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Abstract
In this paper, the authors establish a formula expressing the Bernoulli polynomials
of the second kind and general order k, b%k) (z), in terms of those of first order,

by (z) = b ().

1. Introduction and Results

The Bernoulli polynomials bglk)(x) of the second kind and of order k, for any
integer k, may be defined by (see [2,4,10])

I R S
(log(l+t)) (1+1) —;bn (@)t",  Jtf < 1. (1)

The numbers by = bglk)(O) are the Bernoulli numbers of the second kind and
of order k; b = b,, bgll)(a:) = b, (x) are the ordinary Bernoulli numbers and
polynomials of the second kind (see [1,4,5, 10-13]), and C,, = nlb,, are the Cauchy
numbers of the first kind (see [8, 13]). By (1.1), we have

b (@)= D by (@/k)bu, (k) - b, (2 /K), (2)
v1, 0k ENg
V1t Fop=n
bgzk) = Z b'Ul bvz T bvk’ (3)
v1,,v, ENg
v1Avp=n
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b () = b8 () B [T v b ® (T ), 4
n (2) 0n+1n—1+ Tonlal ) Ton (4)

where n € Ny = NU {0}, N being the set of positive integers.
The numbers b, satisfy the recurrence relation (see [1, 5))

— ———~ 7 b, = >
bo =1, jE:O p— 1bj 0 (n>1), (5)

_ 1 _ 1 _ 1 _ 19 _ 3 _ 863
so we find b1 = 5,1)2 = *ﬁ,bg = ﬂ7b4 = 7@,()5 = ﬁvbG = T 60480"

The numbers b,, satisfy many interesting relations. For example (see [1,5,8])

1 oo oo o 2

by = dr, 1-log2= =5 Py =T

O o PO MR S

(6)

where (7) = x(x_l)(x_i)!"'(x_"ﬂ), 7 is the Euler constant and H,, = >",_, 1 is the
n-th harmonic number.

The Bernoulli polynomials Bﬁlk) (x) of order k, for any integer k, may be defined

by (see [3,4,6,7,10])

k 0o
t . tn
(et_l) et =S B® (@), |t < 2. (7)
n=0

n!

The numbers By(lk) = BT(Lk) (0) are the Bernoulli numbers of order k, and B,gl) =B,

are the ordinary Bernoulli numbers. The numbers B,(ln) are called Norlund numbers
(see [3]), or Cauchy numbers of the second kind (see [8, 13]). Nérlund found the
exponential generating function (see [10, p.150])

oo

t N
Trolea 1o~ 200 (<D 0

These numbers b,,, b%k), B,g") and B,(Lk) satisfy various identities. For example
(see [1-4])

nlb, = B JrnB,(ln:ll), BM = p! Z(fl)”*jbj, and  nlb*) = =
=0

The paper’s central result is a formula expressing the Bernoulli polynomials of
the second kind and general order k, b (z), in terms of those of first order, b, (z) =
bﬁf) (z). That is, we shall prove the following main conclusion.
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Theorem. Let n,k € N andn >k —1. Then
k-1
(=DM (k= Dl = k)P () = (n =1 - j)!
j=0
X Z m—j—1l-xo)"n—j—2—x)2---(n—k—x)%b,_;(z). (10)
U1,~~-,Uk7j€N0
vt Fvg— =]
By taking « = 0 in Equation (10), we can deduce the following.
Corollary 1. Let n,k € N andn >k —1. Then
(=) Yk — 1)!(n — k)b
k—1
=Y n—=1=5" Y (=1 (n—j=2)" - (n— k)" b, . (11)
7=0 V1, V- ENg

vt v =]

Taking k = 2,3,4 in (10) and (11), we immediately deduce the following expres-

sions for the first few higher order Bernoulli polynomials and numbers of the second
kind:

=
&
—~
8
~—
|
—

=1 =n)bp(z)+ (x+2—n)bp_1(x) (n>1);

B () = 5 (n— 1)~ 2)bu(2)
+;nfﬂ@n7572@m4@ﬁ+%@73fzf%4@)(nZ%;
b (z) = f%(n —1)(n—2)(n — 3)by(x) — é(n —2)(n—3)(3n — 9 — 32)b,_; ()
—%n—&(M—S—wf+%n—3—xﬂn—4—@%%n—4—@ﬂ@Pﬂ@
5= =2 a(e) (02 3);
b = (1 —n)by, + (2 —n)bp_1  (n>1);
b3 = %(n —1)(n—2)b, + %(n —2)(2n = 5)bp_1 + %(n —3)%b,2 (n>2);
b = —é(n —1)(n—2)(n—3)b, — é(n —2)(n —3)(3n — 9)b,_1
1
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By (11), (3), and noting that C,, = nlb,,, we obtain an explicit formula for the
sum involving Cauchy numbers of the first kind:

(D' E-Dn—k)! > Cy,Cuy - Cp

ool .o |
o e, vylvg! - !
v1ttvg=n
k—1 C )
= S i) - 2) e (= k) (12)
J=0 v, ,v5—;ENg n=J

Vit vg =3

Corollary 2. Let n,k € Ng and m € N. Then

n+1 k . .

ok [ e (i = S (™) s (i D)t
otk [ i ;(i);(n—i—k)!
XY (i) (=i == 1) (n =i = B) R by (13)

V1, V41— ENg
vt U 41— =]

By taking m =1 in (13), we can deduce the following:

1 k
—DFE(n — k —1)! ) (2)dx = n—1—j)!
(—1)K(n — & 1>'/0 O =3 (=1 -5

x Yy (n—j—1)"n—j—2)2 - (n—k—1)"+-b, ;. (14)

V1, ,Ukt1—;ENg
V14 U1 =]

Taking £ =0,1; m = 1,2,3 in (13) and noting that b%o)(x) = (fb), we have
1 2 3
/ (‘T> dz = by, / <x> dx = 2b,, + b, _1, / (‘T) dz = 3by, + 3bp_1 + bp_s.
o \n o \n o \7
and

1 bp(z)dx = (1 —n)b, + (2 —n)by_1,

3

|

/2 by (2)dz = 201 — 1)y + 3(2 — 1)bn_1 + (3 — )b,
0

/ b () = 3(1 — n)bn + 6(2 — n)bp_1 + A(3 — 1)bn_s + (4 — n)bn_s.
0
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2. Proof of Theorem

In this section, we shall complete the proof of the theorem. First, the following
lemma (see [2,10]) is crucial to the proof of the theorem. To be more self-contained,
we present a simpler proof here.

Lemma. Let n,k € Ny and m € N. Then

"__kb(k)(x) n

(k+1) () —
B (@) = —

_k_1—
wb;k_)l(x). (15)

Proof. By (1), we have

o k
> -0+ = 4 (o) 00

n=0

1 b x—1 1 * z—1
) 00 () 0w

ie.,
S o=k = 1)bY, ()
n=1

1 k+1 o 1 k o

By (16) and (17), we have

oo

Z( k:)b(’“) ) k— 1+Z n—k—1 b(k_)l(m>tn—k—1

n=0

1 k+1 ) 1 k )
__k(log(lth)) 4 +x<1 g(1+t)) )
—k Z b(k+1) tn k—1 +x Z b tn k (18)

Comparing the coefficient of t"~*~1 on both sides of (18), we get

nZRy ) (g 1

n—k—l—xb(k)
-k " —k "

b (@) = “1(@).

This proves the lemma. O

Now we complete the proof of the theorem by using mathematical induction and
the method of coefficients (see [9]).
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Proof of theorem. First note that (10) holds for k = 1,2, by (15). Now suppose (10)

is true for some natural number k and all n > k — 1. By superposition of (15), we
have

(=D)*K!(n — k — ) (2)
= (=D)* k= DIn— )P (2) + (=1)* k= DIn—k—Dn—k—1—2)b", (2)

n—j—1-a)*(n—j—2—-2)2--(n—k—2)" 7b,_j(x)

(]

v, v —j ENg
vt v =]

e
—

tn—k—-1-2)3 (n—2—j)

0

X Z n—j—2-2)"(n—j—-3—-x2)2 - (n—k—1—12)"*7b,_1_j(x)
Ul,---,vk_]‘ENO

v+t =)

<.
Il

=
Jun

=Y (1)
X Z nm—j—1-2)*"n—j—2-—2)2 - (n—k—x)"*7b,_;(x)

v, v — €N
V1o =]

k
tn—k—1-2)) (n—1-j)!

j=1
x S -l (n—j—2—a)? (k=1 —2)" b, ()
V1, Vk41—5 €ENo
vt tvpp1— ;=51
k
=) (n—1-j)!
3=0
X Z n—j—-1-2)"(n—j—2-2)? - (n—k—1—12)"*t'"7b,_;(z),

V1,0, Vg1 €ENo
vitetUg 41— =0

which shows that (10) is also true for the natural number k+1. The theorem follows
by induction. ]

Now we complete the proof of Corollary 2.

Proof of Corollary 2. By (11), (4), and noting that d%b%k)(x) = bik:ll)(x) (see [11]),
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we have

(_

m n+1
1)<k / b (@)de = (=1)" k! (550 (m) = 05D = (~DF R (m) b
=1

0

X > (n—i—j) (n—i—j—1)"(n—i—k)"=ib, 1, ;.

V1,0, Vk+1—5 ENo
vt vgp1— ;=]

This completes the proof. O
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