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Abstract
We analyze three combinatorial games played on simple undirected graphs. A move
consists of deleting a single edge; which edges can be deleted depends on the parity
of each edge’s endpoints. While determining the possible values of each game, we
show relationships between these games and graph matchings, octal games, vertex
deletion games, and graph colourings.

1. Introduction

Graphs are an abstraction that can represent any number of connected networks. As
such, it is useful to think of them as an arena on which games can be played. While
many games use a fixed board and allow pieces to move from place to place according
to a set of rules, we can also imagine games where the board itself is changing over
time while each player attempts to create a more favourable configuration.

Previous work in a similar vein has been conducted by Gallant, Gunther, Hart-
nell, Rall [4], Nowakowski and Ottaway [6] and Shelton [7] to name a few. In
our paper, we solve an open problem of Nowakowski and Ottaway which had been
discussed by numerous parties and further developed by Shelton.

Some instances of these deletion games are other games in a different guise. In
particular, it has been shown that some vertex deletion games are equivalent to
octal games. We expand upon this by finding an edge deletion game with similar
properties. We also use a variety of constructions to show equivalence between the
game values that can occur using one set of rules compared to another.

This paper assumes an understanding of impartial combinatorial games as well as
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graph theory as given in Lessons in Play [1], Winning Ways [2], and Graph Theory
[3]. In addition, we will make use of the definition that a graph is equimatchable
[5] if all maximal matchings are also maximum.

1.1. The Games

The games we discuss in this paper are played on simple undirected graphs, with a
move being the deletion of an edge. We abuse notation and use G to refer to both
the game and the graph the game is being played on. The rules for which edges can
be deleted depend on the parity of each edge’s endpoints. The rules we consider
are:

− BE: both endpoints have even degree;

− BO: both endpoints have odd degree;

− OE: one endpoint is even and the other is odd.

In this paper, we discuss the three impartial games on these rulesets. In antici-
pation of the partizan games, we label our impartial games with the notation Left’s
rules/Right’s rules. For example, the game BO/BO is the impartial game where
both players can only delete edges with both endpoints having odd degree, and the
game BO/BE is the partizan game where Left can delete edges with both endpoints
of odd degree and Right can deleted edges with both endpoints of even degree.

1.2. Isolated Vertices

Because all of the games discussed in this paper consider the deletion of an edge to
be a move, an isolated vertex has no impact on a game. Any game on a graph with
isolated vertices is equivalent to the game on the same graph with all its isolated
vertices deleted. This can be seen from noticing that the game value of an isolated
vertex is 0 and then considering the game sum.

1.3. Strategy for Play

We discuss BO/BO and BE/BE first, as these two games are closely related. For
both games, there may be edges that cannot be deleted initially. These edges can
never be deleted throughout the game, because no move can change the parity of
their endpoints. Moreover, whenever an edge is deleted, its endpoints change parity
so that all adjacent edges can never be deleted. This edge deletion behaviour is
exactly like that of constructing a matching. So when playing the game, we consider
only the edges that allow legal moves, giving us an induced subgraph based on the
parity of the vertices. Once we have this induced subgraph, we ignore all rules
based on parity and construct a matching.
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Therefore, strategy for play on these games corresponds to constructing a maxi-
mal matching on the subgraph induced by the odd degree vertices for BO/BO, and
even degree vertices for BE/BE. We specifically label these subgraphs as Godd and
Geven as shown in Figure 1.

Using the induced subgraph allows us to quickly see that if the induced subgraph
is empty, neither player can make a move. Notably, in BO/BO: Pn = 0, Cn = 0 for
n > 2.

Figure 1: Geven and Godd

2. BO/BO

Suppose Godd is equimatchable, and let M be the number of edges in a maximal
matching of Godd. There is only one possible value for M since Godd is equimatch-
able.

Theorem 2.1. If M is even, G = 0. If M is odd, G = ∗.

Proof. Play continues until a maximal matching is reached in Godd. When M is
even, the game lasts an even number of moves, so the second player wins and G = 0.
For M odd, both players’ moves are to an even matching, so G = {0|0} = ∗.

Corollary 2.2.

Kn =

{
∗ if n ≡ 2 mod 4

0 otherwise



INTEGERS: 14 (2014) 4

Proof. Godd is equimatchable since it is the empty graph for odd n or Kn for even
n. In either case, M =

⌊
n
2

⌋
. Then the parity of M is:

M :

{
even if n ≡ 0 or 1 mod 4

odd otherwise

When n is odd, Godd is empty and Kn = 0.
When n is even, Godd = Kn and we have two cases: M even or odd.
If M is even, G = 0 by Theorem 2.1. So Kn only equals ∗ when n is even and M
is odd.

Corollary 2.3.

Km,n =

{
∗ if m,n both odd

0 otherwise

Proof. If at least one of m or n is even, Godd is empty because at least one endpoint
of every edge will have even degree. Both players require odd degree endpoints, so
neither can move and G = 0. If m and n are both odd, Km,n = ∗ by Theorem
2.1.

The nature of graphs is that they become computationally complex very quickly.
The canonical forms of complete graphs on more than ten vertices become unreason-
able to compute very quickly for all of the games discussed in this paper. Theorem
2.1 and its corollaries give us more than just values of the complete graphs. Being
able to relate strategy for play to constructing matchings gives a strong tie from
game theory concepts to graph theory structure, suggesting that we may use graph
theory principles to understand these games. However, most work on matchings
uses arguments based on augmenting paths, which do not apply within the context
of these games. We instead must describe a way to force the maximal matching to
be of even or odd size. Such a strategy eludes us for now, and this problem is added
to our future work section.

3. BE/BE

Suppose Geven is equimatchable, and let M be the number of edges in a maximal
matching of Geven. Then Theorem 2.1 holds for BE/BE.

Corollary 3.1.

Kn =

{
∗ if n ≡ 3 mod 4

0 otherwise
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Proof. This proof is similar to Corollary 2.2 and uses the argument from Theorem
2.1. Kn is equal to zero except for when n is odd (Geven is non-empty) and M is
odd.

Corollary 3.2.
Km,n = 0

Proof. If m or n is odd, Geven is empty so neither player has any move. If they are
both even, M is even, and so the game is in P by Theorem 2.1.

We notice that BE/BE and BO/BO behave very similarly on the complete and
complete bipartite graphs. This insight leads to the construction of homomorphisms
between the two games in Lemma 3.5.

Lemma 3.3. A game played on a path is equivalent to the octal game 0.4.

Proof. We notice a couple of points about playing BE/BE on paths: A path of
length one cannot have its only edge deleted, so a path cannot be made empty. The
two edges on the ends of a path also may not be deleted. Finally, as always, only
a single edge at a time may be deleted. So, if we consider Pn as a heap of n − 1
tokens, play consists of removing one token (edge) and leaving two non-empty heaps
(paths). Specifically, removing an edge from Pn leaves Pk and Pn−k, 2 ≤ k ≤ n− 2.

These are the criteria for the octal game 0.4, which has period 34 with a maximum
nim value of 7.

The octal games are defined in [2]. We will use the octal characteristics of the
paths in an attempt to construct all possible game values for BE/BE and BO/BO
in Conjecture 3.6.

Corollary 3.4. We have

Cn =

{
∗ if Pn = 0

0 otherwise
.

Proof. When Pn = 0, both player have a move to zero, so the game is {0|0} = ∗.
Otherwise, both players have a move to something other than zero, which is in P
by definition.

Lemma 3.5. Any value that exists in BE/BE or BO/BO exists in the other.

Proof. We construct two homomorphisms between BO/BO and BE/BE to show
that BO/BO and BE/BE have the same set of game values. We attempt to find all
nimbers in BE/BE to acquire all game values for both games.

Homomorphism from BO/BO to BE/BE: for all v ∈ G, add an isolated vertex and
connect v to it. This flips the parity of every vertex, so edges that had both
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endpoints odd now have both endpoints even. Let this new graph be H . All the
added edges are incident to a vertex of degree one, so they cannot be deleted in
BE/BE. Thus, the subgraph induced by the even degree vertices of H is exactly the
subgraph induced by the odd degree vertices of G.

Homomorphism from BE/BE to BO/BO: for all v ∈ G, add a copy of P2 and connect
v to one endpoint of it. This flips the parity of every vertex, so edges that had both
endpoints even now have both endpoints odd. Let this new graph be H . The end
vertices of degree one in the copies of P2 are all adjacent to the vertex of degree
two that is incident to a vertex in G. In the subgraph induced by the odd vertices
of H , these end vertices become isolated vertices, which are discarded. Thus, the
subgraph induced by the odd degree vertices of H is exactly the subgraph induced
by the even degree vertices of G.

These two operations are demonstrated in figures 2 and 3.

Figure 2: Homomorphism from BO/BO to BE/BE

Conjecture 3.6. For all n, there exists a graph G with G = ∗n.

We have found nimbers in BE/BE up to ∗15 through the following construction:

Note that if we identify (merge) one end vertex each from an odd number of
paths, their shared end vertex will have odd degree, and the paths behave exactly
as if we considered their disjoint sum. Let c be the merged end vertex and assume
an even number of paths are joined. If we delete any edge incident to c, one path
becomes disconnected and has its length reduced by one, which is normally not an
allowed move. The rest of the paths remain joined to c and behave like their disjoint
sum because c now has odd degree.

We choose eight paths such that when each is disconnected, its nim value changes
by some amount between 0 and 7. By ensuring each change occurs exactly once,
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Figure 3: Homomorphism from BE/BE to BO/BO

this gives a permutation of the nim-sum of the other paths. This gives us the values
0, ∗, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7 in some order. Thus, the original graph of the joined paths
had value at least ∗8. In this case, the paths that give the required changes are:
P4, P5, P6, P7, P16, P17, P18, P32. Once we have ∗8, we use nim-sums to obtain all
values up to ∗15.

This construction requires paths, but yields a tree. So, we cannot use our tree
that has value ∗8 in a similar fashion to obtain ∗16, and so on. Ultimately, a
new construction will be needed to find higher values, because we know that the
maximum nim value of a path is ∗7.

4. OE/OE

Lemma 4.1. There is a graph for every nimber value.

Proof. We inductively construct a tree Gn having value ∗n. First, we establish
that G0 = P1 = 0, G1 = P3 = ∗. We construct Gn from G0, G1, . . . , Gn−1, which
inductively have values 0, ∗, . . . , ∗(n− 1). This construction hinges on the fact that
every Gn has exactly one even degree vertex:

− Start with an isolated vertex v;

− Add one copy of each Gi, for i < n;

− If n is odd, add an extra copy of G0;

− Connect v to the even degree vertex of each Gi.
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With this construction, v becomes the only even degree vertex of Gn because the
previously even vertex of each Gi is now also adjacent to v. We ensure v is even
by adding an extra copy of G0 when the number of Gi graphs adjacent to v is odd.
Since v is the only vertex of even degree and all its neighbours are odd, all options
for both players are precisely the edges incident with v. Removing one of these
edges disconnects the graph into Gk for some 0 ≤ k ≤ n− 1 and a component with
only odd degree vertices, which has value zero. Recalling that Gk has value ∗k, we
see that the edges incident v represent moves to 0, ∗, ∗2, ∗3, . . . , ∗(n−1). Therefore,
Gn has value ∗n.

Figure 4: ∗n construction

This shows that all possible game values can be constructed from trees, which is
a very specific subset of simple graphs.

An open problem from [6] asks if there is a graph G with G = ∗n for the game
on vertex deletion where both players can only delete odd vertices.

Corollary 4.2. For the vertex deletion game where players may only delete odd
degree vertices, there exists a graph G with value ∗n.

Proof. For any nimber ∗n, let Gn be the graph with that value from the construction
in Lemma 4.1. Let H be the linegraph of Gn. The edges with one even degree
endpoint and one odd degree endpoint in Gn correspond exactly to the vertices
of odd degree in H . Also, deleting an edge in Gn changes the parity of all its
neighbours, just as deleting a vertex in H removes all incident edges. Therefore,
play in H behaves exactly like its parent graph in Gn, so H has the same value as
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Gn. Since ∗n exists for all n in the edge deletion game, the same is true for the
vertex deletion game.

5. Future Work

5.1. Strategy for Play

We would like to know an exact winning strategy for the games discussed in this
paper. For BE/BE and BO/BO, we have a good way of describing a winning strat-
egy: force an odd sized matching as the first player, force an even sized matching
as the second player. But we do not have a precise way of describing how to play
to force a favourably sized matching. Much of the work done in matchings is to do
with augmenting paths, which do not apply to our matching constructions. As for
OE/OE, we do not have any strategy for playing correctly.

5.2. Partizan Games

Our naming of the games discussed in this paper as “Left’s Rules/Right’s Rules”
is in anticipation of the partizan edge deletion games. We have begun work on
BE/BO, OE/BO, and OE/BO. These three games all appear to have very restricted
possible games values. For example, BE/BO has only integer game values. The
partizan games also translate in a more meaningful way to edge colourings, inspiring
questions about the connections between edge deletion games and edge colourings.

5.3. Colourings

When playing edge deletion games, it is often easier to visualize allowed moves by
using coloured edges. We use the game BE/BO as an example. Let red edges be
removable by Right, blue edges by Left, and black edges by neither player. Then
the parity-based rules of BE/BO can be replaced by the following colouring rules:

− If a red edge is deleted, adjacent red edges become black, and adjacent black
edges become blue

− If a blue edge is deleted, adjacent blue edges become black, and adjacent black
edges become red

However, the games OE/BE and OE/BO can not have their parity rules replaced
by colouring rules. This leads to the questions “which games have rules replace-
able by colouring rules?” and “what are the properties of edge deletion games for
arbitrary colourings?”
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5.4. Rule Modification

In this paper, we have only considered a move to be the deletion of a single edge.
A natural extension to be considered is the effect on the game if a player can delete
any number of edges with the appropriate properties. Another question which arises
is due to the recent results in misere games. How do game values and strategies
change when a player wins (rather than loses) by having no legal move on their
turn? While this question is typically harder than those addressed in this paper,
perhaps there are structures present that make it easier to answer.
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