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Abstract
We suggest an alternative proof of a partitioning theorem due to Lambek and Moser
using a perceptible model.

1. Introduction

The notion of invertibility of sequences whose values are either non-negative integers
or 1 was introduced by J. Lambek and L. Moser. Adopting their terminology [4],
such sequences are called sequences of numbers.

Definition 1. Two sequences f̄ = (f(n))1n=1, ḡ = (g(n))1n=1 of numbers are mutu-
ally inverse if for every pair of positive integers m,n either f(m) < n or g(n) < m,
but not both.

It is shown [4, Theorem 1] that a sequence of numbers (f(n))1n=1 has an inverse
if and only if it is non-decreasing. In this case, the unique inverse (g(n))1n=1 is given
by

g(n) = |{m|f(m) < n}|. (1)

It can be verified that the inverse of (g(n))1n=1 is again (f(n))1n=1.
Any non-decreasing sequence of numbers f̄ = (f(n))1n=1 also determines a set of

positive integers
f̂ := {n + f(n)}f(n)<1.

The correspondence f̄ 7! f̂ between the non-decreasing sequences of numbers and
the sets of positive integers is one-to-one [4, §3]. The following partitioning theorem
is established.

Lambek-Moser Theorem. [4, Theorem 2] Two non-decreasing sequences of num-
bers f̄ = (f(n))1n=1, ḡ = (g(n))1n=1 are mutually inverse if and only if the sets f̂ and
ĝ are complementary, that is they disjointly cover the set of positive integers.
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The Lambek-Moser Theorem yields nice examples of complementary sets which
are somehow surprising [4, §2].

In this note we suggest an alternative proof of the Lambek-Moser theorem, by
applying the running model which was introduced in [3]. Another visual proof was
given by E.W. Dijkstra [2]. The reader is referred to [5] for a detailed bibliography
on complementary sequences and related topics.

2. The Model

Let X and Y be two athletes running around a circular track in opposite directions,
starting at time t = 0 from the same starting point O. Each time one of these
athletes crosses the point O, the number of their meetings (not including the meeting
at time t = 0) is recorded for this athlete. Now, assume that they never meet exactly
in O. Then it is clear that between two consecutive meetings, exactly one of the two
of them crosses O. As a result, the set SX recorded for X and the set SY recorded
for Y are disjoint. Assume further that the athletes are immortal and never stop
running, and that at least one of them crosses O infinitely many times. Under these
assumptions, the sets SX and SY partition the set of positive integers. Note that
in order that SX and SY partition the set of positive integers it is also necessary
that none of the meetings occur at O.

3. Preliminary Results

Normalize the circumference of the track to be 1, and let

' : [0,1) ! [0,1)
t 7! '(t)

be a strictly increasing continuous time function with '(0) = 0 describing the
motion of X. That is '(t) is the distance traveled by X during the time interval
[0, t]. Let  (t) = t be the motion function of Y , who is running in the opposite
direction. Then Y crosses O exactly in integer time units. Since the relative motion
function of X and Y is '(t) + t, and since together they travel a unit between two
consecutive meetings, the number of times X and Y meet until time t is b'(t) + tc,
where b·c is the floor integer part function. Therefore, the set SY of positive integers
recorded for Y is just

SY = {b'(n) + nc}1n=1.

Next, X crosses the point O each and every time t such that '(t) 2 Z+ (where
Z+ denotes the set of positive integers). Thus, the set SX recorded for X is exactly

SX = {b'(t) + tc}'(t)2Z+ .
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We can describe SX in another way. Since ' is continuous and strictly increasing,
it maps (0,1) onto an open segment I := (0,M) (where 0 < M  1), and admits
an increasing, continuous inverse '�1 : I ! R+. Then

SX = {bn + '�1(n)c}n2Z+\I .

By the argument in §2, the sets SX and SY partition the positive integers if and
only if X and Y never meet at O after t = 0. But X and Y do meet at O at time
t > 0 exactly when both t and '(t) are positive integers. We obtain

Corollary 1. Let ' : [0,1) ! [0,1) be a strictly increasing continuous function
with '(0) = 0 and let '�1 : Im(') ! [0,1) be its inverse. Then the sets {b'(n) +
nc}n2Z+ and {bn + '�1(n)c}n2Z+\Im(') partition the set of positive integers if and
only if '(Z+) \ Z+ = ;.

In order to exploit Corollary 1 to prove the Lambek-Moser Theorem, we need
two lemmas. The first observation is easily verified by distinguishing between three
types of sequences (see [4, §2]).

Lemma 1. Let (f(n))1n=1 and (g(n))1n=1 be mutually inverse sequences of numbers.
Then at least one of these sequences does not admit 1 as a value, in other words,
it is a sequence of non-negative integers.

The second lemma is straightforward:

Lemma 2. Let (f(n))1n=1 be a non-decreasing sequence of non-negative integers.
Then there exists a strictly increasing continuous function ' : [0,1) ! [0,1) with
'(0) = 0 such that b'(n)c = f(n), for every n 2 Z+. Moreover, ' can be chosen
such that

'(Z+) \ Z+ = ;. (2)

4. Proof of the Lambek-Moser Theorem

Since the correspondence f̄ 7! f̂ is one-to-one, and since an inverse sequence and
a complementary set are unique, it is enough to show the “only if” direction of
the theorem. Indeed, let f̄ and ḡ be mutually inverse sequences of numbers. By
Lemma 1 we may assume that (f(n))1n=1 is sequence of non-negative integers (else
(g(n))1n=1 is). Next, by Lemma 2, there exists a strictly increasing continuous
function ' : [0,1) ! [0,1) with '(0) = 0 such that for every n 2 Z+, both
(a) b'(n)c = f(n), and
(b) '(n) /2 Z+.

Let '�1 : Im(') ! [0,1) be the increasing continuous inverse of '. By the
conditions on ', using the alternative characterization (1), the inverse sequence
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ḡ = (g(n))1n=1 of f̄ = (f(n))1n=1 = (b'(n)c)1n=1 is given by

g(n) = |{m|b'(m)c < n}| =
⇢
b'�1(n)c if n 2 Im(')

1 otherwise. (3)

Consequently,
ĝ = {b'�1(n) + nc}n2Z+\Im('). (4)

By Corollary 1, together with (2) and (4), we deduce that ĝ is the complement of

{b'(n) + nc}n2Z+ = {f(n) + n}1n=1 = f̂ .

The proof of the theorem is complete. 2

Remark. Note that S. Beatty’s celebrated theorem [1] follows from Corollary 1 by
taking '(t) := � · t, where � > 0 (and then '�1(t) = 1

� · t), that is the case where
the speeds of both athletes are constant.
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