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Abstract
We study the combinatorics of vtm, a variant of the Thue-Morse word generated by
the non-uniform morphism 0 7! 012, 1 7! 02, 2 7! 1 starting with 0. This infinite
ternary sequence appears a lot in the literature and finds applications in several
fields such as combinatorics on words; for example, in pattern avoidance it is often
used to construct infinite words avoiding given patterns. It has been shown that
the factor complexity of vtm, i.e., the number of factors of length n, is ⇥(n); in
fact, it is bounded by 10

3 n for all n, and it reaches that bound precisely when n
can be written as 3 times a power of 2. In this paper, we show that the abelian
complexity of vtm, i.e., the number of Parikh vectors of length n, is O (log n) with
constant approaching 3

4 (assuming base 2 logarithm), and it is ⌦ (1) with constant
3 (and these are the best possible bounds). We also prove some results regarding
factor indices in vtm.

1F. Blanchet-Sadri and Nathan Fox’s research was supported by the National Science Founda-
tion under Grant No. DMS–1060775.

2James D. Currie and Narad Rampersad’s research was supported by NSERC Discovery grants.



INTEGERS: 14 (2014) 2

1. Introduction

The Thue-Morse word, which we denote by tm, is defined as the fixed point of the
uniform morphism 0 7! 01, 1 7! 10 that starts at 0:

tm = 01101001100101101001011001101001 · · · .

In [1], Allouche and Shallit surveyed this well-known infinite binary sequence and
discussed some of its applications in various fields such as combinatorics on words,
di↵erential geometry, number theory, semigroup and group theory, real analysis,
and physics. There are several alternative definitions of this sequence other than
the abovementioned one; for instance, the Thue-Morse word is the lexicographically
largest overlap-free binary sequence starting with 0.

The factor complexity of an infinite sequence w, denoted by ⇢w, counts the num-
ber of distinct factors of w, i.e., ⇢w(n) is the number of factors of w of length n.
Recent references on factor complexity include [2, Chapter 10] and [4, Chapter 4].
Closed-form formulas for the factor complexity of tm are known [5, 8, 20, 3]. We
recall the recursive definition from [3, Proposition 2.10]: ⇢tm(0) = 1, ⇢tm(1) = 2,
⇢tm(2) = 4, ⇢tm(3) = 6, and for n � 2,

⇢tm(2n + 1) = 2⇢tm(n + 1), ⇢tm(2n) = ⇢tm(n + 1) + ⇢tm(n). (1)

In [9], a formula was obtained for the factor complexity of the fixed points of binary
uniform morphisms.

Rather than counting factors, one may also count Parikh vectors (see, for exam-
ple, [19]). Let x be a word over an ordered alphabet ⌃ of size k. The Parikh vector
of x is the k-vector  (x) defined as follows: the i-th component of  (x) equals the
number of occurrences of the i-th letter of ⌃ in x. The abelian complexity of an
infinite sequence w, denoted by ⇢ab

w , is defined by

⇢ab
w (n) = | { (x) : x is a factor of w of length n} |.

It is easy to see that ⇢ab
tm(n) = 2 for n odd and ⇢ab

tm(n) = 3 for n 6= 0 even.
Define pd as the fixed point of the morphism 0 7! 01, 1 7! 00 beginning with 0:

pd = 010001010100010001000101 · · · .

The word pd is also classical and has its own name: the period-doubling word.
Di↵erent ways to construct pd as well as its connection to the Thue-Morse word
for which it is the “derivative” sequence, are well-known. The abelian complexity
of pd has been studied by [13].

In this paper, we discuss a variant of the Thue-Morse word that we denote by
vtm. It is the fixed point of the non-uniform morphism 0 7! 012, 1 7! 02, 2 7! 1
beginning with 0:
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vtm = 012021012102012021020121 · · · .

This infinite ternary sequence also appears quite a lot in the literature and finds
applications in di↵erent research areas such as square-free walks on labelled graphs
[12], infinite words avoiding patterns [17], etc. It has the property of being square-
free, i.e., it does not contain any factor of the form x2 = xx for a non-empty word x.
Recently, Rao, Rigo, and Salimov [18] showed an even stronger avoidability result,
namely that vtm avoids 2-binomial squares (see their paper for details).

Here, we discuss in particular the first five following equivalent definitions of vtm
and the other five definitions of pd that provide us with the abelian complexity
(positions in sequences are labelled starting with 0):

• First, vtm’s digits are the number of 0s between consecutive 1s in tm, i.e., the
ith symbol of vtm is the number of 0s between the ith 1 and the (i + 1)st 1
in tm. Similarly, the image of the word whose ith symbol is the number of 1s
between the ith 0 and the (i + 1)st 0 in tm under the map 0 7! 2, 1 7! 1, 2 7! 0
is the word vtm.

• Second, the image of the fixed point of the morphism a 7! ab, b 7! ax, c 7! �↵,
d 7! dy, x 7! ��, y 7! dc, ↵ 7! �c, � 7! d�, � 7! a↵, � 7! �x beginning with
a under the map a 7! 012, b 7! 021, c 7! 120, d 7! 210, x 7! 102, y 7! 201,
↵ 7! 101, � 7! 202, � 7! 020, � 7! 121 is the word vtm (Theorem 1).

• Third, if we insert a 0 between consecutive 2s, a 2 between consecutive 0s, and
a 1 between a 0 and a 2 (in either order) in the fixed point of the morphism
0 7! 02, 2 7! 20 starting with 0, we obtain vtm.

• Fourth, if we insert a 1 into (02)! = 020202 · · · at each position congruent to
22n�1 � 1 modulo 22n for some n � 1, we obtain vtm (Lemmas 4 and 5).

• Fifth, if we replace every other 0 in pd by a 2, beginning with the second 0,
we obtain vtm.

• Sixth, the image of vtm under the map 0 7! 0, 1 7! 1, 2 7! 0 is pd (Lemma 7).

• Seventh, the image of the fixed point of the morphism a 7! ab, b 7! ac,
c 7! �↵, ↵ 7! �c, � 7! a↵ starting with a under the map a 7! 010, b 7! 001,
c 7! 100, ↵ 7! 101, � 7! 000 is pd.

• Eighth, the word with a 1 at each position congruent to 22n�1�1 modulo 22n

for some n � 1, and with a 0 otherwise, is the word pd (Lemma 5).

• Ninth, let v0 = 0, and define a recursive sequence of words by v2n = v2n�10v2n�1

and v2n+1 = v2n1v2n. Then, limn!1 vn = pd (Proposition 1).
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• Tenth, let ' be the morphism 1 7! 131, 3 7! 13331 and let � be the map
1 7! 01, 3 7! 0001. Then, � ('! (1)) = pd.

It is a standard exercise, for those who know the technique of (bi)special words or
know the relationships between vtm, tm, and pd, to show that the factor complexity
of vtm is ⇥(n). In fact, ⇢vtm (n)  10

3 n holds for all n, and ⇢vtm (n) = 10
3 n if and

only if n can be written as 3 times a power of 2. This can be found in [7] and also
in [10]. The ⇥(n) factor complexity is also a consequence of several theorems, such
as [2, Theorem 10.4.12], using primitivity, or [2, Theorem 10.3.1], using the fact
that vtm is an automatic word. The technique of (bi)special words has first been
described in [6] and has further been developed in particular in [14].

The contents of our paper are as follows: In Section 2, we study combinatorics
on vtm. In Section 3, we prove that the abelian complexity of vtm is O (log n) with
constant approaching 3

4 (assuming base 2 logarithm), and it is ⌦ (1) with constant
3 (and these are the best possible bounds) (Corollary 1). Finally in Section 4, we
prove two results regarding factor indices in vtm. Let w be an infinite word and let
x be a factor of w. Then an integer i is an index of x in w if x occurs at position i
of w. We prove: (1) If u is a factor of vtm and m is an odd number, then the set of
indices of u in vtm contains a representative of every congruence class modulo m.
(2) If u is a factor of vtm and m is a positive integer then the set of indices of u
modulo m is the same as the set of the indices of ũ, where ũ is obtained from u by
replacing 0s with 2s and vice versa.

2. Combinatorics on vtm

Our first aim is to give a few combinatorial properties of vtm. We consider blocks
of three letters in vtm, i.e., all factors of vtm of length three including those that
occur at positions not divisible by 3. We start with two lemmas.

Lemma 1. vtm does not contain factors 010 or 212.

Proof. Recall that vtm is square-free. Assume for a contradiction that it contains
010. Applying the morphism to this yields 01202012, which contains (20)2, a con-
tradiction. Now, assume for a contradiction that it contains 212. Then, it must
contain 02120, as anything else flanking 212 would create a square. Applying the
morphism to this yields 0121021012, which contains (210)2, a contradiction.

Lemma 2. Let ↵ = 101, � = 202, � = 020, and � = 121. Let u and v represent
any other length 3 ternary word. Then, the following are the only possible forms of
factors of vtm containing ↵, �, �, or �: u↵v, u�v, u�v, u�v, u↵�v, u�↵v, u��v,
u��v, u↵�↵v, u�↵�v, u���v, u���v.



INTEGERS: 14 (2014) 5

Proof. Let us refer to the words ↵, �, �, and � as 3-palindromes. Since vtm is
square-free and by Lemma 1, any occurrence of ↵ must be in the form 2↵2, any
occurrence of � must be in the form 1�1, any occurrence of � must be in the form
1�1, and any occurrence of � must be in the form 0�0. Hence, if a 3-palindrome is
going to be followed by or preceded by a 3-palindrome, ↵ must be preceded by (or
followed by) �, � by ↵ (Lemma 1), � by � (Lemma 1), and � by �. There cannot
be four such 3-palindromes in a row, as then they would have to alternate between
two, which would create a square.

The next theorem plays a role in Section 3 for analyzing the abelian complexity
of vtm.

Theorem 1. Let  be the map a 7! 012, b 7! 021, c 7! 120, d 7! 210, x 7! 102,
y 7! 201, ↵ 7! 101, � 7! 202, � 7! 020, � 7! 121. Let ' be the morphism a 7! ab,
b 7! ax, c 7! �↵, d 7! dy, x 7! ��, y 7! dc, ↵ 7! �c, � 7! d�, � 7! a↵, � 7! �x.
Then,  ('! (a)) = vtm.

Proof. In the context of vtm, we find that a 7! ab, b 7! ax, c 7! ba, d 7! xa, x 7! ��,
y 7! ↵�, ↵ 7! �c2 = 0y�, � 7! ↵21 = 10�, � 7! a↵2 = 0�a, and � 7! b02 = 02x. To
see this, for example,  (↵) = 101 7! 0201202 by the map 0 7! 012, 1 7! 02, 2 7! 1,
but 0201202 =  (�) (c)2 = 0 (y) (�). The mappings for a, b, and x are already
what we want, and the mappings for ↵ and � begin with what we want. We now
show that c, d, and y only occur after an odd number of Greek letters and that a,
b, and x only occur after an even number of Greek letters. To do this, we show that
this map avoids the following types of factors (su�cient by Lemma 2):

• u1u2 for u1 2 {a, b, x}, u2 2 {c, d, y};

• u1u2 for u1 2 {c, d, y}, u2 2 {a, b, x};

• u1u2u3 for u1 2 {a, b, x}, u2 2 {↵,�, �, �,↵�↵,�↵�, ���, ���}, u3 2 {a, b, x};

• u1u2u3 for u1 2 {c, d, y}, u2 2 {↵,�, �, �,↵�↵,�↵�, ���, ���}, u3 2 {c, d, y};

• u1u2u3 for u1 2 {a, b, x}, u2 2 {↵�,�↵, ��, ��}, u3 2 {c, d, y};

• u1u2u3 for u1 2 {c, d, y}, u2 2 {↵�,�↵, ��, ��}, u3 2 {a, b, x}.

To cover the first two types of factors, we examine what cannot follow a, b, c, d,
x, and y: the word a corresponds to 012, so it cannot be followed by a 12 or a 2.
This excludes c, d, and y; the word b corresponds to 021, so it cannot be followed
by a 1 or a 2. This excludes c, d, and y (and x). the word c corresponds to 120, so
it cannot be followed by a 0, a 10, or a 20. This excludes a, b, and x (and y); the
word d corresponds to 210, so it cannot be followed by a 0 or a 10. This excludes a,
b, and x; the word x corresponds to 102, so it cannot be followed by a 02, a 12, or
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a 2. This excludes c, d, and y (and b); the word y corresponds to 201, so it cannot
be followed by a 0 or a 1. This excludes a, b, and x (and c).

To cover the next two types of factors, we note that ↵ must appear as 2↵2, �
must appear as 1�1, � must appear as 1�1, and � must appear as 0�0. The middle
blocks u2 here all start and end with the same Greek letter, so the left u1 and right
u3 sides must end and start with the same ternary letters as each other. For ↵, the
only possibilities are of the form {a, x}↵{d, y}; for �, only y�x; for �, only b�c; and
for �, only {c, d}�{a, b}. This excludes all of the given factors.

To cover the last two types of factors, we do a similar analysis and note that the
only possibilities are {a, x}↵�x, y�↵{d, y}, b��{a, b}, and {c, d}��c. These avoid
the factors in the last two cases.

Now, we examine what happens to a c, a d, or a y. We have established that
these three letters occur in blocks beginning with ↵ or � and ending with � or
�. Applying the morphism to these blocks (including the end Greek letters) yields
something from the ↵ or � followed by a 2 followed by some sequence of ba, xa,
and ↵�, and terminated by the morphism on the other greek letter. We notice that
2ba = �↵2, 2xa = dy2, and 2↵� = dc2. All of these cause the 2 to propagate
through this piece, causing c to map to �↵, d to dy, and y to dc, all as required.
Finally, by continuing to propagate the 2, we notice that � must map to 202x = �x,
and � must map to 210� = d�, both also as required.

We also need the following technical lemma.

Lemma 3. The word consisting of only the even positions in vtm is the Thue-Morse
word over alphabet {0, 2}. That is, for each i,

vtm[2i] = 2tm[i].

Furthermore, the odd positions of vtm satisfy

vtm[2i + 1] = (4� vtm[2i]� vtm[2i + 2])/2.

Proof. As mentioned in the introduction, an alternative definition of vtm is that
its digits are the number of zeroes between consecutive ones in tm. Define  by
0 7! 01, 1 7! 10. As a result of  ’s uniformity, tm can be thought of as a word over
alphabet {0110, 1001}. Let A correspond to 0110, and let B correspond to 1001.
The string 1001 is sent to 10010110 by  ; the string 0110 is sent to 01101001. Hence,
the morphism becomes the morphism  AB over {A,B}, where A 7! AB,B 7! BA.
Notice that this is the same morphism with A replacing 0 and B replacing 1. The
even positions in vtm correspond to the number of zeroes between ones within each
A or B. Each A contributes a 0; each B contributes a 2. Hence, the even positions
of vtm form the Thue-Morse word over {0, 2}.

Let a be a symbol in an odd position of vtm. Considering the letters on either
side of a, we obtain the following possible length 3 factors of vtm: 0a0, 0a2, 2a0,
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and 2a2. Now, tm is obtained from vtm by applying the map 0 7! 011, 1 7! 01, and
2 7! 0. Applying this map to the length 3 factors listed above and comparing the
result to factors of tm, a simple case analysis shows that the only possible choices
of length 3 factor are 020, 012, 210, and 202, which establishes the claim.

3. Abelian Complexity of vtm

Our goal is to study the abelian complexity of vtm. As stated in the following
lemma, if we remove all ones from vtm, we obtain a periodic sequence.

Lemma 4. Let ˜vtm be vtm with all of its ones removed. We have ˜vtm = (02)!.

Proof. Obvious from the images of the morphism defining vtm.

The following lemma tells us precisely which positions in vtm are ones.

Lemma 5. vtm [i] = 1 if and only if i ⌘ 22n�1 � 1
�
mod22n

�
for some n � 1.

Proof. By Lemma 3 we may restrict our attention to odd i, so write i = 2j + 1. By
this same lemma, we have

vtm[i] = vtm[2j + 1] = (4� vtm[2j]� vtm[2j + 2])/2.

This implies that vtm[i] = 1 if and only if 2 = vtm[2j] + vtm[2j + 2]. Now,

vtm[2j] + vtm[2j + 2] = 2tm[j] + 2tm[j + 1],

so 2 = vtm[2j] + vtm[2j + 2] if and only if 1 = tm[j] + tm[j + 1]. Thus, vtm[i] = 1 if
and only if tm[j] 6= tm[j + 1].

Recall that tm[j] is the sum modulo 2 of the digits of the binary representation
of j. It is easy to see that tm[j] 6= tm[j + 1] if and only if the binary representation
of j either equals 12k for some k or ends with 012k for some k. Since i = 2j + 1,
this occurs if and only if the binary representation of i either equals 12k+1 or ends
with 012k+1. The result now follows.

There are various definitions of pd in the literature. The one we are choosing is
the following.

Definition 1. Let pd be the result of changing all twos in vtm to zeroes.

Lemma 5 also tells us precisely which positions in pd are ones. We exploit this
fact in the following proposition.

Proposition 1. Let v0 = 0, and define a recursive sequence of words by v2n =
v2n�10v2n�1 and v2n+1 = v2n1v2n. Then, limn!1 vn = pd.
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Proof. We show that the positions in pd which are ones are also ones in each of the
vns. First, note that |vn| = 2n+1�1. Next, notice that v0 has its ones in the proper
positions (trivially). Now, assume that vn has its ones in the proper positions. We
must consider two cases.

If n is even, then vn+1 = vn1vn. All of the symbols in vn recur in the same
positions modulo 2n+1, so this part satisfies Lemma 5. The inserted one is at
position 2n+1 � 1 modulo 2n+2, which, since n + 1 is odd, must be a 1. Therefore,
vn+1 has its ones in the necessary positions, as required. On the other hand, if n
is odd, then vn+1 = vn0vn. All of the symbols in vn recur in the same positions
modulo 2n+1, so this part satisfies Lemma 5. The inserted zero is at position
2n+1 � 1 modulo 2n+2, which, since n + 1 is even, must not be a 1 (so it must be a
0). Therefore, vn+1 has its ones in the necessary positions.

The following two lemmas are useful for our purposes.

Lemma 6. Let u be a factor of vtm. Define ũ to be the result of replacing all zeroes
in u with twos and vice versa (while preserving its ones). Then ũ is also a factor
of vtm.

Proof. Let  be the map 0 7! 0, 1 7! 1, 2 7! 0. Using the definition from Propo-
sition 1, choose a positive integer m such that  (u) is a factor of v2m. Then,
v2m+1 = v2m1v2m, so  (u) occurs as a factor of the second v2m at the same po-
sition within it as it occurs in the first v2m. Every occurrence of  (u) must be
derived from either u or ũ. By the alternating property of 0 and 2 (Lemma 4) and
the fact that the two copies of v2m are joined by a 1, one of the occurrences of
 (u) must be derived from u and the other from ũ. Hence, ũ occurs as a factor of
vtm.

Lemma 7. Define the morphism ⇣ by 0 7! 01, 1 7! 00. Then, pd = ⇣! (0).

Proof. The morphism � defined by a 7! ab, b 7! ac, c 7! �↵, ↵ 7! �c, � 7!
a↵ is obtained from the one in Theorem 1 by identifying a with d, b with y, c
with x, ↵ with �, and � with �. Notice that this essentially identifies 0 with 2
in vtm. Hence, if we consider the morphism  defined by a 7! 010, b 7! 001,
c 7! 100, ↵ 7! 101, � 7! 000 and consider  (�!(a)), we obtain pd. We now
show what happens to pairs of {a, b, c,↵,�} under �. We only consider the pairs
that occur in positions congruent to 0 modulo 2. To find these, we begin with
ab and then consider additional ones as they occur on the right side of the paired
morphism: � (ab) = abac, � (ac) = ab�↵, � (�↵) = a↵�c, � (a↵) = ab�c, and
� (�c) = a↵�↵. We now examine this mapping with both sides expanded under
 : 010001 7! 010001010100, 010100 7! 010001000101, 000101 7! 010101000100,
010101 7! 010001000100, 000100 7! 010101000101. Notice that the right side of
each of these is ⇣ applied to the left side. This implies that ⇣! (0) = pd.
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We now prove some combinatorial properties of fm (n) (resp., fM (n)), defined as
the minimal (resp., maximal) number of ones in a factor of vtm of length n. These
properties will be used to derive the abelian complexity of vtm.

Lemma 8. The following are true:

1. For all integers ` satisfying fm (n)  `  fM (n), there exists a factor u` of
vtm satisfying |u`| = n such that u` contains exactly ` ones.

2. fm (n + 1)� fm (n) 2 {0, 1}.

3. fM (n + 1)� fM (n) 2 {0, 1}.

4. fm (2n) = n� fM (n).

5. fM (2n) = n� fm (n).

6. fm (4n) = n + fm (n).

7. fM (4n) = n + fM (n).

8. fm (4n� 1) = fm (4n)� 1 = n + fm (n)� 1.

9. fM (4n� 1) = fM (4n) = n + fM (n).

10. fm (4n + 1) = fm (4n) = n + fm (n).

11. fM (4n + 1) = fm (4n) + 1 = n + fM (n) + 1.

Proof. Let  be the map 0 7! 0, 1 7! 1, 2 7! 0. Also, let pd =  (vtm) and let
morphism ⇣ be defined as in Lemma 7.

For Statement 1, let u` = vtm[i] · · · vtm[i + n� 1] be a factor of vtm of length n
containing exactly ` ones (and, without loss of generality, assume i > 0, which can
be done because every prefix of vtm recurs later). Let u0` = vtm[i�1] · · · vtm[i+n�2]
and u00` = vtm[i + 1] · · · vtm[i + n]. Since u0` and u00` each share n� 1 symbols with
u`, the number of ones in each of them can di↵er from ` by at most 1. Hence, given
positions im and iM such that vtm[im] · · · vtm[im + n� 1] contains fm (n) ones and
vtm[iM ] · · · vtm[iM + n� 1] contains fM (n) ones, the factors of length n beginning
at positions between im and iM contain all numbers of ones between fm (n) and
fM (n).

For Statement 2, fm (n + 1) � fm (n) because every factor of length n+1 contains
a factor of length n. Also, fm (n + 1)� fm (n) < 2 because appending one symbol
to a length n factor cannot make the number of ones grow by more than 1.

Statement 3 follows from similar reasoning to that used in Statement 2.
For Statement 4, first, let u be a factor of vtm of length n containing exactly `

ones. Then,  (u) is a factor of pd of length n containing exactly ` ones. Then,
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⇣ ( (u)) is a factor of pd of length 2n containing exactly n� ` ones. Every factor
of pd of length 2n beginning at an even position must come from ⇣ of some length
n factor of pd, so taking ` = fM (n) yields a factor of length 2n with the minimal
number of ones that can begin at an even position. Now, assume for a contradiction
that there is a factor of pd of length 2n with fewer ones than n� fM (n). Let i be
the position of this factor in pd. We know that i is odd and that ones only occur
in odd positions in pd, so the last digit of pd[i] · · · pd[i + 2n� 1] must be a 0. Also,
pd[i� 1] · · · pd[i + 2n� 2] must begin with a 0. So, these factors contain the same
number of ones, so pd[i� 1] · · · pd[i + 2n� 2] contains fewer than n� fM (n) ones
and begins at an even position, a contradiction.

Statement 5 follows from similar reasoning to that used in Statement 4. State-
ment 6 follows from composing Statement 4 with itself, while Statement 7 follows
from composing Statement 5 with itself.

The second equality of Statement 8 follows from Statement 6. We now prove
the equality fm (4n� 1) = n + fm (n) � 1. Consider the morphism ⇣2 defined by
0 7! 0100, 1 7! 0101. Let u be a factor of vtm of length n containing exactly ` ones.
Then,  (u) is a factor of pd of length n containing exactly ` ones. Then, ⇣2 ( (u))
is a factor of pd of length 4n containing exactly n + ` ones. Also, ⇣2 ( (u)) has a
1 in position 1, so the factor of pd of length 4n � 1 beginning two positions later
contains exactly n + ` � 1 ones (since its last symbol must be a 0). This quantity
is minimized by ` = fm (n). Hence, the minimal number of ones in a factor of pd
of length 4n� 1 beginning at a position congruent to 2 modulo 4 is n + fm (n)� 1.
By Statement 2, this must be the overall minimum.

The second equality of Statement 9 follows from Statement 7. We now prove the
first. Let u be a factor of vtm of length n containing exactly ` ones. Then,  (u)
is a factor of pd of length n containing exactly ` ones. Then, ⇣2 ( (u)) is a factor
of pd of length 4n containing exactly n + ` ones. Also, ⇣2 ( (u)) begins with a 0,
so the factor of pd of length 4n� 1 beginning at the next position contains exactly
n+ ` ones. This quantity is maximized by ` = fM (n). Hence, the maximal number
of ones in a factor of pd of length 4n � 1 beginning at a position congruent to 1
modulo 4 is n + fM (n). By 3, this must be the overall maximum, as required.

The second equality of Statement 10 follows from Statement 6. We now prove
the first. Let u be a factor of vtm of length n containing exactly ` ones. Then,
 (u) is a factor of pd of length n containing exactly ` ones. Then, ⇣2 ( (u)) is a
factor of pd of length 4n containing exactly n + ` ones. Also, ⇣2 ( (u)) the factor
of pd of length 4n + 1 beginning at that same position contains exactly n + ` ones
(as the new final position is an even position of pd, and, hence, a 0). This quantity
is minimized by ` = fm (n). Hence, the minimal number of ones in a factor of pd
of length 4n + 1 beginning at a position congruent to 0 modulo 4 is n + fm (n). By
Statement 2, this must be the overall minimum, as required.

The second equality of Statement 11 follows from Statement 7. We now prove
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the first. Let u be a factor of vtm of length n containing exactly ` ones. Then,  (u)
is a factor of pd of length n containing exactly ` ones. Then, ⇣2 ( (u)) is a factor
of pd of length 4n containing exactly n + ` ones. Also, ⇣2 ( (u)) begins with 01,
so the factor of pd of length 4n + 1 beginning at the next position contains exactly
n+`+1 ones (as the two positions after ⇣2 ( (u)) in pd must be 01). This quantity
is maximized by ` = fM (n). Hence, the maximal number of ones in a factor of pd
of length 4n + 1 beginning at a position congruent to 1 modulo 4 is n + fM (n) + 1.
By Statement 3, this must be the overall maximum, as required.

Properties 2, 3, and 4 of the following proposition allow for complete calcula-
tion of ⇢ab

pd in logarithmic time. Similar relations were independently obtained by
Karhumäki, Saarela, and Zamboni [13].

Proposition 2. The following hold for all positive integers n:

1. ⇢ab
pd (n) = fM (n)� fm (n) + 1.

2. ⇢ab
pd (2n) = ⇢ab

pd (n).

3. ⇢ab
pd (4n� 1) = ⇢ab

pd (n) + 1.

4. ⇢ab
pd (4n + 1) = ⇢ab

pd (n) + 1.

Proof. Note that Statement 1 (resp., 2, 3, 4) follows from Lemma 8(1) (resp.,
Lemma 8(1,4,5), (1,8,9), (1,10,11)), as the number of ones determines the Parikh
vector (in the binary case) and all intermediate numbers of ones are possible.

This proposition also implies that the abelian complexity function of pd is 2-
regular; see [15] for definitions and for a similar result concerning the paperfolding
word.

The following theorem helps us derive the abelian complexity of vtm, stated as
a corollary.

Theorem 2. The following hold for all positive integers n:

1. ⇢ab
vtm (n) = 3

2 (fM (n)� fm (n) + 1) if fm (n) + fM (n) is odd.

2. ⇢ab
vtm (n) = 3

2 (fM (n)� fm (n) + 2) if fm (n) + fM (n) is even and n + fm (n)
is odd.

3. ⇢ab
vtm (n) = 3

2 (fM (n)� fm (n)) if fm (n) + fM (n) is even and n + fm (n) is
even.

4. ⇢ab
vtm (2n) = ⇢ab

vtm (n).
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Proof. We first prove Statements 1, 2 and 3. By Lemma 8(1), the number of ones
in factors of length n ranges over all values from fm (n) to fM (n). By Lemma 4,
the number of zeroes and twos can di↵er by at most 1. By Lemma 6, when the
number of zeroes and twos di↵er by 1 for a given number of ones, both permissible
Parikh vectors occur. Hence, each value ` for the number of ones in a factor of
length n such that n� ` is odd contributes two Parikh vectors, and each value ` for
the number of ones in a factor of length n such that n � ` is even contributes one
Parikh vector.

In case 1, there are an even number of possibilities for `, half of which leave n� `
even and half of which leave n � ` odd. Hence, the first formula holds. In case 2,
there are an odd number of possibilities for `, one more of which leave n � ` odd
than leave n� ` even. Hence, as we must account for one additional Parikh vector,
the second formula holds. In case 3, there are an odd number of possibilities for `,
one more of which leave n�` even than leave n�` odd. Hence, as we must account
for one fewer Parikh vector, the third formula holds.

We now prove Statement 4. Since fm (2n) = n � fM (n) and fM (2n) = n �
fm (n), we obtain the equation fm (2n) + fM (2n) = 2n� (fm (n) + fM (n)). Next,
fM (2n) � fm (2n) = n � fm (n) � (n� fM (n)) = fM (n) � fm (n). Hence, if we
can show that we always remain in the same case of 1, 2, or 3 when doubling n, we
have proved the desired result.

When fm (n)+fM (n) is odd, we begin and remain in case 1 since fm(2n)+fM (2n)
is odd, as required. When fm (n) is even, fM (n) is even, and n is even, we begin in
case 3. Also, 2n + fm (2n) = 2n + n� fM (n) = 3n� fM (n) is even, so we remain
in case 3, as required. When fm (n) is even, fM (n) is even, and n is odd, we begin
in case 2. Also, 2n+ fm (2n) = 2n+n� fM (n) = 3n� fM (n) is odd, so we remain
in case 2, as required. When fm (n) is odd, fM (n) is odd, and n is even, we begin
in case 2. Also, 2n+ fm (2n) = 2n+n� fM (n) = 3n� fM (n) is odd, so we remain
in case 2, as required. Finally when fm (n) is odd, fM (n) is odd, and n odd, we
begin in case 3. Also, 2n + fm (2n) = 2n + n� fM (n) = 3n� fM (n) is even, so we
remain in case 3, as required.

Corollary 1. The abelian complexity of vtm is O (log n) with constant approaching
3
4 (assuming base 2 logarithm), and it is ⌦ (1) with constant 3.

Proof. Theorem 2(1,2,3) along with Proposition 2(1) imply that the inequality���⇢ab
vtm (n)� 3

2⇢
ab
pd (n)

���  3
2 holds. Hence, we prove an upper bound for ⇢ab

pd (n)
and then we multiply it by 3

2 to obtain an upper bound for ⇢ab
vtm (n).

Let m be an integer greater than 1. By Proposition 2, the first time that
⇢ab
pd (n) = m is am in the sequence a2 = 1, and an = 4an�1�1 for n � 3. The solu-

tion to this recurrence is an+2 = 2·4n+1
3 . So 3

2m = ⇢ab
vtm (4m + 1) = ⇢ab

vtm
�
22m + 1

�
.

Taking logs (and ignoring additive constants and renaming m to n) yields that the
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largest values taken by ⇢ab
vtm (n) grow asymptotically like 1

2 log n. Multiplying by
3
2 yields the big-O bound of log n with constant approaching 3

4 for ⇢ab
vtm (n), as

required.
For the lower bound, by Proposition 2(2,3,4), ⇢ab

pd (n) = 2 for n a power of 2, so
⇢ab
vtm (n) = 3 for n a power of 2 (that is, infinitely often). The value 3 is minimal.

Therefore, 3 is the best possible lower bound.

Note that the above corollary gives the best possible bounds.

4. Factor Indices in vtm

We prove two results regarding factor indices in vtm. The first one states that if u is
a factor of vtm and i,m are positive integers, then there is an occurrence of u in vtm
beginning at a position congruent to i modulo (2m + 1) (Section 4.1). The second
one refers to Lemma 6 and states that if u is a factor of vtm and ũ is the result of
replacing all zeroes in u with twos and vice versa (while preserving its ones), then
u occurs in vtm beginning at a position congruent to i modulo m if and only if ũ
occurs in vtm beginning at a position congruent to i modulo m (Section 4.2).

We begin with some preliminaries. If pu is a prefix of word v, we say that u
appears in v with index |p|. More formally, if v = puw, we refer to the triple
hp, u,wi as an occurrence of u in v of index |p|.

The ith letter of tm (starting the count with 0) is obtained as the modulo 2 sum
of the binary digits of i; thus the binary representation of 5 is 101, so that the 5th
letter of tm is 1 + 0 + 1 = 0 (mod 2).

The words tm and vtm are related by the morphism h : {0, 1, 2}⇤ ! {0, 1}⇤ given
by

h(0) = 011; h(1) = 01; h(2) = 0,

in that h(vtm) = tm. The word tm can be uniquely parsed in terms of 011, 01, and
0, so by “desubstitution” one can thus alternatively define vtm as h�1(tm).

Recall from Lemma 3 that for each i,

vtm2i = 2tmi,

while
vtm2i+1 = (4� vtm2i � vtm2i+2)/2.

This means that the even index letters of vtm totally determine the odd index
letters.

4.1. First Result on Indices

We begin with the following observation.
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Observation 1. If u is a prefix of vtm, then h(u) is a prefix of tm, and |h(u)|0 = |u|.

Lemma 9. If u2 is a prefix of vtm, then h(u)00 is a prefix of tm, and |h(u)| =
2|u| + 1.

Proof. Suppose that u2a is a prefix of vtm where a 2 {0, 1, 2}. Then h(u2a) is a
prefix of tm by the observation. However, h(u2a) = h(u)0012�a, which has h(u)00
as a prefix. Since tm 2 {01, 10}⇤, the factor 00 of tm only ever appears in tm with
odd index. We therefore deduce that h(u)0 2 {01, 10}⇤ whence |h(u)0|0 = |h(u)0|/2.
Therefore, |h(u)| = |h(u)0|� 1 = 2|h(u)0|0 � 1 = 2|u2|� 1 = 2|u| + 1.

Lemma 10. If u0 is a prefix of vtm, then |h(u)| = 2|u|.

Proof. Suppose that u0 is a prefix of tm. Then h(u0) = h(u)011 is a prefix of tm
by the observation. The factor 11 of tm only ever appears with odd index. We
therefore deduce that h(u) 2 {01, 10}⇤ whence |u| = |h(u)|0 = |h(u)|/2.

Lemma 11. Let u be a factor of vtm, u 6= 1. Let m be an odd number. Let S be the
set of indices at which u appears in vtm. Let T be the set of indices at which h(u)0
appears in tm. Then S contains a representative of every congruence class modulo
m if and only if T contains a representative of every congruence class modulo m.

Proof. Suppose the first letter of u is 2. By Lemma 9, u will occur in vtm with
index i if and only if h(u)0 appears in tm with index 2i + 1. Since 2 is relatively
prime to m, the map � : Zm ! Zm given by i 7! 2i+1 is a bijection, and the result
follows. A similar proof applies if the first letter of u is 0.

Consider the case when the first letter of u is a 1. If u commences 12, it follows
from Lemma 9 that u occurs in vtm with index i if and only if h(u)0 occurs in tm with
index 2i + 1; an index of h(1�1u)0 in tm is 2(i + 1) + 1, giving 01h(1�1u)0 = h(u)0
with index 2i + 1. Similarly, if u commences 10, then u occurs in vtm with index i
if and only if h(u)0 occurs in tm with index 2i. Thus if u commences 12 or 10, the
proof of the previous paragraph is adapted to establish our result.

Lemma 12. Let u be a factor of tm, i an integer and m an odd integer. There
exists an occurrence of u in tm whose index is congruent to i modulo m.

Proof. First we show that 0 occurs with index i mod m. In fact, this is a consequence
of a deep result of Gelfond [11, Théorème I], but for completeness we give a simple
proof of this weaker claim. Since 2 is relatively prime to m, choose positive integer
e such that 2e ⌘ 1(mod m). Construct the sequence of integers

1, 2e + 1, 2e(2e + 1) + 1, 2e(2e(2e + 1) + 1) + 1, . . .

where each integer is obtained from the previous by multiplying by 2e and adding
1. Modulo m then, each element of the sequence is one greater than the previous.
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We continue multiplying by 2e and adding 1 until we get a number n congruent to
i (mod m). The binary representation of n will contain i 1s. If i is even, we are
done: tmn = 0. If i is odd, multiply by 2e and add 1 an additional m times to get
a new number n0. The binary representation of n0 now has an even number (i+m)
of 1s and is still congruent to i (mod m). However, tmn0 = 0, as desired.

Choose a positive integer k such that u is a factor of v, the prefix of tm of length
2k. Since 0 occurs with indices all values i (mod m), v occurs at all positions i2k

(mod m). However, as i runs through all residues modulo m, so does i2k. Thus we
can find v with index congruent to any i (mod m) and the same is true for u.

Theorem 3. Let u be a factor of vtm and m an odd number. The set of indices of
u in vtm contains a representative of every congruence class modulo m.

Proof. By Lemma 11 and Lemma 12, the result is true when u 6= 1. However, then
the set of indices of 01 in vtm takes on all values modulo m, implying that the factor
u = 1 of 01 does also.

4.2. Second Result on Indices

The operation of replacing each 0 in a factor u of vtm by 2 and vice versa we call
2-complementation, and the result ũ is called the 2-complement of u.

Let pu be a prefix of vtm such that |p| is even and |pu| is odd. Fix an integer
m, and write m = 2sr where r is odd. Now choose k � s so that 2k > |pu|. Write
vtm = v0v1v2 · · · where each vi has length 2k. The even index letters of v0 are
obtained by multiplying each letter of the length 2k�1 prefix of tm by 2, and these
even index letters determine the odd index letters. If we write tm = u0u1u2 . . .
where each ui has length 2k�1, it is well-known that each ui is either u0 or the
binary complement of u0. It follows that the even index letters of each vi are either
the same as those in v0, or the 2-complement.

Note that the rule

vtm2i+1 = (4� vtm2i � vtm2i+2)/2

commutes with 2-complementation:

vtm2i vtm2i+2 vtm2i+1

0 0 2
0 2 1
2 0 1
2 2 0

This implies that each vi is either v0 or its 2-complement; if vi = v0, then u
appears in vi with index |p|; otherwise, ũ appears in vi with index |p|. Consider
the sequence of words {vri}1i=0. Each of these words contains either u or ũ at index
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|p|. These occurrences of u or ũ in vtm occur at indices di↵ering by r2k, which is
a multiple of m. If, in fact, none of vri contains ũ at index |p|, then the vri are
all equal to v0. This implies that tmir2k = 0 for all i. Given the characterization
of tm in terms of binary representations, we have tmir = 0 for all i. This is a
contradiction—for instance, it contradicts the result of Gelfond mentioned in the
proof of Lemma 12. (For a simple, direct proof that tmir cannot equal 0 for all i,
see [16].) We have therefore established the following result.

Theorem 4. If u is a factor of vtm and m is a positive integer then the set of
indices of u modulo m is the same as the set of the indices of ũ, where ũ is obtained
from u by replacing 0s with 2s and vice versa.
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