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Abstract
Given an impartial combinatorial game G, we create a class of related games (CIS-
G) by specifying a finite set of positions in G and forbidding players from moving
to those positions (leaving all other game rules unchanged). Such modifications
amount to taking cofinite induced subgraphs (CIS) of the original game graph. Some
recent numerical/heuristic work has suggested that the underlying structure and
behavior of such “CIS-games” can shed new light on, and bears interesting rela-
tionships with, the original games from which they are derived. In this paper we
present an analytical treatment of the cofinite induced subgraphs associated with
the game of (three-heap) Nim. This constitutes one of the simplest nontrivial cases
of a CIS game. Our main finding is that although the structure of the winning
strategies in games of CIS-Nim can differ greatly from that of Nim, CIS-Nim games
inherit a type of period-two scale invariance from the original game of Nim.

1. Introduction

Questions surrounding the underlying structure of the N - and P -positions in impar-
tial combinatorial games (and associated issues of complexity and optimal strate-
gies) continue to pose substantive challenges to researchers in the field. For some
impartial games, the N - and P -positions form readily characterizable patterns (such
as in Nim, as shown by Bouton’s analysis [4]), while for others the structure is much
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more complex and appears to be resilient against standard analytical treatments
(such as the game of Chomp). Indeed, a great deal of work has been devoted to
understanding and characterizing the N - and P - positions in a variety of different
games (see, e.g., [7, 2, 3, 12, 13]). However, rather than considering an individual
impartial game in isolation, recent work [10, 11, 8] suggests that new and sometimes
surprising insights can be had by considering a given game within the context of a

family of ‘closely related’ games. In particular, for a given impartial game, the idea
is to construct a set of similar games whose game graphs are all ‘close’ to that of
the original game (in some suitably defined metric). One then examines how the
underlying structure of the N - and P - positions in this associated family of games
compares to that of the original. Indeed, this is the premise behind the earlier no-
tion of “generic games” first introduced in [11]: Given an impartial combinatorial
game G, one can create slightly perturbed versions of the original game by selecting
a finite number of P -positions in G and declaring them to be automatic N posi-
tions. The class of games formed by arbitrary perturbations of this type has been
dubbed the “generic” form of the game G. The generic forms of Chomp, Nim, and
Wythoff’s games have been previously investigated using a combination of numer-
ical methods and (nonrigorous) renormalization techniques from physics [10, 11].
It has been observed that in some cases (e.g., three-row Chomp) the original game
and its associated family of generic games all share a similar underlying structure,
which in turn has yielded a novel geometric characterization of Chomp’s N - and
P -positions. In other cases (e.g., three-heap Nim) it has been found that the family
of generic games appears to have a rather different underlying structure from the
original game. (See also [9] for an alternative discussion of perturbed games.)

The present work on cofinite induced subgraph (CIS) games is a formalization and
extension of some of this earlier work on generic games. Using three-heap Nim as a
case study, it provides a new approach which not only yields novel results but for the
first time allows rigorous mathematical statements to be made about the structure
of the N and P positions in this family of Nim-like games. In particular, Figure
1b illustrates the structure of the P -positions in ordinary (three-heap) Nim, while
Figure 1a shows an example of a CIS-Nim game (these figures will be discussed more
fully later). Despite the striking structural differences between the two, we prove
that the overall structure of P -positions in CIS-Nim exhibits the same ‘period-two
scale invariance’ (to be defined more precisely later) as Nim. This work constitutes
the first formal proofs regarding the properties of CIS-Nim and its relationship to
Nim – relationships that were conjectured to exist based on nonrigorous techniques
from physics but never formally proven. Moreover, the proofs themselves, although
geared for CIS-Nim, provide more general insights into other impartial games and
suggest a means of determining which structural properties of a game’s P -positions
are unstable and dependent on its specific end-game positions, and which properties
are stable and independent of the details of the end game.
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2. Background

2.1. Game Graphs

Impartial combinatorial games are often represented as directed graphs called “game
graphs” wherein the vertices of the game graph represent the possible positions of
the game and there is a directed edge from vertex u to vertex v if and only if there is
a legal move from u to v. In this case, we will call u a parent of v and v a child of u.
Starting from any vertex in the game graph, the two players will alternate in moving
along any directed edge from the current vertex to another vertex. We will only
consider games under normal play, meaning that if the current position has zero
out-degree, the player whose turn it is to move has no legal options and is declared
the loser. (This is in contrast with misère play, in which a player with no legal
move is declared the winner.) All game graphs of impartial combinatorial games
are acyclic and have the property that from any given position there are only finitely
many positions which are reachable using any sequence of moves. However, since
we will think of these games generally and not limit ourselves to a single starting
position, the game graphs we consider will not necessarily be finite. In fact, all of
the game graphs discussed in this paper will have infinitely many vertices.

2.2. P - and N- Positions

It follows from Zermelo’s theorem [15] that from any position either the next player
to move can guarantee herself a win under optimal play, or the previous player can
guarantee himself a win. Any position in which the next player to move can force a
win is known as an “N -position,” while if the previous player can force the win the
position is called a “P -position.” This partition of positions into P -positions and
N -positions has the property that no P -position has a P -position child and every N -
position has at least one P -position child. Further, this is the only partition which
satisfies this property. Most importantly, knowledge of the N - and P -positions of
a game defines an optimal strategy for the game: A player at an N -position need
only move his/her opponent to a P -position whenever possible to guarantee a win.
This means that given a game, a primary goal is to determine the unique partition
of positions into P -positions and N -positions.
More generally, Sprague-Grundy theory asserts that it is possible to assign a non-
negative integer value to each position (i.e., a 0 to P -positions and positive-integer
values to N -positions) such that simultaneous play of multiple games can be reduced
to an equivalent game of Nim [12, 13].
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3. Cofinite Induced Subgraph Games

Once the the positions of a game graph are partitioned into P -positions and N -
positions, one interesting question is to ask how stable this partition is to minor
perturbations made in the game graph. One simple way of making perturbations
in a game graph is to remove some finite number of vertices, resulting in an cofinite
induced subgraph of the original game graph.

Definition 3.1. Let G be a game graph, and let F be a finite set of vertices in G,
called the set of “forbidden positions”. Let G − F denote the game whose game
graph is the induced subgraph formed by removing from G the vertices in F and all
edges incident to vertices in F . For a given game G, “Cofinite Induced Subgraph
G” or “CIS-G” will refer to the general class of games of the form G−F for any F .

Loosely speaking, the game G − F is effectively G, except that players are for-
bidden from moving to any position in F .

4. Nim and CIS-Nim

4.1. Nim

Nim [4] is a game played with multiple heaps of beans. Two players alternate taking
any positive number of beans from any one heap. When all heaps are empty, the
player whose turn it is to play has no move and is therefore declared the loser. We
will restrict our attention to games of Nim with three heaps and we will consider the
three heaps of beans unlabeled so that the positions in this game can be thought of as
three-element multisets of non-negative integers, where the three numbers represent
the number of beans in the three heaps. The children of a position {x, y, z}, are
all positions of the form {x�, y, z} with x� < x, {x, y�, z} with y� < y, or {x, y, z�}
with z� < z. From now on, unless otherwise stated, the word “Nim” will refer to
three-heap Nim with unlabeled heaps.

4.2. CIS-Nim

Our goal is to analyze the class of Cofinite Induced Subgraph Nim, or CIS-Nim.
Figures 1.a and 1.b show the structure of the P -positions in the standard game
of Nim and in another instance of Cofinite Induced Subgraph Nim, or CIS-Nim.
These structures are remarkably different. The data suggests that the structure
of any instance of CIS-Nim looks like one of these two. Most games look similar
to Figure 1.a. However, in special cases where none of the forbidden positions are
P -positions of Nim or the forbidden positions are set up to correct any errors they
introduce, the structure will look similar to 1.b. This is because games like Nim are
unstable special cases in the generic class of CIS-Nim Games [11, 8].
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(a) The P -positions of Nim-{{1, 1, 0}} of the form {x, y, z} with x, y < 5000.

(b) The P -positions of Nim of the form {x, y, z} with x, y < 5000.

(c) The P -positions of Nim-{{1, 1, 0}} of the form {x, y, z} with x, y < 2500.

Figure 1: The structure of P -positions in Nim and Nim-{{1, 1, 0}}. Point (x, y) is
given with a color representing the unique z such that {x, y, z} is a P -position. Col-
ors closer to red on the color spectrum represent larger z values, and are normalized
based on the largest value of z in each figure.
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There is one significant property of Nim which also holds for all instances of
CIS-Nim: The structure of P -positions is invariant up to scaling by a factor of two.
Figures 1.a and 1.c demonstrate this period-two scale invariance.

A somewhat weaker but more formal way to state this period-two scale invariance
is that given any instance, Nim− F of CIS-Nim, if we let π(n) denote the number
of P -positions of the form {x, y, z}, with x, y, and z all less than n, then for any

positive integer n, lim
k→∞

π(n2k)
(n2k)2

converges to a nonzero constant. In the case of Nim,

this can be shown directly using Bouton’s well-known analytical solution to Nim
[4]. The primary result of this paper is a proof that this period-two scale invariance
holds for any game of CIS-Nim.

5. Basic Properties of CIS-Nim

Before we can prove the period-two scale invariance, we will have to establish some
basic properties of CIS-Nim games. In Figure 1, the point (x, y) is given a color
representing z, where z is the unique P -position of the form {x, y, z}. These figures
are only well-defined because such a unique P -position of the form {x, y, z} is known
to always exist.

Theorem 5.1. Given any instance Nim − F of CIS-Nim, for any nonnegative

integers x and y there is a unique z such that {x, y, z} is a P -position in Nim −F .

This value of z satisfies the inequality z ≤ x + y + |F |.

Proof. To show uniqueness, assume by way of contradiction that there existed two
P -positions {x, y, z1} and {x, y, z2}. Without loss of generality, assume that z1 < z2.
This means that {x, y, z1} is a P -position child of P -position {x, y, z2}, contradicting
the fact that no P -position has a P -position child.

Next, assume by way of contradiction that every position of the form {x, y, z}
with z ≤ x+y+ |F | is an N -position. There are x+y+ |F |+1 values of z satisfying
this condition, and for all but at most |F | of them, {x, y, z} is valid position in
Nim− F . There are at least x + y + 1 N -positions of this form and each of these
positions, {x, y, z}, therefore has a P -position child. This child cannot be of the
form {x, y, z�} with z� < z, so it must be of the form {x�, y, z} with x� < x or
{x, y�, z} with y� < y. There are x different pairs of the form (x�, y) with x� < x
and we know that for each of these pairs, there is at most one value of z such that
{x�, y, z} is a P -position. Similarly, there are y different pairs of the form (x, y�)
with y� < y and we know that for each of these pairs, there is at most one value
of z such that {x, y�, z} is a P -position. There are x + y + 1 N -positions of the
form {x, y, z}. At most x of these positions can have a P -position child of the form
{x�, y, z}, and at most y of them can have a P -position child of the form {x, y�, z}.
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Therefore, at least one of them has no P -position child, contradicting the fact that
every N -position has a P -position child. Therefore, there is at least one P -position
of the form {x, y, z} with z ≤ x + y + |F |. This means that there is exactly one
P -position of the form {x, y, z}, and it satisfies the inequality z ≤ x + y + |F |.

The bound of z ≤ x + y + |F | given in Theorem 5.1 is only necessary for small
valued P -positions. For all but finitely many P -positions near {0, 0, 0}, we can
improve this bound to z ≤ x + y.

Definition 5.2. Given an instance Nim−F of CIS-Nim, let Fmax equal the largest
element (largest number of beans in a single heap) of any position in F .

Theorem 5.3. Given any instance Nim−F of CIS-Nim, if {x, y, z} is a P -position

with z > 2Fmax + |F |, then z ≤ x + y

Proof. Since {x, y, z} is a P -position, we know from Theorem 5.1, that z ≤ x + y +
|F |. Therefore, 2Fmax < z−|F | ≤ x+y, so either Fmax < x or Fmax < y. Therefore,
each of the z positions of the form {x, y, z�} with z� < z has an element greater than
Fmax, and is therefore not in F . Since all of these positions are also children of the
P -position, {x, y, z}, we know that each of these positions are actually N -positions.
Therefore, each of these z positions has a distinct P -position child of the form
{x�, y, z�} or {x, y�, z�} with x� < x, y� < y, and z� < z. Similarly to in Theorem
5.1, there can be at most x + y such P -positions, so z ≤ x + y.

Corollary 5.4. Given any instance Nim−F of CIS-Nim, for all n > 2Fmax + |F |,
{n, n, 0} is a P -position.

Proof. If {n, n, 0} were not a P -position, it would have a P -position child of the form
{n, n�, 0} with n� < n. In this case, n > 2Fmax + |F |, but n > n� + 0, contradicting
Theorem 5.3.

In the game of Nim, {n, n, 0} is a P -position for all n. This means that if we only
consider positions of the form {x, y, 0}, the structures of P -positions in Nim and
in generic games of CIS-Nim agree on all but finitely many small valued positions.
Positions of the form {x, y, 0}, are effectively positions in two-heap Nim games, so
Corollary 5.4 tells that two-heap Nim is stable in that large valued P -positions are
unaffected by removal of small valued positions.

It turns out that if we fix the size of any one heap, the structure of P -positions
is eventually additively periodic. This is an generalization of Corollary 5.4 which
shows that if we fix one heap to be of size 0, the structure of P -positions is additively
periodic with period 1.

Claim 5.5. For any x, there exists a p and a q such that for any y > q, {x, y, z}
is a P -position if and only if {x, y + p, z + p} is a P -position.
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We will not prove this claim, as it is technical and unnecessary for our main
result. However, the proof is almost identical to an argument given L. Abrams and
D. S. Cowen-Morton for a game with similar structure [1].

6. Period-Two Scale Invariance in CIS-Nim

The primary result of this paper is the proof of the following theorem, which is a
formulation of the observation that the overall structure of P -positions in any game
of CIS-Nim is invariant under scaling by a factor of two.

Theorem 6.1 (Period-Two Scale Invariance). Given any instance Nim − F
of CIS-Nim, let π(n) denote the number of P -positions (assuming unlabeled heaps)

in Nim − F of the form {x, y, z}, with x, y, and z all less than n. For any positive

integer n, lim
k→∞

π(n2k)
(n2k)2

converges to a nonzero constant.

We note that an analog of this result holds for the much simpler case of ordinary
Nim (see Figure 2). In the case of ordinary Nim, it is possible to give an explicit
formula for π(x) as 3x2−6xy+4y2+3x+2

6 , where y is the greatest power of 2 less than
or equal to x. This formula comes from intersecting the region x ≤ y ≤ z < n with
the set of P -positions found in Bouton’s original analysis [4]. (Specifically, note that
if we label the piles, the number of P -positions with all three heaps of size less than
x is y2 + 3(x− y)2. The full formula comes from modifying this to account for the
fact that the heaps are unlabeled.) Notice that this implies that for ordinary Nim,

lim
k→∞

π(2k)
(2k)2

=
1
6
, while lim

k→∞

π(3 · 2k)
(3 · 2k)2

=
7
54

. These limiting values are consistent

with the main result, Theorem 6.1.
To prove the main theorem, we will first need to prove several Lemmas.

6.1. The Set S

To start, we will need to think about this problem in terms of a new set S, which
encodes much of the information about the structure of the P -positions as a set of
ordered pairs.

Definition 6.2. Given any instance Nim− F of CIS-Nim, let S be the infinite set
of ordered pairs of integers such that (x, y) ∈ S if and only if there exists a z such
that z < y < x and {x, y, z} is a P -position in Nim− F .

Definition 6.3. Given any instance Nim − F of CIS-Nim, for any nonnegative
integers x and y, let r(x, y) be the number of elements of S of the form (x�, y) with
x� ≥ x. Let b(x, y) be the number of elements of S of the form (x, y�) with y� ≤ y.
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Figure 2: Plot of π(x)/x2 vs. x for ordinary Nim, illustrating a period-two scale
invariance.

It will be helpful to visualize S as a subset of the plane, as shown in Figure
3. With this visualization in mind, the definitions of r(x, y) and b(x, y) are very
natural as the number of points directly to the right or equal to (x, y) and the
number of points to below or equal to (x, y) respectively. Notice that there are
points (x, y) /∈ S with x > y for which b(x, y) is positive. We will refer to such
points as “holes.” The following two Lemmas will prove some properties of r(x, y)
and b(x, y). Lemma 6.4 captures the essence of why CIS-Nim follows the period-
two scale invariance. In fact, if not for the existence of holes, the period-two scale
invariance would follow almost directly from Lemma 6.4. However, holes do exist,
which is why we will need Lemma 6.5 which places limitations on the ways which
holes can show up.

Lemma 6.4. Given any instance Nim − F of CIS-Nim, for all x > 4Fmax + 3|F |,
r(x, x) + 2b(x, x) + 1 = x.

Proof. For each of the x values of y satisfying y < x, there exists a unique z,
such that {x, y, z} is a P -position. For each value of y, this unique z will satisfy
exactly one of the following: z > x, z = x, x > z > y, z = y, or z < y. The
number of values of y which satisfy z > x is exactly the number of P -positions of
the form {z, x, y} with z > x > y, which is r(x, x). The number of values of y
which satisfy z = x is 1, since {x, x, 0} is the only P -position of the form {x, z, y}
with x = z. The number of values of y which satisfy x > z > y is exactly the
number of P -positions of the form {x, z, y} with x > z > y, which is b(x, x). If
there were a P -position of the form {y, z, x} with y = z, then {y, y, 0} would not
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Figure 3: The set of all points (x, y) ∈ S with x, y < 100 for the game Nim-{{1, 1, 0}}

be a P -position, which implies by Corollary 5.4 that y ≤ 2Fmax + |F |. By Theorem
5.1, this would imply that x ≤ (2Fmax + |F |)+(2Fmax + |F |)+ |F | = 4Fmax +3|F |,
a contradiction. Therefore, the number of values of y which satisfy z = y is 0. The
number of values of y which satisfy z < y is exactly the number of P -positions of
the form {x, y, z} with x > y > z, which is b(x, x). Adding all these together, we
get r(x, x) + 2b(x, x) + 1, and we know that the total number of values of y less
than x is exactly x, so r(x, x) + 2b(x, x) + 1 = x.

Lemma 6.5. Given any instance Nim − F of CIS-Nim, for all x > y > 4Fmax +
3|F |, if (x, y) /∈ S then b(x, y) ≥ r(x, y).

Proof. There is an element of S of the form (x�, y) with x� > x for each P -position
of the form {x�, y, z} with z < y < x < x�. No two of these positions can have
the same value for z, since then they would have two of the three elements in
common, so there would be a move from one to the other. There are therefore
r(x, y) distinct values of z for which there is a P -position of the form {x�, y, z} with
z < y < x < x�. For each of these values of z, {x, y, z} cannot be a P -position,
since it has a P -position parent. It therefore must have a P -position child. This
child cannot be of the form {x��, y, z} with x�� < x because then it would also be
a child of {x�, y, z}. This child cannot be of the form {x, y, z�} since then it would
satisfy x > y > z�, contradicting the fact that (x, y) /∈ S. Therefore, for each of
the r(x, y) values of z, there is a P -position of the form {x, y�, z} with y� < y. If
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two of these P -positions, {x, y�1, z1} and {x, y�2, z2} were the same, then y�1 = z2

and y�2 = z1. Because z is one of our r(x, y) values, we know that there exist x1

and x2 greater than x such that {x1, y, z1} and {x2, y, z2} are both P -positions.
This would mean that {y, z1, z2} would have three P -position parents, {x1, y, z1},
{x2, y, z2}, and {x, z1, z2}. In order to form a P -position by changing any of the
three elements of {y, z1, z2}, we would have to increase that element. Therefore,
we cannot decrease one element of {y, z1, z2} to form a P -position, so {y, z1, z2}
has no P -position children, making it a P -position, which contradicts the fact that
{x, z1, z2} is also a P -position. Therefore, each of the r(x, y) P -positions of the form
{x, y�, z} with y� < y are unique, and each one has one coordinate equal to x, and
the other two less than y. For each of these P -positions, y� and z must be distinct,
since otherwise, 4Fmax +3|F | < x ≤ y�+ z = 2z, so z < 2Fmax + |F |, implying that
{0, z, z} is a P -position child of {x, y�, z}. Therefore, either (x, y�) or (x, z) is in S,
so each of the positions will contribute to S an ordered pair of the form (x, y��) with
y�� < y, which will contribute 1 to b(x, y). Therefore, b(x, y) ≥ r(x, y).

6.2. The Sets Ux,y, Ūx,y, and Sn

In this section, we define a sequence Sn of sets. These sets, and the intermediate
sets, Ux,y and Ūx,y which are used to define Sn encode information about S. In
particular, the Sn should be thought of as increasingly accurate approximations of
S which are defined to be free of holes. The next three lemmas are building up to
proving that for and n < m, it is possible to get from Sn to Sm by changing points
in a very limited way. This information about how to construct Sm from Sn will
be useful for the next section, where we will prove several important properties of
the sequence Sn.

The first sets we will need to define on our way to Sn are the Ux,y. The set Ux,y

is very similar to the set of all points (x�, y�) in S with y� < x. In fact, these two
sets have the same size. However, some of the points are moved so that Ux,y is free
of holes.

Definition 6.6. Given any instance Nim − F of CIS-Nim, and given any x >
4Fmax + 3|F | and y ≤ x:

Let Ax,y be the set of all ordered pairs (x�, y�), such that 0 ≤ y� < x� ≤ x and
b(x�, x�) ≥ x� − y�.

Let Bx,y be the set of all ordered pairs (x, y�), such that 0 ≤ y� < y and b(x, y−1) ≥
y − y�.

Let Cx,y be the set of all ordered pairs (x�, y�), such that y ≤ y� < x ≤ x� and
r(x, y�) > x� − x.

Let Dx,y be the set of all ordered pairs (x�, y�), such that 0 ≤ y� < y ≤ x < x� and
r(x + 1, y�) > x� − (x + 1).
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Let Ux,y = Ax,y ∪Bx,y ∪ Cx,y ∪Dx,y.

The next lemma will describe the map necessary to get from Ux,y to Ux,y+1. This
will be extended in the following two lemmas to describe the map necessary to get
from Sn to Sm.

Lemma 6.7. Given any instance Nim−F of CIS-Nim, and any x > 4Fmax +3|F |
and 0 ≤ y < x, there exists a bijection from Ux,y to Ux,y+1 which either fixes all

elements or fixes all but one element and sends (x, y − b(x, y)) to (x + r(x, y), y).
This bijection will be the identity if and only if (x, y) ∈ S or b(x, y) = 0.

Proof. We will partition the set of all points (x, y) with y� < x� into 11 regions. We
will show that Ux,y and Ux,y+1 agree for most of these regions. We will see that
they do not always agree for regions 3 and 9, but we will show that the way the
points in which regions 3 and 9 may differ will exactly follow the statement of the
lemma.

Region 1 (x� < x): (x�, y�) ∈ Ux,y if and only if (x�, y�) ∈ Ax,y if and only if
b(x�, x�) ≥ x�−y� if and only if (x�, y�) ∈ Ax,y+1 if and only if (x�, y�) ∈ Ux,y+1.

Region 2 (x� = x and y� < y − b(x, y)): Since b(x, y−1) ≤ b(x, y) < y−y�, we
know that (x�, y�) /∈ Bx,y so (x�, y�) /∈ Ux,y. Similarly, since b(x, (y + 1)− 1) ≤
y − y� < (y + 1)− y�, we know that (x�, y�) /∈ Bx,y+1 so (x�, y�) /∈ Ux,y+1.

Region 3 (x� = x and y� = y − b(x, y) < y): This case must further be divided
into two cases:

Case 1 ((x, y) ∈ S): This means that b(x, y) = b(x, y − 1) + 1. Therefore,
(x�, y�) ∈ Ux,y if and only if (x�, y�) ∈ Bx,y if and only b(x, y−1) ≥ y−y�

if and only if b(x, (y+1)−1) ≥ (y+1)−y� if and only if (x�, y�) ∈ Bx,y+1

if and only if (x�, y�) ∈ Ux,y+1.

Case 2 ((x, y) /∈ S): This means that b(x, y) = b(x, y − 1). Therefore,
b(x, y − 1) = b(x, y) = y − y�, so (x�, y�) ∈ Bx,y, so (x�, y�) ∈ Ux,y.
On the other hand, b(x, y) = y− y� < y + 1− y�, so (x�, y�) /∈ Bx,y+1 and
(x�, y�) /∈ Ux,y+1.

Region 4 (x� = x and y − b(x, y) < y� < y): Since b(x, y) > y − y�, we know
that b(x, y − 1) ≥ y − y�, which implies that (x�, y�) ∈ Bx,y so (x�, y�) ∈ Ux,y.
Similarly, since b(x, (y + 1) − 1) > y − y� we know that b(x, (y + 1) − 1) ≥
(y + 1)− y� which implies that (x�, y�) ∈ Bx,y+1 so (x�, y�) ∈ Ux,y+1.

Region 5 (x� = x < x + r(x, y) and y� = y): Since r(x, y�) > x� − x, we know
that (x�, y�) ∈ Cx,y, so (x�, y�) ∈ Ux,y. If (x, y) ∈ S, then b(x, (y + 1) − 1) ≥
1 = (y + 1)− y�. Otherwise, (x, y) /∈ S, so by Lemma 6.5, b(x, (y + 1)− 1) ≥
r(x, y) ≥ 1 = (y + 1)− y�. Either way, (x�, y�) ∈ Bx,y+1, so (x�, y�) ∈ Ux,y+1.
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Region 6 (x� ≥ x and y < y�): (x�, y�) ∈ Ux,y if and only if (x�, y�) ∈ Cx,y if
and only if r(x, y�) > x� − x if and only if (x�, y�) ∈ Cx,y+1 if and only if
(x�, y�) ∈ Ux,y+1.

Region 7 (x� > x and y� < y): (x�, y�) ∈ Ux,y if and only if (x�, y�) ∈ Dx,y if and
only if r(x + 1, y�) > x� − (x + 1) if and only if (x�, y�) ∈ Dx,y+1 if and only if
(x�, y�) ∈ Ux,y+1.

Region 8 (x < x� < x + r(x, y) and y� = y): Since r(x, y�) > x� − x, we know
that (x�, y�) ∈ Cx,y, so (x�, y�) ∈ Ux,y. Since r(x + 1, y�) ≥ r(x + 1, y�) − 1 >
x� − (x + 1), we know that (x�, y�) ∈ Dx,y+1, so (x�, y�) ∈ Ux,y+1.

Region 9 (x� = x + r(x, y) and y� = y): This region must be further divided
into three cases:

Case 1 ((x, y) ∈ S): Since r(x, y�) = r(x, y) = x�−x, we know that (x�, y�) /∈
Cx,y, so (x�, y�) /∈ Ux,y. Since (x, y) ∈ S, r(x, y) > 0, so we know that
x� > x. Since (x, y) ∈ S, r(x + 1, y�) = r(x, y) − 1 = x� − (x + 1), so
(x�, y�) /∈ Dx,y+1, so (x�, y�) /∈ Ux,y+1.

Case 2 (b(x, y) = 0): Since r(x, y�) = r(x, y) = x�−x, we know that (x�, y�) /∈
Cx,y, so (x�, y�) /∈ Ux,y. By Lemma 6.5, since b(x, y) = 0, we know that
r(x, y) = 0, so x� = x. Also, b(x, (y + 1) − 1) = 0 < 1 = (y + 1) − y�,
which implies that (x�, y�) /∈ Bx,y, so (x�, y�) /∈ Ux,y.

Case 3 ((x, y) /∈ S and b(x, y) > 0): Since r(x, y�) = r(x, y) = x� − x, we
know that (x�, y�) /∈ Cx,y, so (x�, y�) /∈ Ux,y. If r(x, y) = 0, then x� = x,
which since b(x, (y + 1) − 1) ≥ 1 = (y + 1) − y�, which implies that
(x�, y�) ∈ Bx,y+1. Otherwise, r(x, y) > 0, and x� > x. Since (x, y) /∈ S,
r(x+1, y�) = r(x, y�) > x+r(x, y�)− (x+1) > x�− (x+1), which implies
that (x�, y�) ∈ Dx,y+1. Either way, (x�, y�) ∈ Ux,y+1.

Region 10 (x + r(x, y) < x� and y� = y): Since r(x, y�) ≤ x�−x, we know that
(x�, y�) /∈ Cx,y, so (x�, y�) /∈ Ux,y. Since r(x + 1, y�) ≤ r(x, y�) ≤ x� − (x + 1),
we know that (x�, y�) /∈ Dx,y+1, so (x�, y�) /∈ Ux,y+1.

Region 11 (y� ≥ x): All of Ax,y, Bx,y, Cx,y,Dx,y, Ax,y+1, Bx,y+1, Cx,y+1, and Dx,y+1

are defined to not allow any points in this region, so no points in this region
are in either Ux,y or Ux,y+1.

Notice that all points are in Ux,y if and only if they are in Ux,y+1, except for those
contained in region 3 case 2, and region 9 case 3. Further, if b(x, y) > 0 and
b(x, y) /∈ S, then both of these cases contain exactly one point, and otherwise they
contain no points. Therefore, if b(x, y) = 0 or (x, y) ∈ S, then Ux,y = Ux,y+1, and
the identity map is a bijection from Ux,y to Ux,y+1. Otherwise, Ux,y and Ux,y+1

are identical, except for the fact that Ux,y contains (x, y − b(x, y)) while Ux,y+1
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contains (x + r(x, y), y). In this case the map which fixes all but one element and
sends (x, y − b(x, y)) to (x + r(x, y), y) is a bijection from Ux,y to Ux,y.

Therefore, for any x > 4Fmax +3|F | and 0 ≤ y < x, there exists a bijection from
Ux,y to Ux,y+1 which either fixes all elements or fixes all but one element and sends
(x, y − b(x, y)) to (x + r(x, y), y). Further, this bijection will be the identity if and
only if (x, y) ∈ S or b(x, y) = 0.

Next, we will need to introduce the sets Ūx,y which are an extention of the sets
Ux,y. In fact, Ūx,y is defined from Ūx,y by adding infinitely many points so that Ūx,y

satisfies relations similar to those shown to be satisfied for S in Lenna 6.4. Finally,
the Sn are just the sets of the form Ūn,0.

Definition 6.8. Given any instance Nim−F of CIS-Nim, and any x > 4Fmax+3|F |
and 0 ≤ y < x, let Ūx,y be the unique set of ordered pairs (x�, y�) with the following
two properties:

Property 1: For all (x�, y�) with y� < x, (x�, y�) ∈ Ūx,y if and only if (x�, y�) ∈ Ux,y.

Property 2: For all (x�, y�) with y� ≥ x, (x�, y�) ∈ Ūx,y if and only if y� < x� ≤ 2y�

and (y�,
�

x�

2

�
) /∈ Ūx,y.

Let Sn be a sequence of sets of ordered pairs defined by Sn = Ūn,0.

Remark 6.9. We know Ūx,y exists and is unique since this definition comes with a
natural way to determine whether or not (x�, y�) is in Ūx,y as a function of the set
of all points in Ūx,y of the form (x��, y��) with x�� < x�.

We will now extend the result of the previous lemma to these infinite sets, Ūx,y

and Ūx,y+1. We find that when a single point is moved in the map from Ux,y to
Ux,y+1, this will cause infinitely many points to move in the map from Ūx,y to
Ūx,y+1. However, we will show that all of the points moved in this way will move
in the same general direction. In particular, if the map sends (x1, y1) to (x2, y2),
then x1 − y1 ≥ x2 − y2 and x1 − 2y1 ≥ x2 − 2y2.

Lemma 6.10. Given any instance Nim−F of CIS-Nim, and any x > 4Fmax+3|F |
and 0 ≤ y < x, there exists a bijection φ from Ūx,y to Ūx,y+1 such that if φ(x1, y1) =
(x2, y2), then x1 − y1 ≥ x2 − y2 and x1 − 2y1 ≥ x2 − 2y2.

Proof. Let φ� be the map constructed in Lemma 6.7. If φ� fixes all elements, then
Ux,y = Ux,y+1, so Ūx,y = Ūx,y+1. In this case, the identity map sends Ūx,y to Ūx,y+1

and clearly satisfies the necessary relations.
Otherwise, φ� sends (x, y − b(x, y)) to (x + r(x, y), y), and (x, y) /∈ S. Consider

the map φ from Ūx,y to Ūx,y+1 defined so that

(2nx + k1, 2n(y − b(x, y)) + k2) �→ (2n(x + r(x, y)) + k1, 2ny + k2)
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and

(2n+1y + k3, 2n(x + r(x, y)) + k1) �→ (2n+1(y − b(x, y)) + k3, 2nx + k1)

for all n ≥ 0, 0 ≤ k1, k2 < 2n, and 0 ≤ k3 < 2n+1. Let φ fix all other elements of
Ūx,y.

First, notice that in this case, x < 2(y − b(x, y) − 1). This is because since
(x, y) /∈ S, there are b(x, y) values of y� < y with (x, y�) ∈ S, so there exists at
least one (x, y�) ∈ S with y� < y − b(x, y). There is therefore a P -position of the
form {x, y�, k} with k < y� < x. If it were true that x ≥ 2(y − b(x, y) − 1), then
x ≥ 2y� > y�+k, which since x ≥ 4Fmax+3|F |, contradicts Theorem 5.3. Therefore,
x < 2(y − b(x, y)− 1).

It is easy to verify that this implies that the ordered pairs, (x�, y�) of the form
(2nx+ k1, 2n(y− b(x, y))+ k2), (2n(x+ r(x, y))+ k1, 2ny + k2), (2n+1y + k3, 2n(x+
r(x, y)) + k1), or (2n+1(y − b(x, y)) + k3, 2nx + k1) all satisfy x� ≤ 2y�.

We want to show that the ordered pairs in Ūx,y but not in Ūx,y+1 are exactly those
of the form (2nx + k1, 2n(y − b(x, y)) + k2) or (2n+1y + k3, 2n(x + r(x, y)) + k1),
and the ordered pairs in Ūx,y+1 but not in Ūx,y are exactly those of the form
(2n(x + r(x, y)) + k1, 2ny + k2) or (2n+1(y − b(x, y)) + k3, 2nx + k1). We will show
that this is true for all ordered pairs (x�, y�) with y� < m by induction on m, and it
will follow that it holds for all ordered pairs.

Base Case: (m = x): In this case, a point (x�, y�) with y� < m is in Ūx,y if and
only if it is in Ux,y, and a point (x�, y�) with y� < m is in Ūx,y+1 if and only if it
is in Ux,y+1. This means that the only point which is in Ūx,y but not Ūx,y+1 is
(x, y−b(x, y)), which since 2(y−b(x, y)) ≥ x = m is also the only point (x�, y�)
of the form (2nx+k1, 2n(y− b(x, y))+k2) or (2n+1y +k3, 2n(x+r(x, y))+k1)
with y < x = m.

Similarly, the only point which is in Ūx,y+1 but not Ūx,y is (x + r(x, y), y),
which since 2y ≥ 2(y − b(x, y)) ≥ x = m is also the only point (x�, y�) of the
form (2n(x + r(x, y)) + k1, 2ny + k2) or (2n+1(y− b(x, y)) + k3, 2nx + k1) with
y < x = m.

Inductive Hypothesis: The ordered pairs of the form (x�, y�) with y� < m in Ūx,y

but not in Ūx,y+1 are exactly those of the form (2nx+k1, 2n(y− b(x, y))+k2)
or (2n+1y+k3, 2n(x+r(x, y))+k1), and the ordered pairs (x�, y�) with y� < m
in Ūx,y+1 but not in Ūx,y are exactly those of the form (2n(x + r(x, y)) +
k1, 2ny + k2) or (2n+1(y − b(x, y)) + k3, 2nx + k1).

Inductive Step: Consider some arbitrary ordered pair (x�, y�) with y� = m. If
x� ≥ 2y�, then (x�, y�) is in neither Ūx,y nor Ūx,y+1, and (x�, y�) is not of
the form (2nx + k1, 2n(y − b(x, y)) + k2), (2n+1y + k3, 2n(x + r(x, y)) + k1),
(2n(x + r(x, y)) + k1, 2ny + k2) or (2n+1(y − b(x, y)) + k3, 2nx + k1).
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Otherwise by definition, we know that (x�, y�) is in Ūx,y but not in Ūx,y+1 if
and only if (y�,

�
x�

2

�
) is in Ūx,y but not in Ūx,y+1, which, since

�
x�

2

�
< y�,

is true if and only if (y�,
�

x�

2

�
) is of the form (2n(x + r(x, y)) + k1, 2ny + k2)

or (2n+1(y − b(x, y)) + k3, 2nx + k1). Notice that (y�,
�

x�

2

�
) is of the form

(2n(x + r(x, y)) + k1, 2ny + k2) if and only if (x�, y�) is of the form (2n+1y +
k3, 2n(x + r(x, y)) + k1), and (y�,

�
x�

2

�
) is of the form (2n+1(y − b(x, y)) +

k3, 2nx+k1) if and only if (x�, y�) is of the form (2nx+k1, 2n(y−b(x, y))+k2).
Therefore, (x�, y�) is in Ūx,y but not in Ūx,y+1 if and only if it is of the form
(2nx + k1, 2n(y − b(x, y)) + k2) or (2n+1y + k3, 2n(x + r(x, y)) + k1).

A similar argument shows that (x�, y�) is in Ūx,y+1 but not in Ūx,y if and only
if it is of the form (2n(x + r(x, y)) + k1, 2ny + k2) or (2n+1(y − b(x, y)) +
k3, 2nx + k1).

It is easy to verify that ordered pairs of the form (2nx + k1, 2n(y − b(x, y)) + k2),
(2n(x + r(x, y)) + k1, 2ny + k2), (2n+1y + k3, 2n(x + r(x, y)) + k1), or (2n+1(y −
b(x, y))+ k3, 2nx+ k1) are all distinct, which is the last thing we need to see that φ
sends the points in Ūx,y but not in Ūx,y+1 bijectively to the points in Ūx,y+1 but not
in Ūx,y, and fixes all other points in Ūx,y, so φ is a bijection from Ūx,y to Ūx,y+1.

Further,

2nx + k1 − 2n(y − b(x, y)) + k2 ≥ 2n(x + r(x, y)) + 2ny + k2

and

2n+1y + k3 − (2n(x + r(x, y)) + k1) ≥ 2n+1(y − b(x, y)) + k3 − (2nx + k1),

so if φ(x1, y1) = (x2, y2), then x1 − y1 ≥ x2 − y2. Similarly,

2nx + k1 − 2(2n(y − b(x, y)) + k2) ≥ 2n(x + r(x, y)) + k1 − 2(2ny + k2)

and

2n+1y + k3 − 2(2n(x + r(x, y)) + k1) ≥ 2n+1(y − b(x, y)) + k3 − 2(2nx + k1),

so if φ(x1, y1) = (x2, y2), then x1 − 2y1 ≥ x2 − 2y2.
Therefore, φ is a bijection from Ūx,y to Ūx,y+1 such that if φ(x1, y1) = (x2, y2),

then x1 − y1 ≥ x2 − y2 and x1 − 2y1 ≥ x2 − 2y2.

Finally, we will now show that the same properties relating Ūx,y and Ūx,y+1 will
also relate Sn and Sm. We will do this by showing that Ūx,x is the same as Ūx+1,0.
This will allow us to compose the maps described in Lemma 6.10 to get from Ūx,0 to
Ūx,x = Ūx+1,0. We will then be able to compose these maps to get from Sn = Ūn,0

to Sm = Ūm,0.
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Lemma 6.11. Given any instance Nim−F of CIS-Nim, and any m > n > 4Fmax+
3|F |, there exists a bijection φn,m from Sn to Sm such that if φn,m(x1, y1) = (x2, y2),
then x1 − y1 ≥ x2 − y2 and x1 − 2y1 ≥ x2 − 2y2.

Proof. It follows directly from the definitions that Ax,x ∪ Bx,x = Ax+1,0, and that
Bx+1,0, Cx,x, and Dx+1,0 are all empty. Also, the set of all points (x�, y�) in Cx+1,0

with y� < x is exactly Dx,x. Therefore, Ux,x is the set of all points (x�, y�) in Ux+1,0

with y� < x.
Given a point (x�, y�) with y� = x and y� < x� ≤ 2y�, this point is in Ūx+1,0 if and

only if it is in Ux+1,0 if and only if it is in Cx+1,0 if and only if r(x, y�) > x� − x.
On the other hand, this point is in Ūx,x if and only if (y�,

�
x�

2

�
) /∈ Ux,x if and

only if (y�,
�

x�

2

�
) /∈ Bx,x if and only if b(x, x− 1) < x−

�
x�

2

�
.

From Lemma 6.4, we know that r(x, y�) > x�−x if and only if x− 1− 2b(x, x) >

x�−x if and only if 2b(x, x−1) ≤ 2x−x�−2 if and only if b(x, x−1) ≤ x−1−
�

x�

2

�

if and only if b(x, x− 1) < x−
�

x�

2

�
. Therefore, the point is in Ūx,x if and only if it

is in Ūx+1,0.
Finally, notice that points with y� ≥ x� are clearly in neither set, and points with

x� > 2y� are not in Ūx,x by definition, and not in Ūx+1,0, since otherwise r(x, x)
would be greater than x, making it impossible for r(x, x) + 2b(x, x) + 1 to equal x.
Therefore, a point with y� ≤ x is in Ūx+1,0 if and only if it is in Ūx,x. Therefore,
Ūx,x satisfies property 1 for Ūx+1,0, and clearly property 2 for Ūx,x is stronger than
property 2 for Ūx+1,0. Therefore, Ūx,x satisfies both property 1 and property 2 for
Ūx+1,0, so Ūx,x = Ūx+1,0.

We know from Lemma 6.7 that for all y < x there is a bijection from Ūx,y to
Ūx,y+1 with all the properties described in Lemma 6.7. There is therefore a bijection
from Ūx,0 to Ūx,x which can be expressed as a composition of the bijections described
in Lemma 6.7. Since Ūx,x = Ūx+1,0, this means there is a bijection from Sx = Ūx,0 to
Sx+1 = Ūx+1,0 which can be expressed as a composition of the bijections described
in Lemma 6.10. By composing these bijections, we get that for any n < m there is
a bijection from Sn to Sm which can be expressed as a composition of the bijections
described in Lemma 6.7.

Clearly, any composition of functions described in Lemma 6.7 also satisfy the
same relation. We therefore constructed a bijection φn,m such that if φn,m(x1, y1) =
(x2, y2), then x1 − y1 ≥ x2 − y2 and x1 − 2y1 ≥ x2 − 2y2.

6.3. Properties of Sn

In this section we will define two functions, g(n,m) and h(n,m) which will contain
information about Sn. We will use g as a potential function that will limit how much
h(n, n) will be able to change as n increases. This will ultimately allow us to prove



INTEGERS: 13 (2013) 18

that lim
k→∞

h(n2k, n2k)
4k

converges. This will be helpful, because h(n, n) will allow us

to approximately construct π(n) and show that lim
k→∞

π(n2k)
(n2k)2

also converges, and

prove that CIS-Nim exhibits a period-two scale invariance.

Definition 6.12. Given any instance Nim − F of CIS-Nim, and positive integers
m > 4Fmax + 3|F | and n, let Rn denote the set of all (x, y) with y < n ≤ x ≤ 2y,
and let h(m,n) = |Rn ∩ Sm|.

Lemma 6.13. Given any instance Nim −F of CIS-Nim, for all n > 4Fmax + 3|F |
and for all non-negative integers k, h(n, n2k) = 4kh(n, n).

Proof. We will proceed by induction on k.

Base Case (k = 0): h(n, n2k) = h(n, n) = 4kh(n, n)

Inductive Hypothesis: h(n, n2k−1) = 4k−1h(n, n)

Inductive Step: Consider the map ψ : Rn2k → Rn2k−1 defined by (x, y) �→
(
�

x
2

�
,
�y

2

�
). Notice that y < n2k ≤ x ≤ 2y if and only if

�
x
y

�
< n2k−1 ≤

�
x
2

�
≤

2
�y

2

�
, so this map is well defined and surjective. Further, if (x, y) ∈ Rn2k ,

then y < n2k ≤ x ≤ 2y, so by the definition of Sn, we know that

(x, y) ∈ Sn ⇔ (y,
�x

2

�
) /∈ Sn ⇔ (

�x

2

�
,
�y

2

�
) ∈ Sn.

Therefore, for any (x, y) ∈ Rn2k we get that (x, y) ∈ Sn if and only if ψ(x, y) ∈
Sn. Therefore, ψ maps Rn2k ∩ Sn onto Rn2k−1 ∩ Sn. Further, there are
exactly four points, (2x, 2y), (2x + 1, 2y), (2x, 2y + 1), and (2x + 1, 2y + 1),
which map to the point (x, y). Therefore, ψ maps four points in Rn2k ∩ Sn

onto each point in Rn2k ∩ Sn, so |Rn2k ∩ Sn| = 4|Rn2k−1 ∩ Sn|. Therefore,
h(n, n2k) = 4h(n, n2k−1) = 4(4k−1h(n, n)) = 4kh(n, n).

We have shown that h(n, n2k) = 4kh(n, n). We would like to relate h(n2k, n2k)
to h(n, n2k), which will allow us to relate h(n2k, n2k) to h(n, n). To do this, we will
have to limit how much h(m,n2k) can change as m changes from n to n2k. We will
need g(m,n), which will serve as a potential function limiting how much h(m,n)
can change as we repeatedly double m.

Definition 6.14. Given any instance Nim − F of CIS-Nim, and positive integers
m > 4Fmax + 3|F | and n, let Tn be set of ordered pairs of the form (x, y), with
2y− x ≤ n. Let f((x, y), n) = n + 2x− 3y + 2, and let g(m,n) denote the sum over
all pairs (x, y) ∈ Tn ∩ Sm of f((x, y), n).
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Definition 6.15. Given any instance Nim − F of CIS-Nim, if r(x, x) < x − 1 for
all but finitely many x, we will say the game is “well-behaved.” In this case, let c1

be the least natural number, such that c1 ≥ 4Fmax + 3|F | and r(x, x) < x − 1 for
all x > c1.

It turns out that all the interesting games of CIS-Nim are well-behaved. However,
some special cases such as Nim are not well-behaved. Games which are not well-
behaved are much easier to analyze. We will continue our analysis in Lemmas 6.16
and 6.17 only considering well-behaved games. Then, in Lemma 6.18, we will show
that the result of 6.17 also holds for games which are not well-behaved.

We are going to use g as a potential function to limit how much h will be able
to change. The following lemma will provide an upper bound for g(c1, 2k) in terms
of k, which will give us our initial finite potential.

Lemma 6.16. Given any well-behaved instance Nim − F of CIS-Nim, there exists

a constant c2 such that for all k,
g(c1,2k)

8k ≤ c2.

Proof. Consider the map ψ : T2k → T2k−1 defined by (x, y) �→ (
�

x
2

�
,
�y

2

�
). Given

any point, (x, y) ∈ T2k , we know that

2
�y

2

�
−

�x

2

�
≤ 2

y

2
+

�
−x

2

�
=

�
2y − x

2

�
≤

�
2k

2

�
= 2k−1.

Therefore, ψ(x, y) ∈ T2k−1 .
Similarly, from the definition of Sc1 , we know that for any point (x, y) ∈ Sc1 with�

x
2

�
> c1, (y,

�
x
2

�
) /∈ Sc1 , so (

�
x
2

�
,
�y

2

�
) ∈ Sc1 . Therefore, ψ(x, y) ∈ Sc1 .

For every point (x, y) ∈ T2k ,

f((x, y), 2k) = 2k + 2x− 3y + 2 ≤ 2(2k−1) + 4
�x

2

�
− 6

�y

2

�
+ 4 = 2f(ψ(x, y), 2k−1).

Combining these three facts, we get that ψ maps each point in T2k ∩ Sc1 with�
x
2

�
> c1 to a point in T2k−1 ∩ Sc1 . This map clearly sends at most four points

to any given point, and f((x, y), 2k) ≤ 2f(ψ(x, y), 2k−1). Therefore, the sum over
all elements (x, y) in T2k ∩ Sc1 with

�
x
2

�
> c1 of f((x, y), 2k) is at most four times

the sum over all elements (x, y) ∈ T2k−1 ∩ Sc1 of 2f((x, y), 2k−1). This value equals
8g(c1, 2k−1).

There are at most 2c1 + 2 values of x with
�

x
2

�
≤ c1, and for each of these

values, at most 2c1 + 2 values of y with y < x. Therefore, there are at most
(2c1 + 2)2 points (x, y) ∈ T2k ∩ Sc1 with

�
x
2

�
≤ c1. For each of these points,

f((x, y), 2k) ≤ 2k + 2(2c1 + 2) + 2. Therefore, the sum over all elements (x, y) in
T2k ∩ Sc1 with

�
x
2

�
≤ c1 of f((x, y), 2k) is at most (2k + 2(2c1 + 2) + 2)(2c1 + 2)2.

Combining this with the last result gives us that the sum over all elements (x, y) in
T2k ∩ Sc1 of f((x, y), 2k) is at most 8g(c1, 2k−1) + (2k + 4c1 + 6)(2c1 + 2)2.
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Therefore, g(c1, 2k) ≤ 8g(c1, 2k−1) + (2k + 4c1 + 6)(2c1 + 2)2, which implies that

g(c1, 2k)
8k

≤ g(c1, 2k−1)
8k−1

+
(2k + 4c1 + 6)(2c1 + 2)2

8k−1
.

Therefore,
g(c1, 2k)

8k
≤ g(c1, 1) +

∞�

i=1

(2i + 4c1 + 6)(2c1 + 2)2

8i−1
.

Because the game is well-behaved, g(c1, 1) is a finite constant. We also know
∞�

i=1

(2i + 4c1 + 6)(2c1 + 2)2

8i−1
=

∞�

i=1

(8)(2c1 + 2)2

4i
+

8(4c1 + 6)(2c1 + 2)2

8i
is the sum

of two geometric series with ratio less than one, and therefore converges to a finite
constant. Therefore, g(c1,2k)

8k is bounded above by some finite constant c2.

The following lemma is a key part of proving the period-two scale invariance.
After this result, all that will remain are a few technical details. We will prove that

lim
m→∞

h(n2m, n2m)
4m

converges, which will later be modified to a similar statement
about π. The general strategy is to assume by way of contradiction that it does
not converge, and therefore must contain infinitely many points above and below a
interval of positive length. This means that h(n2m,n2m)

4m must increase and decrease
by a fixed amount infinitely many times. We will use g as a potential function,
and show that as h changes, g must decrease by some fixed amount. This means
that g must decrease infinitely, but g will start at a finite potential, and will remain
nonnegative, causing a contradiction.

Lemma 6.17. Given any well-behaved instance Nim − F of CIS-Nim, for any

positive integer n, the limit lim
m→∞

h(n2m, n2m)
4m

converges.

Proof. Let ζm = h(n2m,n2m)
4m and assume for the purpose of contradiction that ζm

does not converge. For every point (x, y) ∈ Rn2m , we know that y < n2m, and
x < 2y < n2m+1. There are only 8(n2m)2, such points, so h(n2m, n2m) is bounded
above by 8n24m, and ζm is bounded above by 8n2 Therefore, ζm is a sequence in the
compact interval [0, 8n2], which does not converge. There therefore exists some real
numbers q < r, such that infinitely many terms of ζm are less than q and infinitely
many terms of ζm are greater than r. There therefore exists some subsequence ζsm

such that ζsm is less than q for all odd m and greater than r for all even m. Fix
some even m, and for convenience of notation let t(m) = n2sm . From Lemma 6.13
we know that for any k ≥ sm+1,

h(t(m), n2k) = h(t(m), t(m))4k−sm > r4k,

and
h(t(m + 1), n2k) = h(t(m + 1), t(m + 1))4k−sm+1 < q4k.
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We know that |St(m) ∩ Rn2k | > r4k and |St(m+1) ∩ Rn2k | < q4k. Therefore,
there are at least 4k(r − q) points (x, y) ∈ St(m), such that (x, y) ∈ Rn2k but
φt(m),t(m+1)(x, y) /∈ Rn2k . Given any constant, d, at most dn2k of these 4k(r − q)
points can satisfy the relation x < n2k + d, and at most dn2k of them can sat-
isfy the relation y ≥ n2k − d. Now notice that if (x1, y1) is one of the at least
4k(r − q) − 2dn2k points remaining, and φt(m),t(m)(x1, y1) = (x2, y2), then either
x2 ≤ n2k < x1 − d or y2 > n2k ≥ y1 + d.

If x2 < x1 − d, then since we also know that x1 − 2y1 ≥ x2 − 2y2, algebra
shows that (2x1 − 3y1) − (2x2 − 3y2) ≥ d

2 . On the other hand, if y2 ≥ y1 + d,
then since we also know that x1 − y1 ≥ x2 − y2 algebra shows that (2x1 − 3y1) −
(2x2 − 3y2) ≥ d. Either way, (n2k + 2x1 − 3y1) − (n2k + 2x2 − 3y2) ≥ d

2 , so
f((x2, y2), n2k) ≤ f((x1, y1), n2k) − d

2 . Therefore, for at least 4k(r − q) − 2dn2k

points, (x, y), we have the relation f(φt(m),t(m+1)(x, y), n2k) ≤ f((x, y), n2k) − d
2 .

Further, for all of these points, we have know that y ≤ n2k − d and x ≥ n2k +
d, so f((x, y), n2k) ≥ n2k + 2(n2k + d) − 3(n2k − d) = 5d ≥ d

2 . Each of these
4k(r − q) − 2dn2k contribute to g(t(m), n2k), and whether or not they contribute
to g(t(m + 1), n2k), the contribution for each point is reduced by at least d

2 . It is
easy to see that f(φt(m),t(m+1)(x, y), n2k) ≤ f((x, y), n2k) for all (x, y), so every
point which contributes to g(t(m + 1), n2k) will contribute at least as much to
g(t(m), n2k). It is also easy to see that no point can contribute negatively to
g(t(m), n2k). Therefore, the contribution of at least 4k(r− q)− 2dn2k decreases by
at least d

2 and no point increases its contribution, so we know that

g(t(m + 1), n2k) ≤ g(t(m), n2k)− d

2
(4k(r − q)− 2dn2k).

In particular, if we let d = 2k(r−q)
4n , we get that

g(t(m + 1), n2k) ≤ g(t(m), n2k)− 8k(r − q)2

16n
.

It is easy to see that f(φt(m+1),t(m+2)(x, y), n2k) ≤ f((x, y), n2k) for all (x, y), so
every point which contributes to g(t(m + 2), n2k) will contribute at least as much
to g(t(m + 1), n2k). It is also easy to see that no point can contribute negatively to
g(t(m + 1), n2k). Therefore, g(t(m + 2), n2k) ≤ g(t(m + 1), n2k), and since m was
an arbitrary even integer, we can compose this relation multiple times, to get that
for any m and any k > sm

g(t(m), n2k) ≤ g(t(0), n2k)−m
8k(r − q)2

16n
.

We know that g(t(m), n2k) ≥ 0, and that

g(t(0), n2k) ≤ g(c1, n2k) ≤ g(c1, 2k+�log2(n)�) ≤ 8k+�log2(n)�c2.
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Combining these three relations, we get that

m
8k(r − q)2

16n
≤ 8k+�log2(n)�c2 ≤ 8k+log2(n)+1c2 = 8k+1n3c2.

Now, finally, if we choose m such that m > 128n4c2
(r−q)2 , we get that

8k+1n3c2 =
128n4c2

(r − q)2
8k(r − q)2

16n
< m

8k(r − q)2

16n
≤ 8k+1n3c2.

This is a contradiction, implying that ζm does converge.

Now, we will show that we can reach the same conclusion for games that are not
well-behaved that we just reached for well-behaved games.

Lemma 6.18. Given any instance Nim−F of CIS-Nim which is not well-behaved,

for any positive integer n, the limit lim
k→∞

h(n2k, n2k)
4k

converges.

Proof. The methods here will be very different. Games which are not well-behaved
are much easier to analyze, so we will be able to describe the Sn in great detail,

and the fact that lim
k→∞

h(n2k, n2k)
4k

converges will follow directly.

We know that for infinitely many values of m > 4Fmax+3|F |+1, r(m,m) ≥ m−1.
It is not possible to have r(m,m) > m − 1, since r(m,m) + 2b(m,m) + 1 = m.
Therefore, for infinitely many values of m > 4Fmax + 3|F | + 1, r(m,m) = m − 1.
For any such m, we know that r(m,m) + 2b(m,m) + 1 = m, so b(m,m) = 0. This
means that for all y < m, (m, y) /∈ S and b(m, y) = 0. Therefore, r(m, y) = 0,
which means that for any y < m ≤ x, (x, y) /∈ S. In particular, this means that
r(m − 1,m − 1) = r(m,m − 1) = 0, so 2b(m − 1,m − 1) + 0 + 1 = m − 1, so
b(m− 1,m− 1) = m−2

2 .
Notice that if there were some m� ≤ m−1

2 , with (m − 1,m�) ∈ S, then there
would be a P -position of the form {m − 1,m�,m��} with m�� < m�. In this case,
m− 1 > 4Fmax + 3|F | ≥ 2Fmax + |F | and

m� + m�� < 2m� ≤ 2(
m− 1

2
) = m− 1,

contradicting Theorem 5.3. Therefore, for all (m − 1,m�) ∈ S, m� > m−1
2 . This

means that the m−2
2 values of m� with (m−1,m�) ∈ S are exactly the integers from

m
2 to m− 2 inclusive. Therefore, (m− 1, m

2 ) ∈ S.
Now, we want to show that (m�, m

2 ) ∈ S for all m
2 < m� < m − 1. Assume for

the purpose of contradiction that there exists some m
2 < m� < m − 1, such that

(m�, m
2 ) /∈ S, and consider the greatest such m�. r(m�, m

2 ) = m−1−m�. Therefore,
by Lemma 6.5, b(m�, m

2 ) ≥ m−1−m�, so there exists some m�� ≤ m
2 −b(m�, m

2 )−1 =
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m� − m
2 with (m�,m��) ∈ S. There would therefore exist a P -position of the form

{m�,m��,m���} with m�� > m���. Notice that m� > m
2 > 2Fmax + |F | and

m�� + m��� < 2m�� ≤ 2(m� − m

2
) = 2m� −m < m� + (m� − 1)−m < m�,

contradicting Theorem 5.3. Therefore, (m�, m
2 ) ∈ S for all m

2 < m� ≤ m − 1, so
r(m

2 , m
2 ) ≥ m− 1− m

2 , so r(m
2 , m

2 ) = m
2 − 1.

For any point m satisfying r(m,m) = m, we know the greatest value m� < m
satisfying r(m�,m�) = m� − 1 is m

2 . This also tells us that the least value m� > m
satisfying r(m�,m�) = m�−1 is 2m. Therefore, if we let m be the least value greater
than 4Fmax + 3|F | + 1 with r(m,m) = m− 1, then for any m� > 4Fmax + 3|F | + 1,
r(m�,m�) = m� − 1 if and only if m� = m2k for some nonnegative integer k.

We also know that for any y < m2k ≤ x, (x, y) /∈ S, which implies that r(y, y) ≤
m2k − y − 1, and b(x, x) ≤ x − m2k. Therefore, given any m2k−1 ≤ m� < m2k,
r(m�,m�) ≤ m2k −m� − 1 and b(m�,m�) ≤ m� −m2k−1. Notice that r(m�,m�) +
2b(m�,m�) + 1 = m� is satisfied if and only if both of these inequalities are tight,
so given any m2k−1 ≤ m� < m2k, r(m�,m�) = m2k − m� − 1 and b(m�,m�) =
m� −m2k−1.

This means that all of the points (x, y) which we have not already determined
to not be in S must be in S. Therefore, for any x > 4Fmax + 3|F | + 1, (x, y) ∈ S
if and only if there exists a k, such that m2k−1 ≤ x, y < m2k. This in particular
means that there is no (x, y) with x > 4Fmax + 3|F | + 1, such that (x, y) /∈ S but
b(x, y) > 0. This means that all of the functions defined in Lemmas 6.7, 6.10, and
6.11 are the identity, which in particular means that if we set k� to be the least
nonnegative integer such that n2k� > 4Fmax + 3|F | + 1, then Sn2k = Sn2k� for all
k ≥ k�. Therefore,

lim
k→∞

h(n2k, n2k)
4k

= lim
k→∞

h(n2k� , n2k)
4k

= lim
k→∞

h(n2k� , n2k�)
4k�

=
h(n2k� , n2k�)

4k�
.

Therefore, lim
k→∞

h(n2k, n2k)
4k

converges.

6.4. Proof of the Period-Two Scale Invariance

We now have all the lemmas necessary to complete the proof of the period-two scale
invariance.

Theorem 6.1 (Period-Two Scale Invariance). Given any instance Nim − F
of CIS-Nim, let π(n) denote the number of P -positions in Nim − F of the form

{x, y, z}, with x, y, and z all less than n. For any positive integer n, lim
k→∞

π(n2k)
(n2k)2

converges to a nonzero constant.
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Proof. All that needs to be done to complete the proof is to convert the result from
Lemmas 6.17 and 6.18 from a statement about h(m,m) to an analogous statement
about π(n).

Notice that h(m,m) is the number of (x, y) ∈ Sm with y < m ≤ x ≤ 2y. From
the definition of Sm, this is the number of ordered pairs (x, y) with y < m ≤ x ≤ 2y
and r(m, y) > x−m.

Notice that if there existed a point (x, y) with y < m ≤ x and x ≥ 2y such that
r(m, y) > x − m, then there must be greater than 2y + 1 − m values of x� ≥ m
with (x�, y) ∈ S, then there must be at least 1 value of x� ≥ 2y with (x�, y) ∈ S.
However, this would mean that there would be a P -position of the form {x, y, z}
with x ≥ 2y and x > y > z. However, this means that x ≥ 2y > y + z, which,
since x ≥ m > 4Fmax +3|F |, contradicts Theorem 5.3. This means that the x ≤ 2y
condition is unnecessary, so h(m,m) is the number of ordered pairs (x, y) with
y < m ≤ x and r(m, y) > x−m.

Notice that for each y, there are exactly r(m, y) values of x with m ≤ x and

r(m, y) > x−m. Therefore, h(m,m) =
m−1�

y=0

r(m, y), which is exactly the number of

ordered pairs (x, y) ∈ S with y < m ≤ x, or equivalently the number of P -positions
of the form {x, y, z} with x ≥ m > y > z.

For each ordered pair (y, z) with z < y < m, let x be the unique value such
that {x, y, z} is a P -position. There are exactly m2−m

2 such ordered pairs, and
exactly h(m,m) of them satisfy the relation x ≥ m. Therefore, the remaining
m2−m

2 − h(m,m) of them satisfy the relation x < m. Let Vm denote this set of
m2−m

2 − h(m,m) points with x < m and z < y < m. Let π3(m) be the number
of P -positions of the form {x, y, z} with x, y, and z distinct and less than m. Let
π2(m) be the number of P -positions of the form {x, x, y} with x and y distinct and
less than m. Let π1(m) be the number of P -positions of the form {x, x, x} with
x < m. Clearly, π3(m) + π2(m) + π1(m) = π(m).

Notice that given a P -position of the form {x, y, z} with m > x > y > z, by
definition, (x, y), (x, z), and (y, z) are in Vm. Given a P -position of the form {x, x, y}
with x and y distinct and less than m, clearly exactly one of (x, y) and (y, x) is in
Vm. Also, all points in Vm clearly fall into one of two cases. Therefore,

m2 −m

2
− h(m,m) = 3π3(m) + π2(m).

Therefore,
6π(m) = m2 −m− 2h(m,m) + 4π2(m) + 6π1(m).

Therefore,

π(n2k)
(n2k)2

=
n24k − n2k − 2h(n2k, n2k) + 4π2(n2k) + 6π1(n2k)

6(4k)n2
,
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so
π(n2k)
(n2k)2

=
1
6
− 1

3n2

h(n2k, n2k)
4k

− 1
6(2k)n

+
2π2(n2k)
3(4k)n2

+
π1(n2k)

4kn2
.

Notice that 1
6 is a constant, − 1

3n2
h(n2k,n2k)

4k converges as k goes to infinity by Lem-
mas 6.17 and 6.18, and − 1

6(2k)n converges to 0 as k goes to infinity. For any x,
there is only one P -position of the form {x, x, y}, and at most one P -position of the
form {x, x, x}. Therefore, π2(n2k) and π1(n2k) are both less than or equal to n2k,
so 2π2(n2k)

3(4k)n2 and π1(n2k)
4kn2 both converge to 0 as k goes to infinity. Therefore, π(n2k)

(n2k)2

converges as k goes to infinity.
Further, we know that π(n2k)

(n2k)2 does not converge to 0, since π(n2k) is at least one
sixth the number of ordered triples (x, y, z) with x, y, z distinct less than n2k such
that {x, y, z} is a P -position. For each pair y, z < n2k−|F |

2 , there exists an ordered
triple (x, y, z) with x ≤ y + z + |F | < n2k and y, z < n2k, such that {x, y, z} is
a P -position. There are (n2k−|F |)2

4 such pairs, so π(n2k) ≥ (n2k−|F |)2
24 . Therefore,

π(n2k)
(n2k)2 ≥

(n2k−|F |)2
24(n2k)2 , which converges to 1

24 as k goes to infinity.

Therefore, for any positive integer n, lim
k→∞

π(n2k)
(n2k)2

converges to a nonzero con-

stant.

7. Concluding Remarks

We have thus shown here that the class of combinatorial games CIS-Nim obeys a
form of scale invariance (period-two scale invariance). The existence of such scaling
properties in combinatorial games had been previously hinted at using renormaliza-
tion techniques adapted from physics. However, such techniques were nonrigorous
in nature; the present work is the first formal characterization of scaling in this
context. Additionally, it has been demonstrated that certain properties of combi-
natorial games persist under perturbations (the perturbations here being defined
by the forbidden set F ), and hence are ‘generic’ in the sense of dynamical systems
theory.

That said, the version of the period-two scale invariance proven in this paper was
not the strongest version possible. A much stronger version, which is also appears
to be true, would allow more general regions than the set of points {x, y, z} with
{x, y, z} < n. We therefore conjecture a stronger version of the period-two scale
invariance:

Conjecture 7.1. Given any instance Nim − F of CIS-Nim and any open set

S ⊆ R3, let π(R, k) be the number of P -positions of the form {x2k, y2k, z2k}, with

x, y, z ∈ Q and (x, y, z) ∈ S. Then lim
k→∞

π(R, k)
4k

converges.
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Alternatively, we could make this statement stronger by considering more general
versions of the game of Nim. This can be done by considering the piles in Nim to
be labeled, so the positions are ordered triples. This would allow for non-symmetric
forbidden sets. We could also consider Nim played with an arbitrary number of
piles. We conjecture that that this generalization will also preserve the period-two
scale invariance.

Conjecture 7.2. Let m be any positive integer, let F be a set of positions in m-

Heap Nim with labeled piles. Given any open set S ⊆ Rm, let π(R, k) be the number

of P -positions of m-Heap Nim −F of the form 2kv with v ∈ S. Then lim
k→∞

π(R, k)
2(n−1)k

converges.

Finally, this general notion of a Cofinite Induced Subgraph Games can be applied
to any other impartial combinatorial games. Since other games do not necessarily
satisfy a period-two scale invariance, this result will not generalize to the CIS version
of most of these other games. However, by analyzing the cofinite induced subgraphs
of a game graph, we learn which properties of the structure of the P -positions are
unstable and dependent on a finite set of end game positions, and which properties
stable and inevitable regardless of the details of the end game.
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