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Abstract
Given collections A and B of residue classes modulo m and n, respectively, we
investigate conditions on A and B that ensure that, for at least some (a, b) 2 A⇥B,
the system: x ⌘ a mod m and x ⌘ b mod n has an integer solution, and we
quantify the number of such admissible pairs (a, b). The special case where A
and B consist of intervals of residue classes has application to the Lonely Runner
Conjecture.

1. Introduction

The classical Chinese Remainder Theorem provides necessary and su�cient condi-
tions for a system of linear congruence equations to possess a solution.

Theorem 1 (Chinese Remainder Theorem). Let m1, . . . ,mk be k positive in-
tegers, and let a1, . . . , ak be any k integers. Then the system of congruences

x ⌘ a1 mod m1

x ⌘ a2 mod m2

...
x ⌘ ak mod mk

has a solution if and only if ai ⌘ aj mod gcd(mi,mj) for all pairs of indices i, j
with 1  i < j  k.

Proof. See Theorem 7.1 of citeHua and Exercises 19 – 23 in Chapter 2.3 of [11].

This theorem admits generalization in several directions. For a statement of
a Chinese Remainder Theorem in the language of commutative rings and ideals,
see, e.g., Hungerford [7]. Kleinert [8] considers a quite general formalism which
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yields the usual statement as a special case. In the sequel, we consider a density
Chinese Remainder Theorem framed in the classical context of systems of two linear
congruence equations.

Specifically, given collections A and B of residue classes modulo m and n, re-
spectively, we investigate conditions on A and B that ensure that, for at least some
(a, b) 2 A⇥ B, the system

x ⌘ a mod m and x ⌘ b mod n (1)

has an integer solution, and we quantify the number of such admissible pairs (a, b).
For instance, if the collections A and B satisfy |A| = |B| = 1, then the Chinese
Remainder Theorem (Theorem 1) provides appropriate conditions, namely, that
the greatest common divisor gcd(m,n) divides the di↵erence a� b.

For fixed m and n, if the collections A and B are not large enough (in a suitable
sense), then it might occur that, because the gcd condition doesn’t hold, the system
(1) admits no solution with every (a, b) 2 A⇥B. Still, one expects that requiring A
and B to have large enough density in comparison to the full set of residue classes
modulo m and n, respectively, will force the gcd condition to hold, so that the
classical Chinese Remainder Theorem then yields a solution (or solutions) to the
system of equations.

We make this intuition precise in Theorems 2 and 3, establishing a density Chi-
nese Remainder Theorem for the case of arbitrary collections of residue classes and
for collections of intervals of residue classes, respectively. Results of this form,
particularly generalizations of Corollary 2, have application to the Lonely Runner
Conjecture, which we also briefly discuss.

2. Intersections of Sets of Arithmetic Progressions

In this section, we state our main results and some corollaries. The proofs of
Theorems 2 and 3 appear in the following two sections.

Theorem 2 (Density CRT). Let A and B be collections of residue classes modulo
m and n, respectively. Let g = gcd(m,n), and let h denote the number of solutions
to the linear system

x ⌘ a mod m and x ⌘ b mod n (2)

modulo mn/g as (a, b) ranges over A⇥ B.
Write

|A| = A
m

g
+ rA, 0  rA <

m

g
,

|B| = B
n

g
+ rB, 0  rB <

n

g
.

(3)
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Then h, the number of solutions to the linear system (2) modulo mn/g, satisfies

h �

8><
>:

0, if A + B < g � 1,
rArB, if A + B = g � 1,
(A + B � g)mn/g2 + rAn/g + rBm/g, if A + B > g � 1.

(4)

Theorem 3 (Density CRT for intervals). Let A and B be intervals of residue
classes modulo m and n, respectively. Let g = gcd(m,n), and let h denote the
number of solutions to the linear system

x ⌘ a mod m

x ⌘ b mod n
(5)

modulo mn/g as (a, b) ranges over A⇥ B.
Write

|A| = Ag + rA, 0  rA < g,

|B| = Bg + rB, 0  rB < g.
(6)

Then h, the number of solutions to the linear system (5) modulo mn/g, satisfies

h � ABg + ArB + BrA + max(0, rA + rB � g). (7)

Corollary 1 (gcd(m,n) = 1). Given the conditions of Theorem 3 with the addi-
tional assumption that gcd(m,n) = 1, then the linear system (5) possesses exactly
|A||B| solutions.

Proof. This follows immediately from Theorem 3.
Also, more directly, note that the condition gcd(m,n) = 1 ensures that each

choice (a, b) 2 A⇥ B of residue classes leads to a solution modulo mn of the linear
system by way of the classical Chinese Remainder Theorem (Proposition 1).

Corollary 2 (Density statement). Given the conditions of Theorem 3, with the
additional assumptions that

|A| >
1
3
m and |B| >

1
3
n, (8)

and that m and n are distinct, then the linear system (5) possesses a solution. Also,
the constant 1

3 can not be taken to be smaller while keeping the above conclusion of
this corollary.

Proof. Following Theorem 3, write

|A| = Ag + rA, 0  rA < g,

|B| = Bg + rB, 0  rB < g,
(9)
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with g = gcd(m,n). To establish the desired claim of this corollary, we must
examine the terms appearing on the right side of (7). If AB > 0, then the corollary
follows immediately, and so it remains to consider the possibility that AB = 0.

To that end, suppose that A = 0 and B = 0. (If B > 0, then the BrA term in (7)
is nonzero, and again we are done.) Then g > rA = |A| > 1

3m implies that m
g < 3.

This forces m
g to be either 1 or 2.

In the first case, we have m = g. Since m and n are distinct and g must divide
n, it must be that n = mn0, where the integer n0 satisfies n0 � 2. Then we have

|B| >
1
3
n =

1
3
mn0 �

2
3
m =

2
3
g. (10)

With rA > 1
3m = 1

3g and rB = |B| > 2
3g, this establishes that the rA + rB � g term

of (7) is nonzero, and then the linear system posseses a solution by Theorem 3.
In the second case, that m

g = 2, we have m = 2g. The fact that A = B = 0,
together with |A| > 1

3m and |B| > 1
3n, implies that both m

g and n
g are either 1 or 2.

Hence, if m = 2g, then n = g, and the result follows, being symmetric to the first
case.

Finally, to see that the constant 1
3 is optimal, let M be a large integer, and set

m = 3M , n = 2 · 3M . Let

A = {0, 1, . . . ,M � 1} (11)

and
B = {M,M + 1, . . . , 3M � 1}. (12)

Then gcd(m,n) = gcd(3M, 2·3M) = 3M , with |A| = M = 1
3m and |B| = 2M = 1

3n.
If (a, b) 2 A⇥B, then a�b is nonzero modulo gcd(m,n) = 3M , so that the classical
Chinese Remainder Theorem (Proposition 1) implies that the linear system has no
solution.

3. Arbitrary Collections

In this section, we prove Theorem 2. Given collections A and B of residue classes
modulo m and n, respectively, the classical Chinese Remainder Theorem reduces
counting the number of solutions of the linear system (2) to counting the pairs
(a, b) 2 A⇥ B with a ⌘ b mod gcd(m,n).

To that end, let g = gcd(m,n), and, for a collection of residue classes C and
integer i with 1  i  g, partition the collection C into sets

Ci = {c 2 C : c ⌘ i mod g}, (13)

and define the counting function f by

f(i, C) = |Ci|. (14)
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The Chinese Remainder Theorem then yields that the number of solutions to the
linear system (2) is given by the sum

gX
i=1

f(i,A)f(i,B). (15)

Note that we have

|A| =
gX

i=1

f(i,A) and |B| =
gX

i=1

f(i,B). (16)

Moreover, for 1  i  g, the right-hand summands in (16) are each bounded above:

f(i,A)  m

g
and f(i,B)  n

g
. (17)

To establish Theorem 2, we must find a lower bound on (15) under the conditions
(16) and (17). We do so in three steps. First, we use an inequality on rearrange-
ments, Lemma 1, to reduce to the case where the values f(i,A) are increasing and
the values f(i,B) are decreasing. Next, in this case, Lemma 2 yields an extremal
distribution for these values under the constraints of (16) and (17). Finally, Lemma
3 provides a case analysis for the explicit evaluation of the sum (15) in this extremal
case. Theorem 2 follows directly from these three lemmas.

Lemma 1 (Rearrangement inequality). For each pair of ordered real sequences
a1  a2  · · ·  an and b1  b2  · · ·  bn, and for each permutation � : [n] ! [n],
we have

nX
k=1

akbn�k+1 
nX

k=1

akb�(k) 
nX

k=1

akbk. (18)

Proof. See Chapter 5 of [12] and Chapter X of [5].

Lemma 2 (Extremal distribution). For each pair of non-negative ordered real
sequences a1  a2  · · ·  an and b1  b2  · · ·  bn satisfying A =

Pn
k=1 ak,

B =
Pn

k=1 bk, and, for all k with 1  k  n, the bounds ak  qA and bk  qB, then
we have

nX
k=1

a⇤kb⇤n�k+1 
nX

k=1

akbn�k+1, (19)

where

a⇤k =

8><
>:

0, if k < n� bA/qAc,
A� qAb A

qA
c, if k = n� bA/qAc,

qA, if k > n� bA/qAc,
(20)
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and

b⇤k =

8><
>:

0, if k < n� bB/qBc,
B � qBb B

qB
c, if k = n� bB/qBc,

qB, if k > n� bB/qBc.
(21)

Proof. Since b1  b2  · · ·  bn, we have

nX
k=1

a⇤kbn�k+1 
nX

k=1

akbn�k+1. (22)

Then, because a⇤1  a⇤2  · · ·  a⇤n, we have

nX
k=1

a⇤kb⇤n�k+1 
nX

k=1

a⇤kbn�k+1, (23)

and the result follows.

Lemma 3 (Extremal sum). Using the notation of Lemma 2, if

s = bA/qAc+ bB/qBc+ 1,
rA = A� qAbA/qAc,
rB = B � qBbB/qBc,

(24)

then we have

nX
k=1

a⇤kb⇤n�k+1 =

8><
>:

0, if s < n,

rArB, if s = n,

(s� n� 1)qAqB + rAqB + rBqA, if s > n.

(25)

Proof. First, note that (21) yields that

b⇤n�k+1 =

8><
>:

qB, if k < bB/qBc+ 1,
B � qBb B

qB
c, if k = bB/qBc+ 1,

0, if k > bB/qBc+ 1.
(26)

Then, (20) and (26) together imply that the summands a⇤kb⇤n�k+1 in (25) vanish
unless k satisfies

n� bA/qAc  k  bB/qBc+ 1. (27)

This allows the sum in (25) to be written as

nX
k=1

a⇤kb⇤n�k+1 =
bB/qBc+1X

k=n�bA/qAc
a⇤kb⇤n�k+1. (28)
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The analysis of this sum now requires examining three cases: s < n, s > n, and
s = n. If

s = bA/qAc+ bB/qBc+ 1 < n, (29)

then the sum is empty. If s > n, then the sum consists of a first term, last term,
and s � n � 1 middle terms. The first and last terms contribute rAqB and rBqA,
respectively, while the remaining terms each have identical value qAqB. Finally, if
s = n, the sum consists of a single term of value rArB.

4. Collections of Intervals

In this section, we prove Theorem 3. As in the previous section, given collections
A and B of residue classes modulo m and n, respectively, the classical Chinese
Remainder Theorem reduces counting the number of solutions of the linear system
(5) to counting the pairs (a, b) 2 A ⇥ B with a ⌘ b mod gcd(m,n). Unlike in the
previous section, the fact that the collections of residue classes in Theorem 3 consist
of intervals of classes, rather than arbitrary sets of classes, substantially simplifies
the analysis of this counting problem.

Proof of Theorem 3. With g = gcd(m,n), we have

|A| = Ag + rA, 0  rA < g,

|B| = Bg + rB, 0  rB < g.
(30)

It remains to count the pairs (a, b) 2 A⇥ B with a ⌘ b mod g.
Since A consists of an interval of residue classes, it follows that A can be parti-

tioned into A sub-intervals of length g, each sub-interval containing g distinct ele-
ments modulo g, along with a smaller sub-interval of length rA, containing rA < g
distinct elements modulo g. Similarly, B can be partitioned into B sub-intervals of
length g, each sub-interval containing g distinct elements modulo g, along with a
smaller sub-interval of length rB, containing rB < g distinct elements modulo g.

Each of the Ag elements from the A sub-intervals of length g from the collection
A will agree modulo g with exactly one element in each of the B sub-intervals of
length g from the collection B. These pairings contribute ABg solutions to (5).

Each of the rA elements from the smaller sub-interval of length rA will agree
modulo g with exactly one element in each of the B sub-intervals of length g from
the collection B. Similarly, each of the rB elements from the smaller sub-interval of
length rB will agree modulo g with exactly one element in each of the A sub-intervals
of length g from the collection A. Together, these pairings contribute rAB + rBA
solutions to (5).

Finally, it might be that the two small sub-intervals of length rA < g and rB < g
have no elements that agree modulo g. Still, by the pigeonhole principle, there must
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be at least rA + rB � g matches modulo g. These pairings contribute min(0, rA +
rB � g) solutions to (5).

This yields that, in total, (5) possesses at least

ABg + ArB + BrA + min(0, rA + rB � g) (31)

solutions, completing the proof of Theorem 3.

5. The Lonely Runner Conjecture

The Lonely Runner Conjecture, having its origins in view-obstruction problems and
in diophantine approximation, seems to be due independently to Wills [13] and Cu-
sick [3]. A problem in n-dimensional geometry view obstruction motivated Cusick’s
statement of the problem, while Wills viewed the question from the perspective of
Diophantine approximation.

Let k � 2 be an integer, and let m1, . . . ,mk be distinct positive integers. For
x 2 R, let kxk denote the distance from x to the integer nearest, i.e.,

kxk = min{|x� n| : n 2 Z}. (32)

Montgomery includes the Wills version as Problem 44 in the Diophantine Approx-
imation section of the appendix of unsolved problems in [10].

Conjecture 1. (Wills) If 1  m1 < m2 < . . . < mk then

max
↵2R

min
1kK

kmk↵k � 1
k + 1

. (33)

Goddyn, one of the authors of [2], gave the problem a memorable name and
interpretation concerning runners on a circular track.

Conjecture 2 (Lonely Runner Conjecture). Suppose that k runners having
positive integer speeds run laps on a unit-length circular track. Then there is a time
at which all k runners are at distance at least 1/(k +1) from their common starting
point.

The formulation of this problem by Wills and Cusick led to a considerable body of
work on the Lonely Runner Conjecture and its various incarnations and applications
in Diophantine approximation (see [1]), view-obstruction problems (see [3] and [4]),
nowhere zero flows in regular matroids (see [2]), and certain graph coloring questions
(e.g., [14], [9]).

At time t, runner i has position at distance kmitk from the starting point. Call
a runner distant at time t if kmitk � 1

k+1 . Given an instance of the lonely runner
problem, we would like to know if there is a time at which all runners are distant.
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To connect this problem to the density Chinese Remainder Theorem, we proceed
by first moving from its formulation over R to one over Q, and then we examine
rationals with a suitable fixed denominator (a function of the number of runners k
and their speeds m1, . . . ,mk).

Towards that end, consider a single runner with speed m. We seek to investigate
the set

T (m) = {t 2 R : kmtk � 1
k + 1

}, (34)

the times t at which this runner is distant. To understand this set of times, for an
integer Q � 1, let

TQ(m) = {t 2 T (m) : t = a/Q, 0  a  Q� 1}. (35)

Imposing the condition that (k + 1)m divides Q ensures that this set captures the
extremal times where equality holds in (34). For such Q, the numerators of the times
in TQ(m) correspond to residue classes modulo Q. These residue classes themselves
are induced by an interval of residue classes modulo Q/m.

Hence, for k runners with speeds m1, . . . ,mk, we select an appropriate choice of
Q, and we seek to find at least one time t that belongs to each of TQ(m1), . . . , TQ(mk).
By the above remarks, the problem reduces to finding a common solution to a sys-
tem of linear congruence equations.

For example, suppose that k = 2, with runner speeds m and n. If we set Q =
3mn, then the times TQ(m) are induced by an interval A of residue classes modulo
3n, and the times TQ(n) are induced by an interval B of residue classes modulo 3m.
Specifically,

TQ(m) = { a

3n
: k a

3n
k � 1

3
, 0  a  3mn� 1}, (36)

and A consists of n + 1 > 1
3 · 3n residue classes, the interval of residue classes

{a mod 3n : n  a  2n}, (37)

with analogous statements holding for TQ(n) and B. Thus, Corollary 2 applies,
yielding a solution to the linear system of congruences and hence the existence of a
time belonging to both TQ(m) and TQ(n).

6. Further Work

First, as with the classical Chinese Remainder Theorem, results for systems con-
taining more than two linear congruence equations would be both interesting and
useful. In particular, such a generalization in the case of collections of intervals can
be applied to the Lonely Runner Conjecture. For instance, the constant 1

3 appear-
ing in Corollary 2 is the analogue of the same constant appearing in the Lonely



INTEGERS: 14 (2014) 10

Runner Conjecture with k = 2 runners. One might hope for such similarities to
continue for larger values of k.

Other possibilities for the collections A and B, for example, random collections
(for suitable notions of random), collections nicely distributed among residue classes,
and collections with other arithmetic structure might be amenable to analysis.

Finally, regardless of the number of linear congruence equations or the types
of collections involved, structural information beyond mere existence and quantity
for the admissible classes and the resulting solutions could be useful in iterated
applications of this, and other, density Chinese Remainder Theorems.
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[5] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.

[6] Loo Keng Hua. Introduction to number theory. Springer-Verlag, Berlin, 1982. Translated
from the Chinese by Peter Shiu.

[7] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1980. Reprint of the 1974 original.

[8] Ernst Kleinert. Some remarks on the Chinese remainder theorem. Arch. Math. (Basel),
52(5):433–439, 1989.

[9] Daphne Der-Fen Liu. From rainbow to the lonely runner: a survey on coloring parameters
of distance graphs. Taiwanese J. Math., 12(4):851–871, 2008.

[10] Hugh L. Montgomery. Ten lectures on the interface between analytic number theory and har-
monic analysis, volume 84 of CBMS Regional Conference Series in Mathematics. Published
for the Conference Board of the Mathematical Sciences, Washington, DC, 1994.

[11] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An introduction to the theory
of numbers. John Wiley & Sons Inc., New York, fifth edition, 1991.

[12] J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Math-
ematical Association of America, Washington, DC, 2004. An introduction to the art of
mathematical inequalities.

[13] Jörg M. Wills. Zwei Sätze über inhomogene diophantische Approximation von Irra-
tionalzahlen. Monatsh. Math., 71:263–269, 1967.

[14] Xuding Zhu. Circular chromatic number of distance graphs with distance sets of cardinality
3. J. Graph Theory, 41(3):195–207, 2002.


