AN UPPER BOUND FOR RAMANUJAN PRIMES

Anitha Srinivasan

Dept. of Mathematics, Saint Louis University- Madrid Campus, Madrid, Spain

Received: 10/18/13, Accepted: 3/2/14, Published: 5/19/14

Abstract

For $n \geq 1$, the n^{th} Ramanujan prime is defined as the least positive integer R_n such that for all $x \geq R_n$, the interval $(\frac{x}{2}, x]$ has at least n primes. Let p_i be the i^{th} prime. Laishram showed that $R_n < p_{3n}$ for all n. Sondow improved this result to $R_n < \frac{41}{47}p_{3n}$ for all n. Our main result states that for each $\epsilon > 0$, there exists an N such that $R_n < p_{[2n(1+\epsilon)]}$ for all n > N. This allows us to give upper bounds such as $R_n \leq p_{[2.6n]}$ for all n or $R_n \leq p_{[2.4n]}$ for all n > 43.

1. Introduction

For $n \geq 1$, the n^{th} Ramanujan prime is defined as the least positive integer R_n , such that for all $x \geq R_n$ the interval $(\frac{x}{2}, x]$ has at least n primes. Note that by the minimality condition, R_n is prime and the interval $(\frac{R_n}{2}, R_n]$ contains exactly n primes. Let p_n denote the n^{th} prime. Sondow [5] showed that $p_{2n} < R_n < p_{4n}$ for all n and conjectured that $R_n < p_{3n}$ for all n. This conjecture was proved by Laishram [4] and subsequently Sondow, Nicholson and Noe [6] improved Laishram's result by showing that $R_n < \frac{41}{47}p_{3n}$. We show that $R_n \leq p_{[2.6n]}$ for all n, which for large n, is a better bound than the ones mentioned above. We also obtain results that do not hold for all n, such as $R_n \leq p_{[2.4n]}$ for all n > 43. Our results are particular cases of the following theorem, where [x] denote the integer part of x.

Theorem 1.1 For every $\epsilon > 0$, there exists an integer N such that if $\alpha = [2n(1+\epsilon)]$, then $R_n < p_{\alpha}$ for all n > N.

For $\epsilon = .3$, we have N = 249 in the above theorem, so that on verifying the result for the first 249 Ramanujan primes, we obtain that $R_n \leq p_{[2.6n]}$ for all n. When $\epsilon = .2$, similarly we obtain that $R_n \leq p_{[2.4n]}$ for all n > 43. In the case of $\epsilon = .5$, we obtain Laishram's result, with only N = 30 values to check. The results of Laishram, and Sondow, Nicholson and Noe mentioned above use the following result of Sondow.

Theorem 1.2 (Sondow [5]) For every $\epsilon > 0$, there exists an integer N such that $R_n < (2 + \epsilon)n \log n$ for all n > N.

As a consequence of the above result, Sondow was able to show that $R_n < p_{4n}$. Laishram gave specific values of N for each ϵ in Theorem 1.2, that enabled him to arrive at $R_n < p_{3n}$. The proof of Theorem 1.2 uses the Prime Number Theorem and hence the values of N are large. For the same reason, the explicit values of N in Theorem 1.2 provided by Laishram also tend to be large, making it harder to obtain better upper bounds for R_n . The proof of Theorem 1.1 is based on the simple fact that if $R_n = p_s$, then $p_{s-n} < \frac{p_s}{2}$. This follows because the interval $(\frac{p_s}{2}, p_s]$ contains exactly n primes. Then, using known upper and lower bounds for the i^{th} prime, a decreasing function F(x) is defined (for each fixed n) that satisfies F(s) > 0, so that each time F(x) < 0 for some x, we have s < x, hence obtaining an upper bound for R_n .

2. Proof of Main Theorem

Our proof is based on the following lemma that is a direct consequence of the definition of a Ramanujan prime.

Lemma 2.1 Let $R_n = p_s$ be the n^{th} Ramanujan prime where p_s is the s^{th} prime. Then $p_{s-n} < \frac{p_s}{2}$ for all $n \ge 2$.

Proof. By the minimality of R_n , the interval $(\frac{p_s}{2}, p_s]$ contains exactly n primes and hence $p_{s-n} < \frac{p_s}{2}$.

The following lemma gives well-known bounds for the n^{th} prime. Lemma 2.2([3, 2]) For all $n \ge 2$ we have

 $n(\log n + \log \log n - 1) < p_n < n(\log n + \log \log n).$

Proof of Theorem 1.1. Let $R_n = p_s$. We assume that $n, s \ge 2$. Then by Lemmas 2.1 and 2.2, we have $2(s-n)(\log(s-n) + \log\log(s-n) - 1) < s(\log s + \log\log s)$. For $x \ge 2n$, consider the function

 $F(x) = x(\log x + \log \log x) - 2(x - n)(\log(x - n) + \log \log(x - n) - 1).$

Note that F(s) > 0. We have

$$F'(x) = 1 + \frac{1}{\log x} + A - \frac{2}{\log(x-n)} - 2\log\log(x-n),$$

where $A = \log x + \log \log x - 2\log(x - n)$. We will show that F'(x) < 0 for $x \ge 2n$. It is easy to verify that $1 + \frac{1}{\log x} - 2\log \log(x - n) < 0$ when $x \ge 2n > 16$. As $x \ge 2n$, we have $\frac{n}{x} < \frac{1}{2}$. Also, $\frac{\log x}{x} < \frac{1}{4}$ and hence $\frac{n}{x} + \sqrt{\frac{\log x}{x}} < 1$. It follows that

INTEGERS: 14 (2014)

 $(1-\frac{n}{x})^2 > \frac{\log x}{x}$ and therefore $(x-n)^2 > x \log x$, that is A < 0. Therefore F(x) is a decreasing function for $x \ge 2n$.

Now let $\alpha = 2n(1 + \epsilon)$. Denoting $\log \log n$ by $\log_2 n$, we have

 $F(\alpha) = -2\epsilon \log n + (2+2\epsilon) \log_2(2n+2n\epsilon) - (2+4\epsilon) \log_2(n+2n\epsilon) + a(\epsilon),$

where $a(\epsilon)$ is a constant that depends on ϵ . Thus, there exists N such that for n > N, we have $F(\alpha) < 0$. As F is a decreasing function and F(s) > 0, we have $s \le 2n(1+\epsilon)$ for n > N. Hence, we have $R_n = p_s \le p_{[2n(1+\epsilon)]}$ for all n > N. **Corollary 2.1** $R_n \le p_{[2.6n]}$ for all n.

Proof. Let $R_n = p_s$. We take $\epsilon = .3$. Then F(2.6n) < 0 for n > 249. Hence s < 2.6n for n > 249. The result follows on verification that it holds for the first 249 Ramanujan numbers.

Remark 2.1 Observe that to obtain Laishram's result that $R_n < p_{3n}$, we use $\epsilon = .5$ in Theorem 1.1. It is easy to verify that F(3n) < 0 for all n > 30. It follows that s < 3n, that is $R_n < p_{3n}$ when n > 30. We may check that the first thirty Ramanujan numbers satisfy $R_n < p_{3n}$. Theorem 1.1 may be used to give other (better) bounds for R_n that do not hold for all n. For example, for $\epsilon = .2$, we obtain N = 3400 and on checking these N values, we obtain the result that $R_n < p_{[2.4n]}$ for all n > 43.

Acknowledgement The author wishes to thank the referee for pointing out that similar results have been obtained independently by Axler and appear in his unpublished 2013 thesis in Germany [1].

References

- [1] C. Axler, Über die Primzahl-Zählfunktion, die n-te Primzahl und verallgemeinerte Ramanujan-Primzahlen, available at http://docserv.uni-duesseldorf.de/ servlets/DerivateServlet/Derivate-28284/pdfa-1b.pdf or at http://secure-web.cisco.com/ auth=11Yrcb0S2liMRhCdUOXPy_4M9o3G3U&url =http%3A%2F%2Fdocserv.uniduesseldorf.de%2Fservlets%2FDocumentServlet%3Fid%3D26247
- [2] N. E. Bach, J. Shallit, Algorithmic Number Theory, MIT press, 233 (1996), ISBN 0-262-02405-5.
- [3] P. Dusart, The kth prime is greater than $k(\ln k + \ln \ln k 1)$ for $k \ge 2$, Math. Comp. 68, no. 225, (1999), 411–415.
- [4] S. Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory 6, (2010), 1869–1873.
- [5] J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116, (2009), 630–635.
- [6] J. Sondow, J. W. Nicholson, T. D. Noe, Ramanujan primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14, (2011), Article 11.6.2.