

ON THE LAMBEK-MOSER THEOREM

Yuval Ginosar Department of Mathematics, University of Haifa, Haifa 31905, Israel ginosar@math.haifa.ac.il

Received: 9/23/12, Revised: 6/18/13, Accepted: 1/4/14, Published: 1/30/14

Abstract

We suggest an alternative proof of a partitioning theorem due to Lambek and Moser using a perceptible model.

1. Introduction

The notion of invertibility of sequences whose values are either non-negative integers or ∞ was introduced by J. Lambek and L. Moser. Adopting their terminology [4], such sequences are called sequences of *numbers*.

Definition 1. Two sequences $\bar{f} = (f(n))_{n=1}^{\infty}, \bar{g} = (g(n))_{n=1}^{\infty}$ of numbers are *mutually inverse* if for every pair of positive integers m, n either f(m) < n or g(n) < m, but not both.

It is shown [4, Theorem 1] that a sequence of numbers $(f(n))_{n=1}^{\infty}$ has an inverse if and only if it is non-decreasing. In this case, the unique inverse $(g(n))_{n=1}^{\infty}$ is given by

$$g(n) = |\{m|f(m) < n\}|.$$
(1)

It can be verified that the inverse of $(g(n))_{n=1}^{\infty}$ is again $(f(n))_{n=1}^{\infty}$.

Any non-decreasing sequence of numbers $\overline{f} = (f(n))_{n=1}^{\infty}$ also determines a set of positive integers

$$\bar{f} := \{n + f(n)\}_{f(n) < \infty}.$$

The correspondence $\bar{f} \mapsto \hat{f}$ between the non-decreasing sequences of numbers and the sets of positive integers is one-to-one [4, §3]. The following partitioning theorem is established.

Lambek-Moser Theorem. [4, Theorem 2] Two non-decreasing sequences of numbers $\bar{f} = (f(n))_{n=1}^{\infty}, \bar{g} = (g(n))_{n=1}^{\infty}$ are mutually inverse if and only if the sets \hat{f} and \hat{g} are complementary, that is they disjointly cover the set of positive integers.

The Lambek-Moser Theorem yields nice examples of complementary sets which are somehow surprising [4, §2].

In this note we suggest an alternative proof of the Lambek-Moser theorem, by applying the running model which was introduced in [3]. Another visual proof was given by E.W. Dijkstra [2]. The reader is referred to [5] for a detailed bibliography on complementary sequences and related topics.

2. The Model

Let X and Y be two athletes running around a circular track in opposite directions, starting at time t = 0 from the same starting point \mathcal{O} . Each time one of these athletes crosses the point \mathcal{O} , the number of their meetings (not including the meeting at time t = 0) is recorded for this athlete. Now, assume that they never meet exactly in \mathcal{O} . Then it is clear that between two consecutive meetings, exactly one of the two of them crosses \mathcal{O} . As a result, the set \mathcal{S}_X recorded for X and the set \mathcal{S}_Y recorded for Y are disjoint. Assume further that the athletes are immortal and never stop running, and that at least one of them crosses \mathcal{O} infinitely many times. Under these assumptions, the sets \mathcal{S}_X and \mathcal{S}_Y partition the set of positive integers. Note that in order that \mathcal{S}_X and \mathcal{S}_Y partition the set of positive integers it is also necessary that none of the meetings occur at \mathcal{O} .

3. Preliminary Results

Normalize the circumference of the track to be 1, and let

$$arphi : [0,\infty) \quad o \quad [0,\infty) \ t \quad \mapsto \quad arphi(t)$$

be a strictly increasing continuous time function with $\varphi(0) = 0$ describing the motion of X. That is $\varphi(t)$ is the distance traveled by X during the time interval [0,t]. Let $\psi(t) = t$ be the motion function of Y, who is running in the opposite direction. Then Y crosses \mathcal{O} exactly in integer time units. Since the relative motion function of X and Y is $\varphi(t) + t$, and since together they travel a unit between two consecutive meetings, the number of times X and Y meet until time t is $\lfloor \varphi(t) + t \rfloor$, where $\lfloor \cdot \rfloor$ is the floor integer part function. Therefore, the set \mathcal{S}_Y of positive integers recorded for Y is just

$$\mathcal{S}_Y = \{ \lfloor \varphi(n) + n \rfloor \}_{n=1}^{\infty}$$

Next, X crosses the point \mathcal{O} each and every time t such that $\varphi(t) \in \mathbb{Z}^+$ (where \mathbb{Z}^+ denotes the set of positive integers). Thus, the set \mathcal{S}_X recorded for X is exactly

$$\mathcal{S}_X = \{ \lfloor \varphi(t) + t \rfloor \}_{\varphi(t) \in \mathbb{Z}^+}.$$

We can describe S_X in another way. Since φ is continuous and strictly increasing, it maps $(0, \infty)$ onto an open segment I := (0, M) (where $0 < M \le \infty$), and admits an increasing, continuous inverse $\varphi^{-1} : I \to \mathbb{R}^+$. Then

$$\mathcal{S}_X = \{ \lfloor n + \varphi^{-1}(n) \rfloor \}_{n \in \mathbb{Z}^+ \cap I}.$$

By the argument in §2, the sets S_X and S_Y partition the positive integers if and only if X and Y never meet at \mathcal{O} after t = 0. But X and Y do meet at \mathcal{O} at time t > 0 exactly when both t and $\varphi(t)$ are positive integers. We obtain

Corollary 1. Let $\varphi : [0, \infty) \to [0, \infty)$ be a strictly increasing continuous function with $\varphi(0) = 0$ and let $\varphi^{-1} : \operatorname{Im}(\varphi) \to [0, \infty)$ be its inverse. Then the sets $\{\lfloor \varphi(n) + n \rfloor\}_{n \in \mathbb{Z}^+}$ and $\{\lfloor n + \varphi^{-1}(n) \rfloor\}_{n \in \mathbb{Z}^+ \cap \operatorname{Im}(\varphi)}$ partition the set of positive integers if and only if $\varphi(\mathbb{Z}^+) \cap \mathbb{Z}^+ = \emptyset$.

In order to exploit Corollary 1 to prove the Lambek-Moser Theorem, we need two lemmas. The first observation is easily verified by distinguishing between three types of sequences (see $[4, \S 2]$).

Lemma 1. Let $(f(n))_{n=1}^{\infty}$ and $(g(n))_{n=1}^{\infty}$ be mutually inverse sequences of numbers. Then at least one of these sequences does not admit ∞ as a value, in other words, it is a sequence of non-negative integers.

The second lemma is straightforward:

Lemma 2. Let $(f(n))_{n=1}^{\infty}$ be a non-decreasing sequence of non-negative integers. Then there exists a strictly increasing continuous function $\varphi : [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ such that $\lfloor \varphi(n) \rfloor = f(n)$, for every $n \in \mathbb{Z}^+$. Moreover, φ can be chosen such that

$$\varphi(\mathbb{Z}^+) \cap \mathbb{Z}^+ = \emptyset. \tag{2}$$

4. Proof of the Lambek-Moser Theorem

Since the correspondence $\bar{f} \mapsto \hat{f}$ is one-to-one, and since an inverse sequence and a complementary set are unique, it is enough to show the "only if" direction of the theorem. Indeed, let \bar{f} and \bar{g} be mutually inverse sequences of numbers. By Lemma 1 we may assume that $(f(n))_{n=1}^{\infty}$ is sequence of non-negative integers (else $(g(n))_{n=1}^{\infty}$ is). Next, by Lemma 2, there exists a strictly increasing continuous function $\varphi : [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ such that for every $n \in \mathbb{Z}^+$, both (a) $\lfloor \varphi(n) \rfloor = f(n)$, and

(b) $\varphi(n) \notin \mathbb{Z}^+$.

Let φ^{-1} : Im $(\varphi) \to [0, \infty)$ be the increasing continuous inverse of φ . By the conditions on φ , using the alternative characterization (1), the inverse sequence

INTEGERS: 14 (2014)

$$\bar{g}=(g(n))_{n=1}^\infty$$
 of $\bar{f}=(f(n))_{n=1}^\infty=(\lfloor\varphi(n)\rfloor)_{n=1}^\infty$ is given by

$$g(n) = |\{m| \lfloor \varphi(m) \rfloor < n\}| = \begin{cases} \ \lfloor \varphi^{-1}(n) \rfloor & \text{if } n \in \operatorname{Im}(\varphi) \\ \infty & \text{otherwise.} \end{cases}$$
(3)

Consequently,

$$\hat{g} = \{ \lfloor \varphi^{-1}(n) + n \rfloor \}_{n \in \mathbb{Z}^+ \cap \operatorname{Im}(\varphi)}.$$
(4)

By Corollary 1, together with (2) and (4), we deduce that \hat{g} is the complement of

$$\{\lfloor \varphi(n) + n \rfloor\}_{n \in \mathbb{Z}^+} = \{f(n) + n\}_{n=1}^\infty = \hat{f}.$$

The proof of the theorem is complete.

Remark. Note that S. Beatty's celebrated theorem [1] follows from Corollary 1 by taking $\varphi(t) := \lambda \cdot t$, where $\lambda > 0$ (and then $\varphi^{-1}(t) = \frac{1}{\lambda} \cdot t$), that is the case where the speeds of both athletes are constant.

Acknowledgement. Many thanks to my colleagues G. Moran and D. Blanc for their useful suggestions.

References

- S. Beatty, A. Ostrowski, J. Hyslop, and A. C. Aitken, Problems and Solutions: Solutions: 3177, Amer. Math. Monthly 34 (1927), 159–160.
- [2] E.W. Dijkstra, On a theorem by Lambek and Moser, Report EWD753, University of Texas (1980), http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD753.PDF.
- [3] Y. Ginosar and I. Yona, A model for pairs of Beatty sequences, Amer. Math. Monthly 119, (2012), 636–645.
- [4] J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly 61, (1954), 454–458.
- [5] Classified publications on covering systems. Collected by Zhi-Wei Sun (2006), http://math.nju.edu.cn/~zwsun/Cref.pdf.