

AN EXPLICIT FORMULA FOR HIGHER ORDER BERNOULLI POLYNOMIALS OF THE SECOND KIND

Haiqing Wang

Dept. of Mathematics, Huizhou University, Huizhou, Guangdong, P. R. China

Guodong Liu¹

Dept. of Mathematics, Huizhou University, Huizhou, Guangdong, P. R. China gdliu@pub.huizhou.gd.cn

Received: 3/15/13, Accepted: 11/5/13, Published: 11/27/13

Abstract

In this paper, the authors establish a formula expressing the Bernoulli polynomials of the second kind and general order k, $b_n^{(k)}(x)$, in terms of those of first order, $b_n(x) = b_n^{(1)}(x)$.

1. Introduction and Results

The Bernoulli polynomials $b_n^{(k)}(x)$ of the second kind and of order k, for any integer k, may be defined by (see [2,4,10])

$$\left(\frac{t}{\log(1+t)}\right)^k (1+t)^x = \sum_{n=0}^{\infty} b_n^{(k)}(x)t^n, \quad |t| < 1.$$
 (1)

The numbers $b_n^{(k)} = b_n^{(k)}(0)$ are the Bernoulli numbers of the second kind and of order k; $b_n^{(1)} = b_n$, $b_n^{(1)}(x) = b_n(x)$ are the ordinary Bernoulli numbers and polynomials of the second kind (see [1,4,5, 10-13]), and $C_n = n!b_n$ are the Cauchy numbers of the first kind (see [8, 13]). By (1.1), we have

$$b_n^{(k)}(x) = \sum_{\substack{v_1, \dots, v_k \in \mathbb{N}_0 \\ v_1 + \dots + v_k = n}} b_{v_1}(x/k) b_{v_2}(x/k) \cdots b_{v_k}(x/k), \tag{2}$$

$$b_n^{(k)} = \sum_{\substack{v_1, \dots, v_k \in \mathbb{N}_0 \\ v_1 + \dots + v_k = n}} b_{v_1} b_{v_2} \cdots b_{v_k}, \tag{3}$$

¹Corresponding author.

and

$$b_n^{(k)}(x) = b_0^{(k)} {x \choose n} + b_1^{(k)} {x \choose n-1} + \dots + b_{n-1}^{(k)} {x \choose 1} + b_n^{(k)}.$$
 (4)

where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, \mathbb{N} being the set of positive integers.

The numbers b_n satisfy the recurrence relation (see [1, 5])

$$b_0 = 1, \quad \sum_{j=0}^n \frac{(-1)^j}{n-j+1} b_j = 0 \quad (n \ge 1),$$
 (5)

so we find $b_1 = \frac{1}{2}, b_2 = -\frac{1}{12}, b_3 = \frac{1}{24}, b_4 = -\frac{19}{720}, b_5 = \frac{3}{160}, b_6 = -\frac{863}{60480}$. The numbers b_n satisfy many interesting relations. For example (see [1,5,8])

$$b_n = \int_0^1 \binom{x}{n} dx, \quad 1 - \log 2 = \sum_{n=1}^\infty \frac{|b_n|}{n+1}, \quad \gamma = \sum_{n=1}^\infty \frac{|b_n|}{n}, \quad 1 + \sum_{n=1}^\infty \frac{|b_n|H_n}{n} = \frac{\pi^2}{6},$$
(6)

where $\binom{x}{n} = \frac{x(x-1)(x-2)\cdots(x-n+1)}{n!}$, γ is the Euler constant and $H_n = \sum_{k=1}^n \frac{1}{k}$ is the

The Bernoulli polynomials $B_n^{(k)}(x)$ of order k, for any integer k, may be defined by (see [3,4,6,7,10])

$$\left(\frac{t}{e^t - 1}\right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!}, \quad |t| < 2\pi.$$
 (7)

The numbers $B_n^{(k)} = B_n^{(k)}(0)$ are the Bernoulli numbers of order k, and $B_n^{(1)} = B_n$ are the ordinary Bernoulli numbers. The numbers $B_n^{(n)}$ are called Nörlund numbers (see [3]), or Cauchy numbers of the second kind (see [8, 13]). Nörlund found the exponential generating function (see [10, p.150])

$$\frac{t}{(1+t)\log(1+t)} = \sum_{n=0}^{\infty} B_n^{(n)} \frac{t^n}{n!} \quad (|t| < 1).$$
 (8)

These numbers b_n , $b_n^{(k)}$, $B_n^{(n)}$ and $B_n^{(k)}$ satisfy various identities. For example (see [1-4])

$$n!b_n = B_n^{(n)} + nB_{n-1}^{(n-1)}, \quad B_n^{(n)} = n! \sum_{j=0}^n (-1)^{n-j} b_j, \quad \text{and} \quad n!b_n^{(k)} = \frac{k}{k-n} B_n^{(n-k)}.$$

$$(9)$$

The paper's central result is a formula expressing the Bernoulli polynomials of the second kind and general order k, $b_n^{(k)}(x)$, in terms of those of first order, $b_n(x) =$ $b_n^{(1)}(x)$. That is, we shall prove the following main conclusion.

Theorem. Let $n, k \in \mathbb{N}$ and $n \geq k - 1$. Then

$$(-1)^{k-1}(k-1)!(n-k)!b_n^{(k)}(x) = \sum_{j=0}^{k-1}(n-1-j)!$$

$$\times \sum_{\substack{v_1,\dots,v_{k-j}\in\mathbb{N}_0\\v_1+\dots+v_{k-j}=j}}(n-j-1-x)^{v_1}(n-j-2-x)^{v_2}\dots(n-k-x)^{v_{k-j}}b_{n-j}(x). \quad (10)$$

By taking x = 0 in Equation (10), we can deduce the following.

Corollary 1. Let $n, k \in \mathbb{N}$ and $n \geq k - 1$. Then

$$(-1)^{k-1}(k-1)!(n-k)!b_n^{(k)} = \sum_{j=0}^{k-1} (n-1-j)! \sum_{\substack{v_1,\dots,v_{k-j}\in\mathbb{N}_0\\v_1+\dots+v_{k-j}=j}} (n-j-1)^{v_1}(n-j-2)^{v_2}\cdots(n-k)^{v_{k-j}}b_{n-j}.$$
(11)

Taking k = 2, 3, 4 in (10) and (11), we immediately deduce the following expressions for the first few higher order Bernoulli polynomials and numbers of the second kind:

$$\begin{split} b_n^{(2)}(x) &= (1-n)b_n(x) + (x+2-n)b_{n-1}(x) \quad (n \ge 1); \\ b_n^{(3)}(x) &= \frac{1}{2}(n-1)(n-2)b_n(x) \\ &\quad + \frac{1}{2}(n-2)(2n-5-2x)b_{n-1}(x) + \frac{1}{2}(n-3-x)^2b_{n-2}(x) \quad (n \ge 2); \\ b_n^{(4)}(x) &= -\frac{1}{6}(n-1)(n-2)(n-3)b_n(x) - \frac{1}{6}(n-2)(n-3)(3n-9-3x)b_{n-1}(x) \\ &\quad - \frac{1}{6}(n-3)\left((n-3-x)^2 + (n-3-x)(n-4-x) + (n-4-x)^2\right)b_{n-2}(x) \\ &\quad - \frac{1}{6}(n-4-x)^3b_{n-3}(x) \quad (n \ge 3); \end{split}$$

$$b_n^{(2)} = (1-n)b_n + (2-n)b_{n-1} \quad (n \ge 1);$$

$$b_n^{(3)} = \frac{1}{2}(n-1)(n-2)b_n + \frac{1}{2}(n-2)(2n-5)b_{n-1} + \frac{1}{2}(n-3)^2b_{n-2} \quad (n \ge 2);$$

$$b_n^{(4)} = -\frac{1}{6}(n-1)(n-2)(n-3)b_n - \frac{1}{6}(n-2)(n-3)(3n-9)b_{n-1}$$

$$-\frac{1}{6}(n-3)\left((n-3)^2 + (n-3)(n-4) + (n-4)^2\right)b_{n-2} - \frac{1}{6}(n-4)^3b_{n-3} \quad (n \ge 3).$$

By (11), (3), and noting that $C_n = n!b_n$, we obtain an explicit formula for the sum involving Cauchy numbers of the first kind:

$$(-1)^{k-1}(k-1)!(n-k)! \sum_{\substack{v_1, \dots, v_k \in \mathbb{N}_0 \\ v_1 + \dots + v_k = n}} \frac{C_{v_1}C_{v_2} \cdots C_{v_k}}{v_1!v_2! \cdots v_k!}$$

$$= \sum_{j=0}^{k-1} \sum_{\substack{v_1, \dots, v_{k-j} \in \mathbb{N}_0 \\ v_1 + \dots + v_{k-j} = j}} (n-j-1)^{v_1}(n-j-2)^{v_2} \cdots (n-k)^{v_{k-j}} \frac{C_{n-j}}{n-j}. \quad (12)$$

Corollary 2. Let $n, k \in \mathbb{N}_0$ and $m \in \mathbb{N}$. Then

$$(-1)^{k} k! \int_{0}^{m} b_{n}^{(k)}(x) dx = \sum_{i=1}^{n+1} {m \choose i} \sum_{j=0}^{k} \frac{(n-i-j)!}{(n-i-k)!}$$

$$\times \sum_{\substack{v_{1}, \dots, v_{k+1-j} \in \mathbb{N}_{0} \\ v_{1}+\dots+v_{k+1-j}=j}} (n-i-j)^{v_{1}} (n-i-j-1)^{v_{2}} \dots (n-i-k)^{v_{k+1-j}} b_{n+1-i-j}.$$
 (13)

By taking m = 1 in (13), we can deduce the following:

$$(-1)^{k} k! (n-k-1)! \int_{0}^{1} b_{n}^{(k)}(x) dx = \sum_{j=0}^{k} (n-1-j)!$$

$$\times \sum_{\substack{v_{1}, \dots, v_{k+1-j} \in \mathbb{N}_{0} \\ v_{1}+\dots+v_{k+1-j}=j}} (n-j-1)^{v_{1}} (n-j-2)^{v_{2}} \cdots (n-k-1)^{v_{k+1-j}} b_{n-j}.$$
 (14)

Taking k=0,1; m=1,2,3 in (13) and noting that $b_n^{(0)}(x)={x\choose n}$, we have

$$\int_0^1 \binom{x}{n} dx = b_n, \quad \int_0^2 \binom{x}{n} dx = 2b_n + b_{n-1}, \quad \int_0^3 \binom{x}{n} dx = 3b_n + 3b_{n-1} + b_{n-2}.$$

and

$$\int_0^1 b_n(x)dx = (1-n)b_n + (2-n)b_{n-1},$$

$$\int_0^2 b_n(x)dx = 2(1-n)b_n + 3(2-n)b_{n-1} + (3-n)b_{n-2},$$

$$\int_0^3 b_n(x)dx = 3(1-n)b_n + 6(2-n)b_{n-1} + 4(3-n)b_{n-2} + (4-n)b_{n-3}.$$

2. Proof of Theorem

In this section, we shall complete the proof of the theorem. First, the following lemma (see [2,10]) is crucial to the proof of the theorem. To be more self-contained, we present a simpler proof here.

Lemma. Let $n, k \in \mathbb{N}_0$ and $m \in \mathbb{N}$. Then

$$b_n^{(k+1)}(x) = \frac{n-k}{-k}b_n^{(k)}(x) + \frac{n-k-1-x}{-k}b_{n-1}^{(k)}(x). \tag{15}$$

Proof. By (1), we have

$$\sum_{n=0}^{\infty} (n-k)b_n^{(k)}(x)t^{n-k-1} = \frac{d}{dt} \left(\frac{1}{\log(1+t)}\right)^k (1+t)^x$$

$$= -k \left(\frac{1}{\log(1+t)}\right)^{k+1} (1+t)^{x-1} + x \left(\frac{1}{\log(1+t)}\right)^k (1+t)^{x-1}, \quad (16)$$

i.e.,

$$\sum_{n=1}^{\infty} (n-k-1)b_{n-1}^{(k)}(x)t^{n-k-1}$$

$$= -kt \left(\frac{1}{\log(1+t)}\right)^{k+1} (1+t)^{x-1} + xt \left(\frac{1}{\log(1+t)}\right)^{k} (1+t)^{x-1}. \quad (17)$$

By (16) and (17), we have

$$\sum_{n=0}^{\infty} (n-k)b_n^{(k)}(x)t^{n-k-1} + \sum_{n=1}^{\infty} (n-k-1)b_{n-1}^{(k)}(x)t^{n-k-1}$$

$$= -k\left(\frac{1}{\log(1+t)}\right)^{k+1} (1+t)^x + x\left(\frac{1}{\log(1+t)}\right)^k (1+t)^x$$

$$= -k\sum_{n=0}^{\infty} b_n^{(k+1)}(x)t^{n-k-1} + x\sum_{n=0}^{\infty} b_n^{(k)}(x)t^{n-k}.$$
(18)

Comparing the coefficient of t^{n-k-1} on both sides of (18), we get

$$b_n^{(k+1)}(x) = \frac{n-k}{-k}b_n^{(k)}(x) + \frac{n-k-1-x}{-k}b_{n-1}^{(k)}(x).$$

This proves the lemma.

Now we complete the proof of the theorem by using mathematical induction and the method of coefficients (see [9]).

Proof of theorem. First note that (10) holds for k = 1, 2, by (15). Now suppose (10) is true for some natural number k and all $n \ge k - 1$. By superposition of (15), we have

$$\begin{split} &(-1)^k k! (n-k-1)! b_n^{(k+1)}(x) \\ &= (-1)^{k-1} (k-1)! (n-k)! b_n^{(k)}(x) + (-1)^{k-1} (k-1)! (n-k-1)! (n-k-1-x) b_{n-1}^{(k)}(x) \\ &= \sum_{j=0}^{k-1} (n-1-j)! \\ &\times \sum_{\substack{v_1, \cdots, v_{k-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k-j} = j}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-x)^{v_{k-j}} b_{n-j}(x) \\ &\times \sum_{\substack{v_1, \cdots, v_{k-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k-j} = j}} (n-j-2-x)^{v_1} (n-j-3-x)^{v_2} \cdots (n-k-1-x)^{v_{k-j}} b_{n-1-j}(x) \\ &\times \sum_{\substack{v_1, \cdots, v_{k-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k-j} = j}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k-j}} b_{n-1-j}(x) \\ &\times \sum_{\substack{v_1, \cdots, v_{k-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k-j} = j}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k-j}} b_{n-j}(x) \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x) \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-1}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-j}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-j}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-j}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots, v_{k+1-j} \in \mathbb{N}_0 \\ v_1 + \cdots + v_{k+1-j} = j-j}}} (n-j-1-x)^{v_1} (n-j-2-x)^{v_2} \cdots (n-k-1-x)^{v_{k+1-j}} b_{n-j}(x), \\ &\times \sum_{\substack{v_1, \cdots,$$

which shows that (10) is also true for the natural number k+1. The theorem follows by induction.

Now we complete the proof of Corollary 2.

Proof of Corollary 2. By (11), (4), and noting that $\frac{d}{dx}b_n^{(k)}(x) = b_{n-1}^{(k-1)}(x)$ (see [11]),

INTEGERS: 13 (2013)

we have

$$(-1)^{k}k! \int_{0}^{m} b_{n}^{(k)}(x)dx = (-1)^{k}k! \left(b_{n+1}^{(k+1)}(m) - b_{n+1}^{(k+1)}\right) = (-1)^{k}k! \sum_{i=1}^{n+1} {m \choose i} b_{n+1-i}^{(k+1)}$$

$$= \sum_{i=1}^{n+1} {m \choose i} \sum_{j=0}^{k} \frac{(n-i-j)!}{(n-i-k)!}$$

$$\times \sum_{\substack{v_{1}, \cdots, v_{k+1-j} \in \mathbb{N}_{0} \\ v_{1}+\cdots+v_{k+1-j}=j}} (n-i-j)^{v_{1}} (n-i-j-1)^{v_{2}} \cdots (n-i-k)^{v_{k+1-j}} b_{n+1-i-j}.$$

7

This completes the proof.

Acknowledgement. The authors would like to thank the referee for his/her very useful suggestions. This work was supported by the Guangdong Provincial Natural Science Foundation (No. 8151601501000002).

References

- [1] T. Agoh and K. Dilcher, Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind, *Fibonacci Quart.* **48.1** (2010), 4-12.
- [2] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math. 25 (1961), 323-330.
- [3] F. T. Howard, Nörlund's number $B_n^{(n)}$, Applications of Fibonacci Numbers, Volume 5, Dordrecht: Kluwer, 1993, pp. 355-366.
- [4] F. T. Howard, Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci Quart. 32 (1994), 316-328.
- [5] C. Jordan, Calculus of Finite Differences, New York: Chelsea, 1965.
- [6] G.-D. Liu, Some computational formulas for Nörlund numbers, Fibonacci Quart. 45 (2007), 133-137.
- [7] G.-D. Liu and H. M. Srivastava, Explicit formulas for the Nörlund polynomials $B_n^{(x)}$ and $b_n^{(x)}$, Comput. Math. Appl. **51** (2006), 1377-1384.
- [8] D. Merlini, R. Sprugnoli and M. C. Verri, The Cauchy numbers, Discrete Math. 306 (2006), 1906-1920.
- [9] D. Merlini, R. Sprugnoli and M. C. Verri, The method of coefficients, Amer. Math. Monthly 114 (2007), 40-57.
- [10] N. E. Nörlund, Vorlesungenüber Differenzenrechnung, Springer-Verlag, Berlin 1924; Reprinted by Chelsea Publishing Company, Bronx, New York, 1954.
- [11] T. R. Prabhakar, Sharda Gupta, Bernoulli polynomials of the second kind and general order, Indian J. pure appl. Math. 11 (1980), 1361-1368.
- [12] M. Wu and H. Pan, Sums of products of Bernoulli numbers of the second kind, Fibonacci Quart. 45 (2007), 146-150.
- [13] F.-Z. Zhao, Sums of products of Cauchy numbers, Discrete Math. 309 (2009), 3830-3842.