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Abstract
We show that the qualitative form of the prime k-tuple conjecture implies a certain
conjecture related to the least size of the interval containing exactly ` prime num-
bers. Also, we prove that the latter conjecture implies the prime k-tuple conjecture
for some minimal admissible set. The proof is self-contained and elementary.

1. Introduction

Since 2 and 3 are consecutive primes, the least size of an interval containing exactly
two prime numbers is one. Since these are the only primes placed consecutively, by
omitting this pair, the least size of an interval containing exactly two prime numbers
is two. Since the tuples (2, 3, 5) and (3, 5, 7) are the only prime tuples contained
in an the interval of length not exceeding four, by omitting these tuples, we see
that the least size of an interval having exactly three primes is six (for instance,
the interval [5, 11] contains exactly three primes). In general, we pose the following
question.
Question 1: For a given positive integer ` � 2, what is the least size of an interval
which contains exactly ` prime numbers such that each of them is greater than `?

A recent result in [1] motivates the above question, though, in [1], the authors
deal with a folklore conjecture on the number of prime factors of the product of k
consecutive integers.

To answer Question 1, we need to find an asymptotic formula for the following
function. We first enumerate those primes greater than ` as q1 < q2 < · · · < qn < · · ·
where qn denotes the n-th prime greater than `. We define a function

` := min
j

{qj+`�1 � qj | j = 1, 2, . . . .}.

1Dedicated to Professor R. Balasubramanian
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Various authors, namely, P. Erdős [7], [12], [9], [10] and [11], D. Hensley and I.
Richards [5], C. Hooley [6], H. L. Montgomery and R. C. Vaughan [13] and T.
Vijayaraghavan [14] were considered an interesting sequence of integers as follows.

For a given positive integer ` � 2, we first let A` =
Y
p`

p and we enumerate

all the positive integers greater than 1 which are coprime to A` as a1 < a2 <
· · · < an < · · · . In [9], P. Erdős mentions that this sequence might be expected to
show behavior that is somewhat similar to that of the primes. Most of the papers
mentioned above deal with the maximum gap between the consecutive elements of
the sequence of ai’s. Here, we consider the complementary problem and define

�` := min
j

{aj+`�1 � aj |j = 1, 2, . . .}.

Since each prime qj > ` is co-prime to A`, it is clear that �`  ` for all ` � 2. By
the explicit computations, one can easily see that �` = ` for all `  10.

In terms of �` and `, the twin prime conjecture asserts that �2 = 2 and there
are infinitely many intervals of length 2 which contain two prime numbers. Now we
can generalize the twin prime conjecture as follows.

Conjecture 1: Let ` � 2 be a given integer. Then we have �` = `, and there are
infinitely many intervals of length ` having exactly ` prime numbers.

Remark: Conjecture 1 has a connection to the recent results on the prime di↵er-
ences by D. Goldston, J. Pintz and C Yildirim [3] and Y. Zhang [15]. In [3], under
the Elliott - Halberstam Conjecture, the authors proved that

lim inf
n!1

(pn+1 � pn)  16,

where pn denotes the nth prime. In [15], Zhang proved unconditionally that

lim inf
n!1

(pn+1 � pn)  7⇥ 107.

Conjecture 1 implies the more general case as follows: for any integer ` � 2, we get

lim inf
n!1

(pn+`�1 � pn) = `.

The “simple-minded” Conjecture 1 is indeed connected with the prime k-tuple
conjecture formulated first by Dickson (qualitative version) and then later by Hardy
and Littlewood (quantitative version).

For any given integer k � 2, let H be a set of non-negative integers with |H| = k.
For any prime p, we let

⌫H(p) = #{h(mod p) : h 2 H}.
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Clearly, ⌫H(p) counts the number of distinct residue classes h 2 H modulo p. A
finite subset A ⇢ N [ {0} is said to be admissible if ⌫A(p) < p for every prime p.

Dickson [4] formulated the following conjecture.

Conjecture 2. (Prime k-tuple conjecture): For any given integer k � 2, let H be
an admissible set with |H| = k. Then there exist infinitely many integers n such
that n + h is a prime for every h 2 H.

Conjecture 2 is wide open. When k = 2 and H = {0, 2}, Conjecture 2 is the
twin-prime conjecture. In this article, we study the relationships between the two
generalizations of the twin prime conjecture, namely Conjecture 1, and the prime
k- tuple conjecture.

P. Erdős and H. Riesel [12], and T. Forbes [2], computed some numbers connected
with the prime k-tuple conjecture. More precisely, for a given integer ` � 2, they
computed the integer s(`) which is defined to be the least positive integer s for
which there exists an admissible set H := {0 = b1, b2, . . . , b` = s} with |H| = ` .
We call such an admissible set H a minimal admissible set. The following is a weak
form of Conjecture 2.

Conjecture 3. For a given integer ` � 2, let H be a minimal admissible set with
|H| = `. Then there exist infinitely many integers n such that the set n+H consists
of only prime numbers.

In this article, we shall prove the following results.

Theorem 1. For any given integers k, ` � 2, let H be an admissible set with
|H| = k and A` =

Y
p`

p. Then there exist infinitely many integers n such that

(n + h,A`) = 1 for every h 2 H.

In answering Question 1, we prove the following results.

Theorem 2. For every integer ` � 2, we have s(`) = �`.

Theorem 3. Conjecture 3 implies Conjecture 1.

Theorem 4. If Conjecture 1 is true, then for any given ` � 2, there exists a
minimal admissible set for which Conjecture 3 is true.

Theorem 5. For every large integer `, we have

` log `

2
 �` 

✓
1 + O

✓
log log `

log2 `

◆◆
` log `

and
` log `

2
 `  (1 + ✏)` log `

for any given ✏ > 0.
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Remarks. (1) It is clear that Conjecture 2 implies Conjecture 3 and by Theorem
3, Conjecture 3 implies Conjecture 1. (2) We believe that Conjecture 1 implies
Conjecture 3, but our method is unable to prove this implication.

In the last section, we list the exact values of ` for `  10 and �` for `  28.

2. Proofs

Proof of Theorem 1. To motivate the proof of this theorem, first we shall prove the
case ` = 2. Let H = {b1, b2, . . . , bk} be the given admissible set. We want to prove
that there are infinitely many integers n such that n + bi is coprime to A2 = 2. If
b1 is even (respectively, odd), then so is bi for all i. So we choose all the natural
numbers n which are of opposite parity with the bi’s. Then, clearly, the (n + bi)’s
are coprime to 2 = A2.

Now we shall assume that ` > 2. Let H = {b1, b2, . . . , bk} be the given admissible
set. Let 2 = p1, p2, . . . , pr be all primes p  `. Since H is admissible, we have

⌫H(pi)  pi � 1 for all i = 1, 2, . . . , r.

Hence, for any n 2 N,

⌫H(pi) = #{n + bj(mod pi) : j = 1, 2, . . . , k}  pi � 1.

Since ⌫H(pi) < pi for all i = 1, 2, . . . , r, for any fixed i satisfying 1  i  r, there
exists an integer ni such that 0(mod pi) /2 {ni + bj(mod pi) / j = 1, 2, . . . , k}.

By the Chinese Remainder Theorem, the following set of congruences has a
solution modulo A`

x ⌘ n1 (mod p1)
x ⌘ n2 (mod p2)
...

...
x ⌘ nr (mod pr).

Let the least solution be n. Then n satisfies

n + bj 6⌘ 0(mod pi), for all i = 1, . . . , r, and for all j = 1, . . . , k.

Therefore, for this integer n, we have (n + bj , A`) = 1 for every j = 1, . . . , k. Also
n + kA` satisfies the above congruence for each k 2 N. Thus there are infinitely
many natural numbers n such that (n + bj , A`) = 1 for every j = 1, . . . , k. 2

Remark: Let N`(x) denote the number of positive integers n  x such that (n +
h,A`) = 1 for every h 2 H. Then, we have

N`(x) ⇣ x
Y
p`

✓
1� ⌫H(p)

p

◆
.
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To prove this, for each prime p  `, we choose h0p such that h0p /2 H (mod p). By
the Chinese Reminder theorem, the set of simultaneous congruences

y ⌘ �h0p1
(mod p1)

...
...

...
y ⌘ �h0p⇡(`)

(mod p⇡(`))

has a unique solution say, n (mod A`). Then we can see that n 2 N`(x). Conversely,
every integer n 2 N`(x) is a solution to a system of congruences of the above type.
Hence

N`(x) ⇣ x

A`

Y
p`

�
p� ⌫H(p)

�
= x

Y
p`

✓
1� ⌫H(p)

p

◆
.

Proof of Theorem 2. Let H := {0, h1, h2, . . . , h`�1 = s(`)} be a minimal admissible
set. By Theorem 1, there exists an integer n such that all the elements of the set
{n, n + h1, n + h2, . . . , n + s(`)} are relatively prime to A`. Therefore, we have
�`  s(`).

By the definition of �`, there exists an integer n such that the interval [n, n+�`]
contains exactly ` numbers, say, n, n + x(1), . . . , n + x(` � 1) = n + �` that are
relatively prime to A`. We will prove that H := {0, x(1), x(2), . . . , x(` � 1)} is an
admissible set.

So, it is enough to prove that ⌫H(p) < p for all prime p  `. Suppose the
statement is not true. Then there is a prime p  ` such that ⌫H(p) = p. That is,
the number #{0, x(i) (mod p) : 1  i  `� 1} equals p, which implies that for any
integer n we have #{n, n+x(i) (mod p) : 1  i  `�1} = p. Therefore, there exists
i0 with 1  i0  �` such that n+x(i0) ⌘ 0 (mod p). Hence, (n+x(i0), A`) � p > 1
for any integer n, which is a contradiction. Therefore, H is an admissible set of
cardinality ` and the largest element of H is �`. Therefore, by the definition of s(`),
we get s(`)  �`, which proves the theorem. 2

Proof of Theorem 3. Assume that Conjecture 3 is true. We need to prove that
�` = ` and there are infinitely many intervals of length ` having exactly ` primes.

We always have �`  ` for all integers ` � 2. To prove `  �`, we need to
prove the existance of ` prime numbers p1, p2, . . . , p` such that p` � p1  �`.

By the definition of �`, there exists a positive integer j such that �` = aj+`�1�aj .
That is, the interval [aj , aj +�`] = [aj , aj+`�1] contains exactly ` numbers, namely,
aj , aj+1, . . . , aj+l�1 which are coprime to A`. We shall rewrite these consecutive
integers as a, a + 1, . . . , a + �` with a = aj . Also, for each i = 0, 1, 2, . . . , `� 1, let
a+x(i) = aj+i. Note that x(0) = 0. Clearly, by letting H := {0, x(1), . . . , x(`�1)} ⇢
{1, 2, . . . ,�`}, we see that each x(i) is an even integer for all i = 1, 2, . . . , `� 1.

If we can find an integer n > ` such that n, n + x(1), n + x(2), . . . , n + x(` � 1)
are all prime numbers, then, as n + x(` � 1) � n = x(` � 1) = �`, we get `  �`.
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To do this, we shall apply Conjecture 3 for H. For this, we need to prove H is a
minimal admissible set.

Obviously, for all prime p > `, we have ⌫H(p) < p as |H| = `. Hence, let p be a
prime such that p  ` and ⌫H(p) = p. Then, #{0, x(i) (mod p) / 1  i  `�1} = p
which implies that #{a, a+x(i) (mod p) / 1  i  `�1} = p. That is, there exists i0
such that a+x(i0) ⌘ 0 (mod p) and hence, (a+x(i0), A`) � p > 1, a contradiction.
Hence ⌫H(p) < p for every prime p. Since x(`� 1) = �` = s(`) (by Theorem 2), we
conclude that H is a minimal admissible set. Thus, by Conjecture 3, there exists a
positive integer n > ` such that n, n + x(1), . . . , n + x(`� 1) are all prime numbers.
Hence, we get �` = `.

Let I be an interval of length ` having exactly ` primes, say, p, p + y(1), p +
y(2), . . . , p + y(` � 1). By arguing as above, we can show that the set H :=
{0, y(1), . . . , y(` � 1)} is a minimal admissible set. Therefore, by Conjecture 3,
there exist infinitely many translates of I (which are intervals) having ` primes.
Since �` = `, no interval can contain more than ` primes. Hence Conjecture 1 is
true. 2

Proof of Theorem 4. Assume Conjecture 1 is true. Let I` be an interval of length
` which contains exactly ` prime numbers. By the definition of `, the interval I`

contain exactly ` prime numbers and they must be of the form

p, p + x(1), p + x(2), . . . , p + x(`� 1) = p + ` for some prime p.

As in the proof of Theorem 2, we can show that H := {0, x(1), x(2), . . . , x(`�1) =
`} is an admissible set of cardinality `. Since �` = `, by Theorem 2, we have
` = s(`). Thus, by the definition, H is a minimal admissible set of cardinality ` for
which there is an integer n, namely, p such that n, n + x(1), . . . , n + ` are primes.
By the assumption, there are infinitely many intervals of length ` that contain
exactly ` prime numbers. That is, there are infinitely many primes p such that

p, p + xp(1), p + xp(2), . . . , p + xp(`� 1) = p + `

are all primes. By the definition of `, we see that Ip,` = {0, xp(1), . . . , xp(` � 1)}
is a minimal admissible set for every such prime p. Since there are only finitely
many minimal admissible sets of length `, and the number of Ip,`’s is infinite, by
pigeonhole principle, there exists a sequence of primes {pi} for which Ipi,` := I` =
{0, x(1), . . . , x(` � 1)} are the same. For this minimal admissible set, there are
infinitely many integers, namely, the sequence of primes {pi}, for which {pi, pi +
x(1), . . . , p + x(`� 1)} are all primes. Hence Conjecture 3 is true. 2

Proof of Theorem 5. In [12], Erdős and Riesel proved that

` log `

2
 s(`)  ` log `

✓
1 + O

✓
log log `

log2 `

◆◆
.

By Theorem 2, the bounds for �` follow from the above result.
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Since �`  `, the lower bound follows. Now we shall prove the upper bound. Let
✏ > 0 be given. We will produce an interval of length (1 + ✏)` log ` that contains at
least ` prime numbers. That is, we need to find an x� 1 such that ⇡(x)�⇡(`) > `.

Since
x

log x
< ⇡(x) <

3
2

x

log x
, it is enough to find an x� 1 satisfying

⇡(x)� ⇡(`) >
x

log x
� 3

2
`

log `
> `.

It is su�cient to find x� 1 satisfying

x

log x
> `

✓
1 +

3
2 log `

◆
.

Now, choose x = ` + (1 + ✏)` log `. We need to check that

x

log x
=

`(1 + (1 + ✏) log `)
log ` + log(1 + (1 + ✏) log `))

� `

✓
2 log ` + 3

2 log `

◆
.

That is, we need to check the following inequality:

2✏(log `) � 1 +
✓

2 +
3

log `

◆
log(1 + (1 + ✏) log `).

However, the above inequality is true for all `� 1 and the upper bound follows. 2

In [2], Forbes computed s(`) for all `  20. In [1], �` has been computed for all
`  28. Putting these together, we have the following table:

` `, s(`),�` (aj+`�1, aj) ` s(`),�` ` s(`),�`

2 2 (a2, a1) 11 36 21 84
3 6 (a3, a1) 12 42 22 90
4 8 (a4, a1) 13 48 23 94
5 12 (a5, a1) 14 50 24 100
6 16 (a6, a1) 15 56 25 110
7 20 (a7, a1) 16 60 26 114
8 26 (a8, a1) 17 66 27 120
9 30 (a9, a1) 18 70 28 126
10 32 (a10, a1) 19 76

20 80

In the above table, the column (aj+`�1, aj) denotes the least positive integer j
for which �` = aj+`�1 � aj holds. Also, by explicit computations, we have checked
that ` = �` for every `  10. However, using the tables in [1] and [2], we have
listed the values of �` and s(`) for all 11  `  28. Note that whenever j = 1 in the
above, then it is clear that aj+`�1 = a` = q` and aj = a1 = q1.
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