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Abstract
Let SN denote the set of integers from 1 up to N and Ai be the event that a number
selected from SN is divisible by i. For the sample space SN , with the uniform
probability measure, consider the question of the independence of the events Ai

and Aj , i 6= j. We determine a characterization in terms of N , i and j. Using this
we consider various situations and supplementary questions.

1. Introduction

Statistical independence is a fundamental concept in probability theory. Two events
A and B are statistically independent if P (A)P (B) = P (A\B); see Chung [3], Kac
[5] or Ross [8] for example. Probabilists often illustrate statistical independence
with examples from games of chance, whereas number theorists like to demonstrate
the property using sets of positive integers. The natural density measure of a set A
of natural numbers [2, 3, 5] is defined as,

D(A) = lim
n!1

|A \ {1, 2, . . . , n}|
n

,

where | · | denotes the cardinality of a set. For example, if A = {3, 6, 9, . . . } then
D(A) = 1

3 . If the “divisibility event”, Aq1 , is the set of natural numbers divisible
by q1 then D(Aq1)D(Aq2) = D(Aq1 \ Aq2) if and only if q1 and q2 are coprime.
Here D(Aq1) = 1/q1, D(Aq2) = 1/q2 and D(Aq1 \ Aq2) = D(Aq1q2) = 1/q1q2. In
this sense the “event of divisibility by q1” and the “event of divisibility by q2” are
independent on the set of natural numbers if and only if q1 and q2 are coprime.
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However, it should be noted that D(A) is not a probability measure since it is not
countably additive [2]; so this is not true statistical independence.

Suppose instead we restrict to a finite set SN = {1, . . . , N}, where N is a natural
number, with the uniform probability measure. We can analogously define Aqi to
be the event that a number selected from SN is divisible by qi. Now which events
Aq1 and Aq2 are independent? This is more complicated to answer since we have
the additional parameter N . As a simple illustration, consider the events A2 and
A3. It is a straightforward computation to show these events are not independent
on S10, even though 2 and 3 are coprime, but are independent on S12.

As another illustration if N = 24, P (A3) = 8/24, P (A5) = 4/24 and P (A3 \
A5) = P (A15) = 1/24 6= 8/24 · 4/24. So once again being coprime is not su�cient
but it is, as we shall see, necessary. Clearly the cardinality of the set, N , plays a
role. Perhaps we should require q1 and q2 to be coprime factors of N . This is in
fact not necessary. For example, if we keep N = 24 but consider A3 and A7 then
P (A3) = 8/24, P (A7) = 3/24 and P (A3 \ A7) = P (A21) = 1/24 = 8/24 · 3/24 so
these two events are independent.

Define Aq1 and Aq2 to be an independent divisibility pair on SN if P (Aq1)P (Aq2) =
P (Aq1 \Aq2) where P (·) is the uniform distribution on SN . Theorem 2.1 gives the
necessary and su�cient conditions on N , q1 and q2 for Aq1 and Aq2 to be an inde-
pendent divisibility pair on SN .

With the conditions for independence known, it is possible to consider vari-
ous supplementary questions. If we fix q1 and q2, for which N are the events Aq1

and Aq2 an independent divisibility pair on SN? If instead we fix N , which pairs
(Aq1 , Aq2) are an independent divisibility pair on SN? These questions are exam-
ined in Sections 3 and 4 respectively. In Section 5, we analyze the question of
characterizing those N which possess a specified number of independent divisibility
pairs. In particular, we prove that if N is the product of a Sophie Germain prime
and its corresponding safe prime then there is a unique independent divisibility pair
given by these two primes. We conclude in Section 6 with some conjectures and
generalizations.

2. The Necessary and Su�cient Conditions for Aq1 and Aq2 to be
Independent on SN

Theorem 2.1. Let N be a natural number and SN = {1, . . . , N}. Let q1 and q2 be
two natural numbers, with 1 < q1 < q2 < N , and let Aqi be the event that a number
selected from SN is divisible by qi. The events Aq1 and Aq2 are independent on SN

if and only if q1 and q2 are coprime and

N = tq1q2 + r1q1 = q1(tq2 + r1), (1)

with t a natural number and r1 a non-negative integer such that r1q1 < q2.
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Proof. Assume q1 and q2 are coprime and satisfy (1). It is straightforward to com-
pute the respective probabilities for Aq1 , Aq2 and the intersection:

P (Aq1) =
tq2 + r1

N
=

1
q1

, P (Aq2) =
tq1

N
=

t

tq2 + r1
,

P (Aq1 \Aq2) = P (Aq1q2) =
t

N
=

t

q1(tq2 + r1)
,

confirming they are indeed independent.
Now assume 1 < q1 < q2 < N , Aq1 and Aq2 are independent on SN and

N � lcm(q1, q2), the least common multiple of q1 and q2. (If q2 < N < lcm(q1, q2)
then the intersection event is empty. So P (Aq1)P (Aq2) 6= P (Aq1 \ Aq2) since the
left-hand side is nonzero whereas the right-hand side is zero. If q1 < N < q2 then
Aq2 is empty, so the events Aq1 and Aq2 are degenerately independent but the
conditions on q1, q2 and N have been violated.) By the definition of independence,�

N

q1

⌫
·
�

N

q2

⌫
= N ·

�
N

lcm(q1, q2)

⌫
. (2)

If we suppose 2  gcd(q1, q2), the greatest common divisor of q1 and q2, then�
N

q1

⌫
·
�

N

q2

⌫
 N

q1
· N

q2
= N · N

q1q2
< N ·

�
Ngcd(q1, q2)

q1q2

⌫
= N ·

�
N

lcm(q1, q2)

⌫

which contradicts (2), so q1 and q2 must be coprime. Hence lcm(q1, q2) = q1q2 and
(2) becomes �

N

q1

⌫
·
�

N

q2

⌫
= N ·

�
N

q1q2

⌫
. (3)

We may assume N = t(q1q2) + r where t � 1 and 0  r < q1q2, and also
r = r1q1 + s1 or r = r2q2 + s2 with r1, r2 � 0, 0  s1 < q1, 0  s2 < q2. Then (3)
gives

(tq2 + r1) · (tq1 + r2) = (t(q1q2) + r) · t,
which can be simplified to

r2(tq2 + r1) = ts1. (4)

Now if r2 � 1, then r2(tq2 + r1) � tq2 > tq1 > ts1 giving a contradiction to (4), so
r2 = 0. Hence, from (4), s1 = 0, and thus, r = r1q1 = s2 < q2. So N = t(q1q2)+r1q1

where t � 1 and 0  r1q1 < q2 as required.

It should be noted that Theorem 2.1 is a special case of Theorem 1 in [4]. Their
requirement that N is composite is clearly true here but we expect a more restrictive
condition since we have very specific events.

Observe (1) is satisfied if N is a multiple of two coprime numbers q1 and q2.
However N need only be a multiple of the smaller number q1, not the larger q2.
Conversely, if q1 is not a divisor of N the events Aq1 and Aq2 are dependent on SN .
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3. The Natural Density Measure of Independent Aq1 and Aq2

Recall A2 and A3 are independent on SN if N = 12 but not if N = 10. In fact,
given Theorem 2.1, it is clear A2 and A3 are independent on SN if and only if
N ⌘ 0 or 2 mod 6. That is, “one third of the time they are independent” and
“two thirds of the time they are dependent.” More precisely if we define Iq1,q2 =
{N : Aq1 , Aq2 are independent on SN} then,

D(I2,3) = lim
n!1

|I2,3 \ {1, 2, . . . , n}|
n

=
1
3
.

Below are two more examples using Theorem 2.1.

Example 3.1. If q1 = 5 and q2 = 53 then the events A5 and A53 are independent
on SN if and only if N ⌘ 0, 5, 10, . . . , 50 mod 265. So D(I5,53) = 11/265 ⇡ 0.0415.

Example 3.2. If q1 = 7 and q2 = 510 then the events A7 and A510 are independent
on SN if and only if N ⌘ 0, 7, 14, . . . , 504 mod 3570. So D(I7,510) = 73/3570 ⇡
0.020448.

In general, for q1 and q2 coprime, if q2 = pq1 + r, 1  r  q1�1, then the events
Aq1 and Aq2 are independent on SN if and only if N ⌘ 0, q1, 2q1, . . . , pq1 mod q1q2.
So D(Iq1,q2) = (p + 1)/(q1q2). Using the inequalities,

0 <
1
q2
1

<
1

q1(q1 � 1
p+1)

=
p + 1

q1((p + 1)q1 � 1)
 p + 1

q1q2

=
p + 1

q1(pq1 + r)
 p + 1

q1(pq1 + 1)
 2

q1(q1 + 1)
 1

3
,

we can construct a table of intervals for possible values of D(Iq1,q2):

q1 2 3 4 5 6 7 q1

D(Iq1,q2) (1
4 , 1

3 ] (1
9 , 1

6 ] ( 1
16 , 1

10 ] ( 1
25 , 1

15 ] ( 1
36 , 1

21 ] ( 1
49 , 1

28 ] ( 1
q2
1
, 2

q1(q1+1) ]

If we fix q1 and let q2 get large, then p gets large, and we approach from above
the left-hand end point of the interval, 1/q2

1 .
Conversely, for q2 = q1 + 1 we have p = 1, r = 1 and the density becomes
2

q1(q1 + 1)
, with the maximum value of 1

3 occurring when q1 = 2. So consecutive

pairs have the more explicit table of densities:

(q1, q2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (q1, q1 + 1)
D(Iq1,q2)

1
3

1
6

1
10

1
15

1
21

1
28

2
q1(q1+1)

In both tables these densities are larger than one would intuitively expect. For
the latter it appears to be double, and for the former the density is always larger
than 1/q2

1 .



INTEGERS: 13 (2013) 5

4. The Independent Divisibility Pairs on SN for a Particular N

If we choose a particular N , then which events Aq1 and Aq2 are an independent
divisibility pair on SN? Equivalently, for which pairs of coprime natural numbers
q1, q2 do N , q1 and q2 satisfy (1)?

Since N = q1(tq2 + r) and r � 0, we have q2 
N

q1t
. Now rq1 < q2 so N <

q1tq2 + q2, hence q2 >
N

q1t + 1
. Thus, bounds for q2 in terms of N , t and q1 are:

N

q1t + 1
< q2 

N

q1t
. (5)

As N = q1(tq2 + r) and q2 � q1 + 1, t =
1
q2

✓
N

q1
� r

◆
 N

q1(q1 + 1)
, so bounds

for t are:
1  t  N

q1(q1 + 1)
. (6)

Also, N � q1(q1 +1) and consequently q1 
p

4N+1�1
2 . Hence the bounds on q1,

a factor of N , are:

2  q1 
p

4N + 1� 1
2

. (7)

Definition 4.1. Define (q1, q2) to be a valid pair on N if q1, q2 and N are natural
numbers satisfying (1) and its conditions.

If (q1, q2) is a valid pair on N then the events Aq1 and Aq2 are an independent
divisibility pair on SN .

Example 4.2. When N = 24 there are 8 valid pairs: (2, 3), (2, 5), (2, 9), (2, 11),
(3, 4), (3, 7), (3, 8) and (4, 5).

The bounds (5), (6), and (7) enable us to write an algorithm that can be used
to generate all possible valid pairs for a particular N . Start at q1 = 2 and proceed
through all possible values for q1 given by (7). For each q1 check if it is a factor of
N . If so, use (6) to compute the range of values for t and (5) to compute the range
of values for potential q2. Now just increment through all these potential q2’s and
at each stage check if the potential q2 is coprime to q1. If so then this value for q2

would make (q1, q2) a valid pair on N .
Figure 1 has some annotated lines of pseudocode showing this algorithm.

Definition 4.3. Define the function v(N) to be the number of valid pairs on N .

The algorithm in Figure 1 can be used to determine the values of v(N). Figure
2 has a table listing N and v(N) for N  100.
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Input N
count=0;
for q1=2 to (

p
4 ⇤ N + 1� 1)/2, % from (7)

if N mod q1 == 0, % check q1 is a factor of N
for t=1 to N/(q1*(q1+1)), % from (6)
for potentialq2 = ceiling(N/(t*q1+1)) to N/(t*q1), % from (5)
if gcd(q1,potentialq2) == 1, % check q1, q2 coprime
print(q1,potentialq2), count++ % if so then valid pair

return(count) % number of valid pairs

Figure 1: Pseudocode to generate all valid pairs on N .

5. Bounds on v(N) and the Characterization of those N with v(N) < 5

If we allow q1, q2 and N to vary, is there a characterization for those N with a
particular number of valid pairs? Can we characterize those N for which v(N) =
0 or 1 for example? To begin we will give some simple bounds for v(N).

Theorem 5.1. Let N = pn1
1 pn2

2 . . . pnr
r be the prime decomposition of N and v(N)

be the number of valid pairs on N . Then upper and lower bounds for v(N) are
respectively,

v(N) <
N lnN

2
, (8)

and
v(N) � [(2n1 + 1) . . . (2nr + 1)]� 2[(n1 + 1) . . . (nr + 1)] + 1

2
. (9)

Proof. From (1) we have q2 = (N/q1)�r1
t . But t � 1 and r1 � 0, so q1 < q2 

N/q1 and hence, for a given factor q1 of N , the maximum number of valid q2’s is
(N/q1)� q1. Since q1 is a factor of N between 2 and b

p
Nc, we have

v(N) <

b
p

NcX
q1=2

✓
N

q1
� q1

◆
<

b
p

NcX
q1=2

N

q1
< N ln(

p
N) =

N lnN

2
.

If we consider (1) and fix r1 = 0, the number of choices for coprime factors q1

and q2, with 1 < q1 < q2, will clearly give a lower bound for v(N).
We can view this counting problem in terms of boxes and colored balls instead

of factors and primes as follows: the two coprime values q1 and q2 correspond to
two di↵erent boxes and the r distinct primes correspond to r di↵erent colors with
ni balls of color i, i = 1, . . . , r. We now employ the inclusion-exclusion principle.

The qi are coprime factors of N so we do not need to use all the balls, but
we cannot have the same colored ball in both boxes. For each color, i, there are
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N v(N) N v(N) N v(N) N v(N) N v(N)
1 0 21 1 41 0 61 0 81 5
2 0 22 3 42 13 62 12 82 11
3 0 23 0 43 0 63 10 83 0
4 0 24 8 44 12 64 11 84 32
5 0 25 0 45 6 65 4 85 3
6 1 26 4 46 6 66 17 86 13
7 0 27 3 47 0 67 0 87 10
8 1 28 4 48 16 68 12 88 17
9 0 29 0 49 0 69 7 89 0
10 1 30 10 50 9 70 17 90 35
11 0 31 0 51 6 71 0 91 2
12 3 32 7 52 9 72 25 92 20
13 0 33 3 53 0 73 0 93 8
14 3 34 5 54 14 74 14 94 15
15 2 35 2 55 1 75 12 95 6
16 1 36 9 56 12 76 14 96 29
17 0 37 0 57 3 77 2 97 0
18 4 38 6 58 8 78 21 98 17
19 0 39 4 59 0 79 0 99 13
20 5 40 9 60 25 80 21 100 21

Figure 2: Values of v(N) for N  100

(2ni +1) ways to place some or none of the i colored balls into the two boxes. Hence
for all r colors we have (2n1 + 1) . . . (2nr + 1) total possibilities.

However, we cannot have an empty box, since neither q1 nor q2 can be 1; so we
need to remove these possibilities from the above total. These situations correspond
to putting the balls into only one box rather than two. Consequently, each color
has (ni + 1) choices, and for all colors there are (n1 + 1) . . . (nr + 1) possibilities.
Now observe that either the q1 box or the q2 box could be empty, so multiply this
latter number by 2. However, the case where both boxes are simultaneously empty
has now been counted once but excluded twice, hence correct this by adding back
one possibility.

Finally, only half the remaining pairs satisfy the requirement q1 < q2, so we
divide the expression by two.

The next two theorems give relatively simple characterizations for those N with
exactly zero, one, two, three or four valid pairs.

Theorem 5.2. N has no valid pairs, that is v(N) = 0, if and only if N is a prime
or the square of a prime.
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Proof. It is clear that if N is prime then it is impossible to decompose N in the
form specified by (1). (In fact it is known that the set SN is a dependent set, so
it has no independent events whatsoever [4].) If N has at least two distinct prime
factors, then choose these as q1 and q2. With r1 = 0 and t = N/(q1q2) equation
(1) is satisfied demonstrating there is at least one valid pair. Consequently the only
remaining cases are powers of a single prime. If N = pn, n � 3, choose q1 = p
and q2 = p(n�1) � 1, then q1 and q2 are coprime with q1 < q2 and N = q1q2 + q1.
However, if N = p2, where p is prime, we must have q1 = p in which case it is
impossible to choose q2 satisfying q2 > q1 and q1q2  N simultaneously.

Once again this is more restrictive than the general situation. It is known that if
N is prime then SN is a dependent set and any two events are dependent. However,
if N is the square of a prime, it is possible to have independent events. For example,
if N = 9 there are no independent sets of our divisibility type, but A = {1, 3, 5}
and B = {5, 7, 9} are clearly independent.

Theorem 5.3. Let v(N) denote the number of valid pairs on N . Then
(a) v(N) = 1 if and only if N = 6 = 2 · 3, N = 8 = 23, N = 16 = 24 or

N = p1p2, with p1, p2 prime and p2 = 2p1 + 1. The unique valid pair is (2, 3),
(2, 3), (2, 7) and (p1, 2p1 + 1) respectively.

(b) v(N) = 2 if and only if N = p1p2 with p1, p2 prime, 2 < p1, and p1 + 2 
p2  2p1 � 1.

(c) v(N) = 3 if and only if N = 12 = 22 · 3, N = 14 = 2 · 7, N = 22 = 2 · 11,
N = 27 = 33, N = 57 = 3 · 19, N = p1p2 with p1, p2 prime and p2 = 3p1 + 2, or
N = p1p2 with p1, p2 prime and p2 = 4p1 + 1, p1 � 5.

(d) v(N) = 4 if and only if N = 18 = 2 · 32, N = 26 = 2 · 13, N = 28 = 22 · 7,
N = 39 = 3 · 13, N = p1p2 with p1, p2 prime, p1 � 5, 2p1 + 3  p2  3p1 � 2, or
N = p1p2 with p1, p2 prime, p1 � 5, p2 = 4p1 + 3, with 2p1 + 1 not divisible by 3.

Proof. If N is the product of at least three distinct prime factors, then (9) gives
v(N) � 6. Hence, we can restrict to N having one or two distinct prime factors.

If N = pn, from Theorem 5.2, n � 3 in which case (p, pn�1 � c), 1  c  p� 1
are valid pairs. So we need only consider p  5. If p = 5, then (5, 5n�1 � 1),
(5, 5n�1 � 2), (5, 5n�1 � 3), (5, 5n�1 � 4), and (5, 5n�1�1

2 ) are five valid pairs. If
p = 3, then (3, 3n�1�1), (3, 3n�1�2), (3, 3n�1�4), (3, 3n�1�5), and (3, 3n�1�7)
are five valid pairs if n � 5. For N = 33 = 27 and N = 34 = 81 there are three and
five valid pairs respectively (see Figure 2). If p = 2, then (2, 2n�1�1), (2, 2n�1�3),
(2, 2n�1 � 5), (2, 2n�1 � 7), and (2, 2n�1 � 9) are five valid pairs if n � 6. It is
easy to check that (2, 3) and (2, 7) are the unique valid pair for N = 23 = 8 and
N = 24 = 16 respectively. The case N = 25 = 32 has seven valid pairs (see
Figure 2).

If N = pn1
1 pn2

2 , n1, n2 � 1, from (9) v(N) � n1n2. In particular there are the
n1n2 valid pairs given by (pa

1 , p
b
2) (possibly in reverse order) where 1  a  n1,
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1  b  n2. So we need only consider when n1n2  4.
In the cases (n1, n2) = (2, 2), (n1, n2) = (4, 1), and (n1, n2) = (1, 4) a fifth valid

pair is given by (p1, p1p2
2 � 1), (p1, p3

1p2 � 1), and (p2, p1p3
2 � 1) respectively.

If (n1, n2) = (3, 1), then (p1, p2
1p2 � 1) and (p1, p1p2 � 1) give two additional

valid pairs whereas for (n1, n2) = (1, 3) they are (p2, p1p2
2 � 1) and (p2, p2

2 � 1).
If (n1, n2) = (2, 1), then (p1, p1p2 � c), with 1  c  p1 � 1 are valid pairs.

So there are at least four additional pairs if p1 � 5. If p1 = 3, then (3, 3p2 � 1),
(3, 3p2�2), and (3, 3p2�1

2 ) are three additional valid pairs. If p1 = 2, then (2, 2p2�1),
(2, 2p2 � 3), and (2, 2p2 � 5) are three additional valid pairs if p2 � 11. This leaves
N = 22 · 3 = 12, N = 22 · 5 = 20 and N = 22 · 7 = 28 which have 3, 5, and 4 valid
pairs respectively (see Figure 2).

If (n1, n2) = (1, 2), then (p2, p1p2�c), 1  c  p1�1 are valid pairs. Hence there
are at least four additional pairs if p1 � 5. If p1 = 3, then (p2, 3p2�1), (p2, 3p2�2),
and (p2,

3p2�1
2 ) are three additional valid pairs. If p1 = 2, then (2, p2

2�2), (2, p2
2�4),

and (2, p2
2 � 6) are three additional valid pairs if p2 � 5. For N = 2 · 32 = 18 there

are 4 valid pairs (see Figure 2).
Hence we are reduced to the case where N is the product of two primes p1 and

p2. First suppose that p1 = 2 so N = 2p2. Here (2, p2), (2, p2 � 2), (2, p2 � 4),
(2, p2�6), and (2, p2�8) are valid pairs if p2 > 24. So we are left with p2 = 3, 5, 7,
11, 13, 17, 19, and 23. These have 1, 1, 3, 3, 4, 5, 6, and 6 valid pairs respectively
(see Figure 2). Now suppose p1 = 3, so N = 3p2. In this case (3, p2) together with
four of (3, p2 � 1), (3, p2 � 2), (3, p2 � 3), (3, p2 � 4), (3, p2 � 5) and (3, p2 � 6) are
valid pairs provided p2 > 24. This leaves p2 = 5, 7, 11, 13, 17, 19 and 23. These
have 2, 1, 3, 4, 6, 3 and 7 valid pairs respectively (see Figure 2).

Finally, assume p1 � 5. So p1 and p2 are odd primes, p2 6= c(p1 + 1), p2 6= cp1

and at most one of p2� 1, p2� 2, p2� 3, p2� 4 and p2� 5 is a multiple of p1. Now
suppose that (p1, q3) is a valid pair on N = p1p2 and (p1, q3) 6= (p1, p2). Then we
must have p2 = tq3 + r with r � 1, t � 1, q3 coprime to p1, and q3 > rp1. Hence
q3 =

p2 � r

t
and p2 > trp1 + r. So restrictions on the value of p2 will generate

restrictions on the possible values of r and t, which in turn give restrictions on the
possible forms for q3, and hence the possible valid pairs. Consequently, we have the
following:

If p2 > 5(p1 +1), at least five of (p1, p2), (p1, p2�1), (p1, (p2�1)/2), (p1, p2�2),
(p1, p2 � 3), (p1, p2 � 4), and (p1, p2 � 5) are valid pairs.

If 4(p1 + 1) < p2 < 5(p1 + 1), then p2 � 1 is coprime to p1, so at least five of
(p1, p2), (p1, p2 � 1), (p1, (p2 � 1)/2), (p1, p2 � 2), (p1, p2 � 3), and (p1, p2 � 4) are
valid pairs.

If p2 = 4p1 + 3, then (p1, p2), (p1, p2 � 1), (p1, (p2 � 1)/2), and (p1, p2 � 2) are
valid pairs. If 2p1 + 1 is divisible by 3, then (p1, (p2 � 1)/3) is a fifth valid pair.

If p2 = 4p1 + 1, then (p1, p2), (p1, p2 � 2), and (p1, p2 � 3) are the only valid
pairs.
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If 3(p1+1) < p2  4p1�1, then (p1, p2), (p1, p2�1), (p1, (p2�1)/2), (p1, p2�2),
and (p1, p2 � 3) are valid pairs. If 2p1 � 1 is divisible by 3, then (p1, (p2 � 1)/3) is
a sixth valid pair.

If p2 = 3p1 + 2, then (p1, p2), (p1, p2� 1), and (p1, (p2� 1)/2) are the only valid
pairs.

If 2p1+3  p2  3p1�2, then (p1, p2), (p1, p2�1), (p1, (p2�1)/2), and (p1, p2�2)
are the only valid pairs.

If p2 = 2p1 + 1, then (p1, p2) is the only valid pair.
If p1+2  p2  2p1�1, then (p1, p2) and (p1, p2�1) are the only valid pairs.

6. Remarks, Conjectures, and Generalizations

Remark 6.1. Primes p such that 2p + 1 is also prime are called Sophie Germain
primes with 2p+1 called a safe prime. The numbers are listed in sequence A005384
in [6]. For more information see [7], [9], and [1]. It is interesting to note that
the largest known Sophie Germain prime, found in April 2012, is 18543637900515 ·
2666667�1 which has 200,701 digits. It is conjectured there are infinitely many such
primes.

Remark 6.2. Primes p such that 3p + 2 or 4p + 1 are also prime do not appear
to be named, but the numbers are listed in sequences A023208 and A023212 in [6].
(Primes of the form (4n + 1) can be called Pythagorean, [6, A002144], since they
correspond to the length of the hypotenuse of a right triangle with integer sides.)
Figure 3 contains a table of all N values less than 50000 with exactly three valid
pairs, together with the corresponding p1 and p2 values.

N p1 p2

12 2 3
14 2 7
22 2 11
27 3 -
33 3 11
57 3 19
85 5 17
161 7 23
203 7 29
533 13 41

N p1 p2

689 13 53
901 17 53
1121 19 59
1633 23 71
2581 29 89
4181 37 113
5513 37 149
5633 43 131
7439 43 173
10561 59 179

N p1 p2

18023 67 269
18881 79 239
20833 83 251
21389 73 293
23941 89 269
25043 79 317
28421 97 293
32033 103 311
37733 97 389
48641 127 383

Figure 3: Values of N < 50000 with v(N) = 3
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Given the lower bound, (9), it is clear that N exist for which v(N) > M for any
non-negative integer M .

Conjecture 6.3. N exist such that v(N) = M for any non-negative integer M .

We have used Mathematica to confirm values of N for M up to 20,000.

Definition 6.4. Define the function r(N) to be the ratio of the number of valid
pairs on N to the value of N , that is, r(N) = v(N)/N .

Conjecture 6.5. For all N , the ratio of the number of valid pairs on N to the
value of N itself is less than one half. That is, r(N) < 0.5.

Note that the conjecture is equivalent to v(N) < N/2, which is a better upper
bound for v(N) than (8). We can confirm this is true for N  1, 000, 000 with
the two largest values of r(N) being 0.46317 and 0.465922 when N = 360360 and
N = 720720 respectively. Figure 4 contains a table with some larger values of N .

N Prime Factorization v(N) r(N)
360,360 23.32.5.7.11.13 166,908 0.46317
720,720 24.32.5.7.11.13 335,799 0.465922

12,252,240 24.32.5.7.11.13.17 5,782,591 0.471962
232,792,560 24.32.5.7.11.13.17.19 111,124,547 0.477354

5,354,228,880 24.32.5.7.11.13.17.19.23 2,576,614,559 0.48123
26,771,144,400 24.32.52.7.11.13.17.19.23 12,955,084,847 0.48392
80,313,433,200 24.33.52.7.11.13.17.19.23 39,012,925,759 0.485758

Figure 4: Values of r(N) for select N

These N values have the property that they are the smallest number containing
all factors from 2 to m, where m =15, 16, 18, 22, 24, 26 and 28 respectively. The
next number in this sequence would be N = 24.33.52.7.11.13.17.19.23.29, containing
all factors from 2 to 30. (These are the distinct entries in the integer sequence,
A003418 [6], where an is the least common multiple of 1 up to n.)

Conjecture 6.6. The only values of N for which r(N) > 0.45 are multiples of 420,
that is, have factors 2 through 7 inclusive.

Once again we can confirm this for N  1, 000, 000.

Definition 6.7. Define the function a(N) to be the average number of valid pairs

from 1 up to N , that is, a(N) =
PN

i=1 v(i)
N

.

Figure 5 shows a plot of the values of a(N)
N for N  1, 000, 000.
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Figure 5: Plot of a(N)
N

Conjecture 6.8. a(N) ⇡ 0.072N or
PN

i=1 v(i) ⇡ 0.072N2.

Definition 6.9. Define the function ⇢(N) to be the average ratio from 1 up to N ,

that is, ⇢(N) =
PN

i=1 r(i)
N

.

Figure 6 shows a plot of the values of ⇢(N) for N  1, 000, 000. The black curve

corresponds to a model of the form a

✓
ln(N)

N

◆
+ b. The green line on the graph

corresponds to 0.143878 the value of b given by the model.

Figure 6: Plot of ⇢(N) and model a

✓
ln(N)

N

◆
+ b
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Conjecture 6.10. The limiting value of ⇢(N) is between 0.14387 and 0.14389.

Remark 6.11. Statistical independence is also defined for more than two events,
[3, 8], so it is possible to generalize these ideas for more than two divisibility events.
In the case of three divisibility events we have the analog of Theorem 2.1:

Theorem 6.12. Let N be a natural number and SN = {1, . . . , N}. Let q1, q2, and
q3 be three natural numbers, with 1 < q1 < q2 < q3 < N , and let Aqi be the event
that a number selected from SN is divisible by qi. The events Aq1 , Aq2 , and Aq3 are
independent on SN if and only if q1, q2, and q3 are coprime and

N = tq1q2q3 + r1q1q2 = q1q2(tq3 + r1),

with t a natural number and r1 a non-negative integer such that r1q1q2 < q3.

We can then consider the same questions as for pairs. The results, not surpris-
ingly, are more complicated in this situation and are not presented here.
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