natick, MA, 2007.
[4] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning ways for your mathematical plays, Volume 2. A.K. Peters Ltd., Natick, MA, second edition, 2003.
[5] J. H. Conway, On numbers and games. A.K. Peters Ltd., Natick, MA, second edition, 2001.
[6] D. Singmaster, Almost all games are first person games. Eureka, 41: 33-37, 1981.
[7] D. Singmaster, Almost all partizan games are first person and almost all impartial games are maximal. J. Combin. Inform. System Sci., 7: 270-274, 1982.
[8] M. R. Allen, On the periodicity of genus sequences of quaternary games. Integers, 7: 1-11, 2007.

