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Abstract
Palintiples are natural numbers which are integer multiples of their digit reversals.
The most well-known base-10 example is 87912 = 4 · 21978. Using only elementary
number theory we elucidate some general properties of palintiples of an arbitrary
base. Palintiples naturally fall into three mutually exclusive and exhaustive classes
based upon the structure of their carries. We apply our results to finding all palin-
tiples of the class whose carries exhibit a “shifted-symmetric” structure. Moreover,
we find all 5-digit palintiples whose carries are “symmetric” (the same when read
forward or backward). We go on to answer some open questions posed in a paper
of Pudwell while leaving several questions of our own: is divisibility of the base by
the multiplier plus 1 enough to determine all symmetric palintiples? Which bases
(among these is base-10) only allow for the existence of symmetric palintiples? Are
there infinitely many such bases? Finally, we reveal some connections between
palintiples and complex roots of unity.

1. Introduction

A palintiple (short for palindromic multiple) is a natural number with the property
of being an integral multiple of the number represented by the reversal of its base-b
expansion. The most well-known examples of base-10 palintiples include 87912 and
98901 since 87912 = 4 · 21978 and 98901 = 9 · 10989. More examples which include
bases other than 10 may be found in Table 1.

At first glance it may seem that such numbers are merely curiosities that only
make for cute puzzle problems. Such was the belief of G. H. Hardy who, in his
classic essay A Mathematician’s Apology [1], cited the fact that “8712 and 9801 are
the only four-figure numbers which are integral multiples of their ‘reversals’ ” as an
example of a theorem that is not “serious.” Furthermore, “[this fact is] very suitable
for puzzle columns and likely to amuse amateurs, but there is nothing in them which
appeals much to a mathematician” and is “not capable of any significant general-
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ization.” Sutcli↵e [8], Pudwell [7], and Young [9] demonstrate otherwise; in spite
of Hardy’s comments the palintiple problem generalizes quite naturally. The title
of Pudwell’s paper, Digit Reversal Without Apology, is a clever acknowledgement of
this fact (among other clever acknowledgements in Pudwell’s paper).

Sutcli↵e is the first to give a serious mathematical treatment of the palintiple
problem. After determining all 2-digit palintiples, Sutcli↵e shows that the existence
of a 2-digit palintiple guarantees the existence of a 3-digit palintiple by constructing
it directly from the 2-digit example. However, Sutcli↵e leaves the question open as
to whether or not a 3-digit palintiple in hand guarantees the existence of a 2-digit
palintiple. The work of Kaczynski [3] fills this gap by proving that the converse to
Sutcli↵e’s result does indeed hold. Moreover, Kaczynski also shows that the 2-digit
palintiple may be constructed from the 3-digit palintiple by simply removing the
middle digit.

The tidy correspondence between 2 and 3-digit palintiples led Pudwell to ask
whether or not such a correspondence might exist between 4 and 5-digit palintiples.
Under the condition of Kaczynski’s paper which assures that middle-digit truncation
always works in the 3-digit case, Pudwell demonstrates with several counterexam-
ples that there are 5-digit palintiples for which there is no corresponding 4-digit
palintiple. However, she does provide a partial converse by showing that the result
does extend to a large family of 5-digit palintiples (which includes examples noted
by Klosinski and Smolarski [4]) and in doing so shows that for every base larger
than 2, there is a 5-digit palintiple for which middle-digit truncation results in a
4-digit palintiple.

The work of Sutcli↵e, Kaczynski, and Pudwell establishes results for palintiples
of five digits or less. Young [9] takes a di↵erent approach by showing how to
construct all palintiples of a particular base and multiplier within a graph-theoretical
framework. Her methods are used to find all base-10 palintiples whose multiplier is
4 (see the above example).

The approach taken here is somewhat di↵erent than the above by considering
palintiples having a fixed, but arbitrary, number of digits. As with Young [9],
the methods outlined here pay particular attention to the carries which, as will
be seen, play as critical a role as the digits themselves. Relationships between
the carries naturally partition all palintiples into three classes. The first of these
classes includes the most well-known examples already listed above and the family
of palintiples described in Pudwell’s Theorem 1. Using the results developed here
we will find all 5-digit palintiples belonging to the first class as well as find all
palintiples belonging to the second.

We also apply these techniques to answering some open questions posed by Pud-
well. Among these is a necessary and su�cient condition that tells us exactly when
removing the middle digit of a palintiple with an odd number of digits results in
yet another palintiple. Finally, after posing a few open questions of our own, it will
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be shown that palintiples are related to complex roots of unity.
We note that the nomenclature used by this article di↵ers from that of Sutcli↵e,

Pudwell, and Young who never actually use the term “palintiple.” However, this
term is adopted as a precise, convenient, and descriptive label for natural numbers
which fit the rather convoluted description given above. The term seems to have
been coined in an online article by Hoey [2] in which he finds all base-10 palintiples
using finite state machines.

Before proceeding it will be necessary to define some additional terminology and
notation that will be used throughout this article. The examples already given
motivate the following definition.

Definition. Let b be a natural number greater than 1 and suppose 0  dj < b for
all 0  j  k. The natural number

Pk
j=0 djbj is called an (n, b)-palintiple provided

kX
j=0

djb
j = n

kX
j=0

dk�jb
j

for some natural number n.

Using the language established above, 87912 is a (4,10)-palintiple and 98901 is a
(9,10)-palintiple.

As with other works cited, this article does not consider examples such as 1010 =
10 ·0101 since the leading digit of the reversal is zero and does not qualify as a valid
base-b representation. Consequently, it is assumed that n < b. Additionally, every
base-b palindrome is a (1, b)-palintiple. Such trivial examples will be ignored so
that n > 1. Furthermore, b = 2 implies that n = 1 (in which case our palintiple is
merely a binary palindrome). Therefore, an additional restriction b 6= 2 is imposed.
Thus, hereafter we assume that n and b are natural numbers such that 1 < n < b
and b > 2.

For notational convenience the convention used by Sutcli↵e, Kaczynski, and Pud-
well is observed so that (dk, dk�1, . . . , d0)b represents the natural number

Pk
j=0 djbj .

2. Some General Results

We begin our investigation by considering single-digit multiplication in general.
Letting pj denote the jth digit of the product, cj the jth carry, and qj the jth
digit of the number being multiplied by n, the iterative algorithm for single-digit
multiplication is

c0 = 0
pj = �(nqj + cj)

cj+1 = (nqj + cj � �(nqj + cj)) ÷ b
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where � is a function giving the least non-negative residue modulo b. (pk, pk�1, . . . , p0)b

is a k+1-digit number so that ck+1 = 0. Since dj = pj = �(ndk�j+cj) and qj = dk�j

for any (n, b)-palintiple (dk, dk�1, . . . , d0)b, we have

Theorem 1. Let (dk, dk�1, . . . d0)b be an (n, b)-palintiple and let cj be the jth carry.
Then

bcj+1 � cj = ndk�j � dj

for all 0  j  k.

Manipulation of these equations gives the following important corollary which
allows us to state the value of each digit in terms of the carries.

Corollary 2. Let (dk, dk�1, . . . , d0)b be an (n, b)-palintiple and let cj be the jth
carry. Then

dj =
nbck�j+1 � nck�j + bcj+1 � cj

n2 � 1
for all 0  j  k.

The above also implies that the carries must satisfy the following system of
congruences for all 0  j  k:

nbck�j+1 + bcj+1 ⌘ nck�j + cj mod (n2 � 1). (1)

Of course, not every solution to the above system of congruences will yield the
digits of a palintiple, but since the carries necessarily satisfy (1), every possible
(k +1)-digit (n, b)-palintiple may be found by finding all solutions to (1). The next
theorem narrows down the possibilities for solutions to (1) that yield palintiples.

Theorem 3. Let (dk, dk�1, . . . , d0)b be an (n, b)-palintiple and let cj be the jth
carry. Then cj  n� 1 for all 0  j  k.

Proof. The proof will proceed by induction. First, c0 = 0  n � 1. Now suppose
that cj  n � 1. For a contradiction, suppose that cj+1 � n. Then Theorem 1
implies bcj+1 � cj + dj = ndk�j . By our inductive hypothesis and Theorem 1 we
have bn � (n � 1) = (b � 1)n + 1  ndk�j . Therefore, dk�j > b � 1 which is a
contradiction.

Since cj  n � 1 for all 0  j  k, and since c1 > 0 (otherwise, by Corollary 2,
we would have dk  0), (c1, c2, . . . , ck)b is the base-b representation of the numberPk�1

j=0 ck�jbj . From this, the number whose digits are reversed when multiplied
by n (yielding a palintiple) may be stated in terms of the base-b representation
determined by the carries.
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Theorem 4. Let (dk, dk�1, . . . , d0)b be an (n, b)-palintiple with carries ck, ck�1,...,
c0. Then

(d0, d1, . . . , dk)b =
b2 � 1
n2 � 1

(c1, c2, . . . , ck)b.

Proof. Using Corollary 2, a straightforward calculation reveals that
Pk

j=0 dk�jbj =Pk
j=0

nbcj+1�ncj+bck�j+1�ck�j

n2�1 bj = b2�1
n2�1

Pk�1
j=0 ck�jbj .

If it is palintiples of a particular base we seek, there may be several cases of n
which we may exclude from our search. The next theorem helps us to eliminate
such cases.

Theorem 5. If b
gcd(b,n) < n + 1, then no (n, b)-palintiples exist.

Proof. The theorem shall be established by the contrapositive. Suppose that an
(n, b)-palintiple (dk, dk�1, . . . d0)b exists where cj is the jth carry. For j = 0, Corol-
lary 2 gives (n2 � 1)d0 = bc1 � nck. Therefore, gcd(b, n) divides (n2 � 1)d0. But
since n and n2 � 1 are relatively prime, gcd(b, n) divides d0 so that gcd(b, n)  d0.
By Corollary 2 and Theorem 3, we have that d0 = bc1�nck

n2�1  bc1
n2�1 

b
n+1 so that

gcd(b, n)  b
n+1 .

Considering base-10 palintiples as an example, we see that there are no (5,10),
(6,10), or (8,10)-palintiples.

On the other hand, are there conditions under which the existence of (n, b)-
palintiples is assured? The following gives one such condition.

Theorem 6. Suppose n + 1 divides b. Then there exists an (n, b)-palintiple. Fur-
thermore, for every palintiple such that (n+1)|b we have cj = ck�j for all 0  j  k
where cj is the jth carry.

Proof. Let n + 1 divide b with quotient q. The base-b digits defined by dk = nq,
dk�1 = nq � 1, dj = b� 1 for all 2  j  k � 2, d1 = q � 1, and d0 = q are those of
an (n, b)-palintiple since

Pk
j=0 djbj = n

Pk
j=0 dk�jbj .

Since n+1 divides b, Theorem 1 implies that cj ⌘ dk�j +dj ⌘ ck�j mod (n+1)
for all 0  j  k. Since Theorem 3 guarantees that cj and ck�j are less than n + 1,
we have cj = ck�j .

The most well-known examples, namely the (4,10) and (9,10)-palintiples 87912
and 98901, fall into a class of palintiples for which the order of the carries is the same
both forward and backward (since n+1 divides b in both cases). It is precisely this
structure which motivates the following definition which partitions all palintiples
into three mutually exclusive and exhaustive classes based upon the pattern, or
lack thereof, among the carries.
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(dk, dk�1, . . . , d0)b n (ck, ck�1, . . . , c0) Class
(8, 7, 9, 1, 2)10 4 (0, 3, 3, 3, 0) symmetric
(9, 8, 9, 0, 1)10 9 (0, 8, 8, 8, 0) symmetric

(5, 4, 0, 1, 5, 4, 0, 1)6 5 (0, 4, 4, 0, 0, 4, 4, 0) symmetric
(26, 2, 0, 26, 2)29 9 (8, 0, 0, 8, 0) shifted-symmetric

(26, 15, 14, 27, 2)29 9 (8, 4, 4, 8, 0) shifted-symmetric
(26, 28, 28, 28, 2)29 9 (8, 8, 8, 8, 0) shifted-symmetric

(18, 13, 29, 15, 20, 4)34 4 (2, 1, 3, 1, 2, 0) shifted-symmetric
(11, 9, 1, 4, 1)14 9 (2, 1, 6, 7, 0) asymmetric
(16, 13, 3, 8, 2)22 7 (2, 1, 4, 5, 0) asymmetric
(8, 9, 10, 2, 1)11 7 (1, 6, 6, 5, 0) asymmetric

(34, 1, 30, 24, 2)40 13 (8, 9, 0, 11, 0) asymmetric

Table 1: Examples of palintiples sorted by type.

Definition. Let p = (dk, dk�1, . . . , d0)b be an (n, b)-palintiple with carries ck,
ck�1,. . ., c0. We say that p is symmetric if cj = ck�j for all 0  j  k and
that p is shifted-symmetric if cj = ck�j+1 for all 0  j  k. A palintiple that is
neither symmetric nor shifted-symmetric is called an asymmetric palintiple.

Table 1 gives several examples of each palintiple type for a variety of bases. (All
examples used in the body of the text are also included in this table for convenient
reference.) The family of (n, b)-palintiples for which n+1 divides b found by Pudwell
[7] given by ( nb

n+1 , nb
n+1 � 1, b � 1, b

n+1 � 1, b
n+1)b with carries (c4, c3, c2, c1, c0) =

(0, n� 1, n� 1, n� 1, 0) provide even more examples of symmetric palintiples.
By Theorem 6, every (n, b)-palintiple for which n + 1 divides b is symmetric.

It is natural to ask whether or not the converse is true: does the existence of a
symmetric (n, b)-palintiple guarantee that n + 1 divides b? Computer generated
evidence suggests that the answer might be yes as a single counterexample has not
yet been found. We leave this as an open question. The next theorem does, however,
establish a partial converse to Theorem 6.

Theorem 7. If a symmetric (n, b)-palintiple exists for which b and n� 1 are rela-
tively prime, then n + 1 divides b.

Proof. Let p = (dk, dk�1, . . . , d0)b be an (n, b)-palintiple with carries ck, ck�1,. . .,
c0. Since p is symmetric, ck = c0 = 0. Thus, by Corollary 2, (n2 � 1)d0 = bc1. But
since b and n�1 are relatively prime, it must be that n�1 divides c1. But Theorem
3 implies that c1  n� 1 so that c1 = n� 1. The result follows.

As promised in the introduction, we now give a characterization of symmetric
palintiples which sheds more light upon how n + 1 and b are related.
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Theorem 8. Let p = (dk, dk�1, . . . , d0)b be an (n, b)-palintiple with carries ck,
ck�1,..., c0. Then the following are equivalent:

(1) p is symmetric,
(2) bcj ⌘ 0 mod (n + 1) for all 0  j  k,
(3) (n + 1)dj ⌘ (n + 1)dk�j mod b for all 0  j  k.

Proof. We will show (1)() (2) and then (1)() (3).
Let p be symmetric. Then the congruence given by (1) implies that nbcj+1 +

bck�j+1 ⌘ (n + 1)cj mod (n2 � 1) so that bcj+1 ⌘ bck�j+1 mod (n + 1). Now
c0 = 0 and bc1 ⌘ 0 mod (n + 1). A simple induction argument establishes the
desired conclusion. Suppose, then, that bcj ⌘ 0 mod (n + 1). It then follows by
(1) that cj � ck�j ⌘ bcj+1 � bck�j+1 ⌘ 0 mod (n + 1). Since cj  n � 1 for all
0  j  k, it must be that cj = ck�j .

For the second equivalence, suppose p is symmetric. Then Theorem 1 implies
both bcj+1 � cj = ndk�j � dj and bck�j+1 � cj = ndj � dk�j . Thus b(cj+1 �
ck�j+1) = (n + 1)(dk�j � dj) from which the desired conclusion follows. Suppose,
then, that (n + 1)dj ⌘ (n + 1)dk�j mod b. Another use of Theorem 1 shows that
b(cj+1� ck�j+1)� cj + ck�j = (n+1)(dk�j � dj). Reducing modulo b we have that
cj ⌘ ck�j mod b.

The following theorem determines all shifted-symmetric palintiples.

Theorem 9. Let p = (dk, dk�1, . . . , d0)b be a shifted-symmetric (n, b)-palintiple
with carries ck, ck�1,. . ., c0. Then (b � n)cj ⌘ 0 mod (n2 � 1) for all 0  j  k.
Furthermore, for all 0  j  k suppose ĉj is a solution to (b�n)ĉj ⌘ 0 mod (n2�1)
where ĉj = ĉk�j+1, ĉk = ĉ1 6= 0, ĉ0 = 0, and 0  ĉj  n� 1. Then

n
b2 � 1
n2 � 1

(ĉk, ĉk�1, . . . , ĉ1)b

is a shifted-symmetric (n, b)-palintiple.

Proof. Clearly (b � n)c0 ⌘ 0 mod (n2 � 1). Suppose, then, that (b � n)cj ⌘ 0
mod (n2�1). Multiplying by n gives (nb�1)cj ⌘ 0 mod (n2�1). Our hypothesis
and Corollary 2 imply that

dj =
(b� n)cj+1 + (nb� 1)cj

n2 � 1
.

Hence, (b� n)cj+1 ⌘ �(nb� 1)cj ⌘ 0 mod (n2 � 1).
Now suppose that (b�n)ĉj ⌘ 0 mod (n2�1) for each 0  j  k. Defining dj as

dj =
(b� n)ĉj+1 + (nb� 1)ĉj

n2 � 1
,
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the above congruence assures that dj is an integer. Since ĉj  n� 1, it follows that
dj  b�1 so that dj is a base-b digit. The condition ĉk = ĉ1 6= 0 ensures that d0 and
dk are nonzero. From here it is a simple exercise to show that (dk, dk�1, . . . , d0)b

is an (n, b)-palintiple. A straightforward induction argument establishes that the
carries of this palintiple are indeed ĉk, ĉk�1,. . ., ĉ0. Since ĉj = ĉk�j+1, Theorem 4
implies that

(dk, dk�1, . . . , d0)b = n(d0, d1, . . . , dk)b = n
b2 � 1
n2 � 1

(ĉk, ĉk�1, . . . , ĉ1)b

is a shifted-symmetric palintiple and the proof is complete.

It is interesting to note that all of the examples mentioned by Pudwell [7] of
5-digit (n, b)-palintiples for which removing the middle digit does not yield a 4-
digit (n, b)-palintiple are asymmetric. One such example is the (7,22)-palintiple
(16, 13, 3, 8, 2)22 with carries (c4, c3, c2, c1, c0) = (2, 1, 4, 5, 0).

It is then tempting to ask whether or not palintiple symmetry extends Kaczyn-
ski’s result (that is, removing the middle digit of any 3-digit palintiple always
yields a 2-digit palintple). Although it is true that removing the middle digit of
a 5-digit symmetric or shifted-symmetric (n, b)-palintiple results in a 4-digit (n, b)-
palintiple (the arguments presented in the next section establish that this is indeed
the case for symmetric palintiples), it turns out that palintiples for which middle-
digit truncation yields another palintiple are not necessarily symmetric or shifted-
symmetric. Consider the case of the (7,11)-palintiple (8, 9, 10, 2, 1)11 with carries
(c4, c3, c2, c1, c0) = (1, 6, 6, 5, 0). This palintiple is asymmetric, but (8, 9, 2, 1)11 is
also a (7,11)-palintiple. We must then ask: is there a condition which tells us ex-
actly when middle-digit truncation yields another palintiple? The next theorem
provides such a condition for any palintiple having an odd number of digits. It also
addresses Pudwell’s question [7] if there are analogous results to her Theorem 1 and
Theorem 2 for palintiples having more than five digits. The condition is stated in
terms of the carries.

Theorem 10. Suppose (dk, dk�1, . . . , d0)b is an (n, b)-palintiple with an odd number
of digits and that ck, ck�1,. . . , c0 are its carries. If dM is the middle digit, then the
number obtained by removing the middle digit, (dk, dk�1, . . . , dM+1, dM�1, . . . , d0)b,
is also an (n, b)-palintiple if and only if cM+1 = cM .

Proof. For the truncated number to be an (n, b)-palintiple, it must be that
(dk, dk�1, . . . , dM+1, dM�1, . . . , d0)b � n(d0, d1, . . . , dM�1, dM+1, . . . , dk)b = 0. The-
orem 1 and a routine calculation involving summation signs show that

M�1X
j=0

djb
j +

kX
j=M+1

djb
j�1 � n

0
@M�1X

j=0

dk�jb
j +

kX
j=M+1

dk�jb
j�1

1
A = bM (cM+1 � cM ).
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In the above, M = k
2 . In this case it is clear that removing the middle digit of

a shifted-symmetric (n, b)-palintiple results in another (n, b)-palintiple since cM =
ck�M+1 = cM+1. However, it is not clear whether or not truncating symmetric
palintiples always results in another palintiple. Empirical evidence suggests that
cM = cM+1 in every case.

3. Palintiples of Five Digits or Less

Theorem 9 determines all shifted-symmetric palintiples including those having five
digits or less. We now find all symmetric palintiples of five digits or less.

Clearly no 2-digit palintiple can be symmetric since this would require all the
carries to be zero. A symmetric 3-digit (n, b)-palintiple would require a non-zero
middle carry c1 with c2 = c0 = 0. Corollary 2 then implies that the middle digit is
negative which is a contradiction.

As for 4-digit symmetric palintiples, if (d3, d2, d1, d0)b is a symmetric (n, b)-
palintiple with carries c3, c2, c1, and c0 = 0, then c3 = c0 = 0 and c2 = c1 = c.
Equation (1) yields (n + 1)c ⌘ bc ⌘ 0 mod (n2 � 1) from which we conclude
c ⌘ 0 mod (n � 1). If c = 0, then, by Corollary 2, all the digits equal zero.
Hence, c = n � 1 from which it follows that n + 1 divides b and (d3, d2, d1, d0)b =
( nb

n+1 , nb
n+1 � 1, b

n+1 � 1, b
n+1)b.

For the 5-digit case, let (d4, d3, d2, d1, d0)b be a symmetric (n, b)-palintiple with
carries c4, c3, c2, c1, and c0 = 0. Then c4 = c0 = 0, and c3 = c1. Equation (1)
implies that bc1 ⌘ 0 mod (n2�1), bc2 ⌘ (n+1)c1 mod (n2�1), and (n+1)bc1 ⌘
(n + 1)c2 mod (n2 � 1). The first and third congruence imply that (n + 1)c2 ⌘ 0
mod (n2 � 1) from which we deduce that c2 ⌘ 0 mod (n� 1). Then either c2 = 0
or c2 = n�1. But if c2 = 0, then, by Corollary 2, it could only be that c1 = 0 since
otherwise d1 and d3 would be negative. But if c2 and c1 equal zero, then all the
digits equal zero. Therefore, it must be that c2 = n�1. Hence, by the second of the
congruences listed above, (n+1)c1 ⌘ (n�1)b mod (n2�1). It follows that 2c1 ⌘ 0
mod (n � 1). If n is even, then c1 = n � 1. If n is odd, then either c1 = n�1

2 or
c1 = n� 1. Since Corollary 2 guarantees that d0 = bc1

n2�1 , it follows in any of these
cases that n + 1 divides b. However, this implies, by Corollary 2, that if c1 = n�1

2 ,
then d1 is not an integer which is a contradiction. Hence, the only possibility is
that c1 = n � 1. Thus, the unique 5-digit symmetric (n, b)-palintiple is given by
(d4, d3, d2, d1, d0)b = ( nb

n+1 , nb
n+1 � 1, b� 1, b

n+1 � 1, b
n+1)b.

It has already been seen that removing the middle digit of any shifted-symmetric
(n, b)-palintiple with an odd number of digits results in another shifted-symmetric
(n, b)-palintiple. Hence, as claimed previously, removing the middle digit of any
5-digit symmetric or shifted-symmetric (n, b)-palintiple results in yet another (n, b)-
palintiple.
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We now address a few of the questions raised by Pudwell [7] for 5-digit palin-
tiples. Suppose b + 1 is prime. Corollary 2 implies that d0 � d1 + d2 � d3 + d4 =
(b+1)(c1�c2+c3�c4)

n�1 . Thus, the value of f mentioned in Pudwell’s paper may then be
stated in terms of the carries: f = c1�c2+c3�c4

n�1 . It may come as no surprise that
f = 0 for shifted-symmetric palintiples and f = 1 for symmetric palintiples. In fact,
it is not di�cult to show that the family of palintiples characterized by Pudwell’s
Theorem 1 are all symmetric (in each case the multiplier plus 1 divides the base).
Pudwell asked if there were palintiples outside of this family for which f = 1. The
(13,40)-palintiple (34, 1, 30, 24, 2)40 with carries (c4, c3, c2, c1, c0) = (8, 9, 0, 11, 0)
serves as an example since it is clearly not symmetric.

With regard to the open question as to whether or not a counterexample exists
to Pudwell’s Question 1 (if b+1 is prime, when does digit truncation fail to produce
another palintiple?) for which f 6= 0, we may look no further than the example just
provided.

Finally, we show that there are no 5-digit palintiples for which f = 2. Since
cj  n � 1 for all 0  j  4, the only way f could equal 2 is if c1 = c3 = n � 1
and c2 = c4 = 0. But this would mean that d2 = b by Corollary 2. Hence, the case
f = 2 is impossible as computer-generated evidence has suggested.

4. Some Open Questions

In addition to the question already posed (if symmetric implies n + 1 divides b),
there are still many unanswered questions.

Without exception, the carries of every symmetric palintiple we have observed,
no matter the base, no matter the number of digits, always equal either n� 1 or 0
(as seen above for the four and five-digit case). If it could be shown that this indeed
holds in general, then all symmetric palintiples would be completely determined (as
well as guarantee that n + 1 divides b).

It is also unknown whether or not more than one type of palintiple can exist
for a particular choice of n and b. So far, the evidence suggests that this cannot
happen. If it could be shown that b being divisible by n + 1 is equivalent to being
symmetric, then it would follow that symmetric and shifted-symmetric palintiples
cannot simultaneously exist for the same n and b since (n+1)|b implies symmetric.

Hoey [2] stated that b = 10 is a particularly “boring” base for palintiples. How-
ever, we disagree. Essentially, Hoey argued that every base-10 palintiple is symmet-
ric, that is, that all base-10 palintples have a very nice structure. Additionally, it is
easily seen that every base-3 palintiple is symmetric since n = 2 is the only suitable
multiplier (n+1 divides b in every case). Every base-4 palintiple is symmetric since
Theorem 5 eliminates the possibility that n = 2. Similar arguments establish that
all base-6 palintiples are symmetric.
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A cascade of questions regarding bases immediately come to mind:

(1) What other bases only allow for symmetric palintiples? Are there infinitely
many such bases?

Since for every divisor n + 1 of b there is a symmetric (n, b)-palintiple, every base
has at least one symmetric palintiple. However, we must then ask

(2) What bases exclude the possibility of asymmetric palintiples?

(3) If there are infinitely many such “symmetric bases,” are there any other in-
teresting properties shared by these numbers? Do the integer sequences determined
by symmetric bases have any interesting properties?

5. Palintiples and Complex Roots of Unity

We shall conclude this article with some connections between palintiples and com-
plex roots of unity.

Definition. Suppose p = (dk, dk�1, . . . , d0)b is an (n, b)-palintiple. We define the
(n, b)-palinomial induced by p to be the polynomial Pal(x) =

Pk
j=0(dj � ndk�j)xj .

Clearly the above definition was constructed so that Pal(b) = 0. We now con-
sider other roots of Pal(x). The following theorem sheds even more light upon the
relationship between the digits and the carries.

Theorem 11. Suppose (dk, dk�1, . . . , d0)b is an (n, b)-palintiple with carries ck,
ck�1,..., c0. Then Pal(x) = (x� b)

Pk
j=1 cjxj�1.

Proof. The result follows directly from Theorem 1.

Thus, finding other roots of palinomials amounts to finding roots of the polyno-
mial having the carries as its coe�cients.

Corollary 12. The only positive real root of an (n, b)-palinomial is b.

It follows from Theorem 11 that roots of symmetric and shifted-symmetric pali-
nomials (palinomials induced by symmetric and shifted-symmetric palintiples) be-
sides b are roots of palindrome polynomials. If it is indeed true that the carries of
a symmetric palintiple are either 0 or n � 1 as conjectured, then all the roots of
its palinomial, besides b, are roots of palindromic polynomials having coe�cients
of 0 or 1. The work of Konvalina and Matache [6] would then imply that every
symmetric palinomial has at least one root on the unit circle in the complex plane.
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We now consider palinomials induced by the family of symmetric palintiples
encountered in the proof of Theorem 6. Suppose n + 1 divides b with quotient q.
Then substituting ck = c0 = 0 and cj = n � 1 for all 0 < j < k into the equation
of Corollary 2, we see that the digits are precisely those of the symmetric palintiple
considered in Theorem 6. It follows from Theorem 11 that the palinomial induced
by this palintiple is Pal(x) = (n�1)(x�b)

Pk�1
j=1 xj�1 = (n�1)(x�b)xk�1�1

x�1 . Since
this argument is valid for any k � 3, we have

Theorem 13. Every complex root of unity is the root of some palinomial.

Lifting the restrictions set forth in the introduction (that is, allowing examples
such as 10·01010101= 10101010), we leave the reader with an image of the collection
of roots near the unit circle of all palinomials induced by all palintiples up to base-
10 having up to 8 digits (generated in GNU Octave [5]). Note the concentration of
roots on the unit circle.
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