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Abstract
Let E(s)

d denote the set of coe�cient vectors (a1, . . . , ad) 2 Rd of contractive polyno-
mials xd + a1xd�1 + · · ·+ ad 2 R[x] that have exactly s pairs of complex conjugate
roots and let v(s)

d = �d(E(s)
d ) be its (d-dimensional) Lebesgue measure. We settle

the instance s = 1 of a conjecture by Akiyama and Pethő, stating that the ratio
v(s)

d /v(0)
d is an integer for all d � 2s. Moreover we establish the surprisingly simple

formula v(1)
d /v(0)

d = (Pd(3)� 2d� 1)/4, where Pd(x) are the Legendre polynomials.

- Dedicated to Prof. Dominique Foata on the occasion of his 80 th birthday.

1. Introduction

Let Ed denote the set of all coe�cient vectors (a1, . . . , ad) 2 Rd of polynomials
xd +a1xd�1 + · · ·+ad with coe�cients in R and all roots having absolute value less
than 1, and let E(s)

d denote the subset of the coe�cient vectors of those polynomials
in Ed that have exactly s pairs of complex conjugate roots. Let furthermore vd =

1Both authors are supported by the Austrian Science Fund (FWF) Doctoral Program W1230
“Discrete Mathematics”, the first author is also supported by the Franco-Austrian research project
I1136 granted by the French National Research Agency (ANR) and the FWF. The second author
would like to express his gratitude to Prof. Attila Pethő and the Departments of Computer Science
and Mathematics at the University of Debrecen for their warm hospitality during his stay there
in Fall 2013, when his attention was drawn to this problem.
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�d(Ed) and v(s)
d = �d(E(s)

d ) denote the d-dimensional Lebesgue measures of the
referring sets.

The sets Ed have been studied by several authors in di↵erent context, compare
e.g. Schur [11], Fam and Meditch [4] or Fam [3]. More recently, the regions Ed have
become of interest in the study of “shift radix systems”, since the regions where
those systems have a certain periodicity property are in close connection with the
regions Ed (compare e.g. Kirschenhofer et al. [7]). Fam [3] established the formula

vd =

(
22m2 Qm

j=1
(j�1)!4

(2j�1)!2 if d = 2m,

22m2+2m+1
Qm

j=1
j!2(j�1)!2

(2j�1)!(2j+1)! if d = 2m + 1.
(1.1)

In [1] Akiyama and Pethő gave a number of results on the quantities v(s)
d , including

an integral representation for general s from which they derived an explicit formula
in the instance s = 0 as well as a somewhat involved expression for s = 1 reading

v(0)
d =

2d(d+1)/2

d!
Sd(1, 1, 1/2),

v(1)
d = 2(d�1)(d�2)/2�2

d�2X
j=0

d�2�jX
k=0

(�1)d�k22d�2�2k�j

j!k!(d� 2� j � k)!
Bd�2(d� 2� k, d� 2� k � j)

Z 1

z=0

Z 2
p

z

y=�2
p

z
yj(y + z + 1)k dy dz

(1.2)

for d � 2 and 0  k  j  d where

Sd(1, 1, 1/2) :=
1Qd�1

i=0

�2i+1
i

� (1.3)

is a special instance of the Selberg integral Sn(↵,�, �) and where

Bd(j, k) :=

 
kY

i=1

2 + (d� i� 1)/2
3 + (2d� i� 1)/2

Qj
i=1(1 + (d� i)/2)

Qk
i=1(1 + (d� i)/2)Qj+k

i=1 (2 + (2d� i� 1)/2)

!

Sd(1, 1, 1/2).
(1.4)

is a special instance of Aomoto’s generalization of the Selberg integral (compare
Andrews et al. [2, Section 8] for Selberg’s and Aomoto’s integrals).

Furthermore, Akiyama and Pethő in [1] proved that the ratios v(s)
d /v(0)

d are ra-
tional, and, motivated by extensive numerical evidence, stated the following

Conjecture 1.1. [1, Conjecture 5.1] The quotient

v(s)
d /v(0)

d

is an integer for all non-negative integers d, s with d � 2s.
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In Section 2 of this paper we will prove this conjecture for the instance s = 1
and in addition give a surprisingly simple explicit formula for the quotient in this
case involving the Legendre polynomials evaluated at x = 3. In the proof we will
combine several transformations of binomial sums, one of them corresponding to a
special instance of Pfa↵’s reflection law for hypergeometric functions. We refer the
reader in particular to the standard reference [6, Section 5] for the techniques that
we will apply.

In Section 3 we will use our main theorem to establish a linear recurrence for the
sequence

⇣
v(1)

d /v(0)
d

⌘
d�0

, and from its generating function will derive its asymptotic

behaviour for d!1. Combined with a result from [1], this also gives information
on the asymptotic behaviour of the probability p(1)

d = v(1)
d /vd of a contractive

polynomial of degree d to have exactly one pair of complex conjugate roots.
In the final section we discuss possible generalizations of our results.

2. Main Result

Theorem 2.1. The quotient v(1)
d /v(0)

d is an integer for each d � 2. Furthermore
we have

v(1)
d

v(0)
d

=
Pd(3)� 2d� 1

4
, where

Pd(x) := 2�d
bd/2cX
k=0

(�1)k

✓
d� k

k

◆✓
2d� 2k
d� k

◆
xd�2k =

dX
k=0

✓
d + k

2k

◆✓
2k
k

◆✓
x� 1

2

◆k

are the Legendre polynomials (cf. [10, p. 66]).

Proof. In a first step we solve the double integral in identity (1.2) for v(1)
d . Let

j � 0, k � 0. Then

Z 1

z=0

Z 2
p

z

y=�2
p

z
yj(y + z + 1)k dy dz =

Z 2

y=�2

Z 1

z=y2/4
yj(y + z + 1)k dz dy

=
1

k + 1

 Z 2

�2
yj(y + 2)k+1 dy �

Z 2

�2
yj(y/2 + 1)2k+2 dy

!

=
1

k + 1

 
2j+k+2

Z 1

�1
yj(y + 1)k+1 dy � 2j+1

Z 1

�1
yj(y + 1)2k+2 dy

!

where we performed the substitution y/2 ! y in the last step. By iterated partial
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integration we gain now from the last expression that

Z 1

z=0

Z 2
p

z

y=�2
p

z
yj(y + z + 1)k dy dz

=
2j+2k+4

k + 1

 
j+1X
r=1

(�2)r�1(j)r�1

(k + r + 1)r
�

j+1X
r=1

(�2)r�1(j)r�1

(2k + r + 2)r

! (2.1)

with (x)j :=
Qj�1

i=0 (x� i).
In the following we insert (2.1) in formula (1.2) and perform stepwise a first

evaluation of v(1)
d /v(0)

d mainly as a sum of products of factorials.

v(1)
d

v(0)
d

=

 
2

(d�1)(d�2)
2 �2

d�2X
j=0

d�2�jX
k=0

(�1)d+k22d�2�2k�j

j!k!(d� 2� j � k)!

d�2�k�jY
i=1

2 + d�2�i�1
2

3 + 2(d�2)�i�1
2Qd�2�k

i=1 (1 + d�2�i
2 )

Qd�2�k�j
i=1 (1 + d�2�i

2 )Qd�2�k+d�2�k�j
i=1 (2 + 2(d�2)�i�1

2 )
1Qd�2�1

i=0

�2i+1
i

�
2j+2k+4

k + 1

 
j+1X
r=1

(�2)r�1(j)r�1

(k + r + 1)r
�

j+1X
r=1

(�2)r�1(j)r�1

(2k + r + 2)r

!!
/

 
2d(d+1)/2

d!
Qd�1

i=0

�2i+1
i

�
!

=
d�2X
j=0

d�j�2X
k=0

(�1)d+k+1 d!
j!(k + 1)!(d� j � k � 2)!

d�j�k�2Y
i=1

d� i + 1
2d� i + 1

Qd�k�2
i=1 (d� i)

Qd�j�k�2
i=1 (d� i)Q2d�j�2k�4

i=1 (2d� i� 1)

Qd�1
i=0

�2i+1
i

�
Qd�3

i=0

�2i+1
i

�
 

j+1X
r=1

(�2)r(j)r�1

(k + r + 1)r
�

j+1X
r=1

(�2)r(j)r�1

(2k + r + 2)r

!

=
d�2X
j=0

d�j�2X
k=0

(�1)d+k+1 d!
j!(k + 1)!(d� j � k � 2)!

d!
(j+k+2)!

(2d)!
(d+j+k+2)!

(d�1)!
(k+1)!

(d�1)!
(j+k+1)!

(2d�2)!
(j+2k+2)!

(2d� 3)!
(d� 2)!(d� 1)!

(2d� 1)!
(d� 1)!d!

 
j+1X
r=1

(�2)r j!
(j�r+1)!

(k+r+1)!
(k+1)!

�
j+1X
r=1

(�2)r j!
(j�r+1)!

(2k+r+2)!
(2k+2)!

!

=
d�2X
j=0

d�j�2X
k=0

(�1)d+k+1 (d + j + k + 2)!(j + 2k + 2)!
(d� j � k � 2)!j!(j + k + 2)!(j + k + 1)!(k + 1)!2

 
j+1X
r=1

(�2)r�2j!(k + 1)!
(j � r + 1)!(k + r + 1)!

�
j+1X
r=1

(�2)r�2j!(2k + 2)!
(j � r + 1)!(2k + r + 2)!

!
.

In the next step we rewrite the last expression as a sum over products of binomial
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coe�cients.

v(1)
d

v(0)
d

=
d�2X
j=0

d�j�2X
k=0

(�1)d+k+1

✓
d

j + k + 2

◆✓
d + j + k + 2

d

◆
j + k + 2
j + 2k + 3

 
j+1X
r=1

(�2)r�2

✓
j + 2k + 3
2k + r + 2

◆✓
2k + r + 2

k + 1

◆
�

j+1X
r=1

(�2)r�2

✓
j + 2k + 3
2k + r + 2

◆✓
2k + 2
k + 1

◆!
.

Using the substitution j + k + 2! a, k + 1! b the latter expression reads

dX
a=2

a�1X
b=0

a�bX
r=1

(�1)d+b(�2)r�2 a

a + b

✓
d

a

◆✓
d + a

d

◆✓
a + b

2b + r

◆✓
2b + r

b

◆
�

dX
a=2

a�1X
b=0

a�bX
r=1

(�1)d+b(�2)r�2 a

a + b

✓
d

a

◆✓
d + a

d

◆✓
a + b

2b + r

◆✓
2b
b

◆

so that

v(1)
d

v(0)
d

=
dX

a=2

(�1)da

✓
d

a

◆✓
d + a

d

◆ aX
r=1

(�2)r�2

 
a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b + r

b

◆
�

a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b
b

◆!
.

(2.2)

In the following we will simplify the two innermost sums.
We start with the first sum. If r = a the sum trivially equals 1

a . Let us assume
1  r  a� 1 now. Then we have

a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b + r

b

◆
=

1
a� r

a�rX
b=0

(�1)b

✓
a� r

b

◆✓
a + b� 1

b + r

◆

=
(�1)r

a� r

a�rX
b=0

✓
a� r

b

◆✓
r � a

b + r

◆
=

(�1)r

a� r

✓
0
a

◆
= 0,

where we used

(�1)k

✓
k � n� 1

k

◆
=
✓

n

k

◆
(n 2 Z, k � 0)

for the second identity, and Vandermonde’s identity

nX
k=0

✓
n

k

◆✓
s

k + t

◆
=

nX
k=0

✓
n

k

◆✓
s

n + t� k

◆
=
✓

n + s

n + t

◆
(s 2 Z, n, t � 0)
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for the third one. Altogether we have established

a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b + r

b

◆
=

1
a
�r,a (1  r  a), (2.3)

where �r,a denotes the Kronecker symbol.
Now we turn to the second sum in question. Since this is a sum reminiscent of a

sum treated in [6, Section 5.2, Problem 7] we first try to adopt the strategy followed
there and use [6, Section 5.1, identity 5.26]

✓
l + q + 1

m + n + 1

◆
=
X

0kl

✓
l � k

m

◆✓
q + k

n

◆
(l,m � 0, n � q � 0). (2.4)

With l = a + b� 1, q = 0,m = 2b, n = r � 1 and k = s we get

a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b
b

◆
=

a�rX
b=0

a+b�1X
s=0

(�1)b

a + b

✓
a + b� s� 1

2b

◆✓
s

r � 1

◆✓
2b
b

◆

which by a change of summations yields

=
2a�r�1X
s=r�1

✓
s

r � 1

◆ a�s�1X
b=0

(�1)b

a + b

✓
a + b� s� 1

2b

◆✓
2b
b

◆

=
a�1X

s=r�1

✓
s

r � 1

◆ a�s�1X
b=0

(�1)b

a + b

✓
a + b� s� 1

2b

◆✓
2b
b

◆
.

(2.5)

Now we are ready to apply sum Sm from [6, Section 5.2, Problem 8]

Sm =
nX

k=0

(�1)k 1
k + m + 1

✓
n + k

2k

◆✓
2k
k

◆
= (�1)n m!n!

(m + n + 1)!

✓
m

n

◆
(m,n � 0).

(2.6)

With m = a� 1, n = a� s� 1 and k = b we find that (2.5) from above equals

a�1X
s=r�1

✓
s

r � 1

◆
(�1)a+s+1(a� 1)!(a� s� 1)!

(2a� s� 1)!

✓
a� 1

a� s� 1

◆

=
(�1)a+1(a� 1)!(a� 1)!

(2a� 1)!

✓
2a� 1
r � 1

◆ a�1X
s=r�1

(�1)s

✓
2a� r

s� r + 1

◆

=
(�1)a+r(a� 1)!(a� 1)!

(2a� 1)!

✓
2a� 1
r � 1

◆ a�rX
s=0

(�1)s

✓
2a� r

s

◆
(2.7)
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(where we applied the substitution s� r + 1! s in the last step). Using the basic
identity

kX
j=0

(�1)j

✓
n

j

◆
= (�1)k

✓
n� 1

k

◆
(n, k � 0)

to evaluate the last sum in (2.7) we finally get

a�rX
b=0

(�1)b 1
a + b

✓
a + b

2b + r

◆✓
2b
b

◆
=

(a� 1)!(a� 1)!
(2a� 1)!

✓
2a� 1
r � 1

◆✓
2a� r � 1

a� r

◆

=
1

2a� r

✓
a� 1
a� r

◆
.

(2.8)

Now we go on plugging the results (2.3) and (2.8) from above in (2.2) and find

v(1)
d

v(0)
d

=
dX

a=2

(�1)da

✓
d

a

◆✓
d + a

d

◆ 
(�2)a�2

a
�

aX
r=1

(�2)r�2 1
2a� r

✓
a� 1
a� r

◆!

=
dX

a=2

(�1)d+1a

✓
d

a

◆✓
d + a

d

◆ a�1X
r=0

(�2)r�1 1
2a� r � 1

✓
a� 1

r

◆
� (�2)a�2 1

a

!
.

(2.9)

In order to get rid of the inner sum we use an identity that may be proved as an
application of the classical reflection law

1
(1� z)a

F

✓
a, b

c

���� �z

1� z

◆
= F

✓
a, c� b

c

���� z
◆

(2.10)

for hypergeometric functions by J.F. Pfa↵ [8], namely

mX
k=0

(�2)k 2m + 1
2m� k + 1

✓
m

k

◆
=

(�1)m22m�2m
m

� (m � 0), (2.11)

cf. [6, identity (5.104)]. In this way we find

v(1)
d

v(0)
d

=
dX

a=2

(�1)d+a+1a

✓
d

a

◆✓
d + a

d

◆ 
22a�3 1

2a� 1
1�2a�2

a�1

� � 2a�2 1
a

!

=
dX

a=2

(�1)d+a

✓
d

a

◆✓
d + a

d

◆ 
2a�2 � 22a�2 1�2a

a

�
!

,

i.e.

v(1)
d

v(0)
d

=
dX

a=2

(�1)d+a2a�2

✓
d + a

2a

◆ ✓
2a
a

◆
� 2a

!
, (2.12)
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so that we have proved that the ratio v(1)
d /v(0)

d is an integer.
In the last step of the proof we establish the explicit formula for the ratios. Recall

the Legendre polynomials Pd(x), as defined in the theorem, and let

⇢d(x) :=
dX

k=0

✓
d + k

d� k

◆
xk (2.13)

denote the associated Legendre polynomials (cf. [10, p. 66]). Then (2) yields

v(1)
d

v(0)
d

= (�1)d Pd(�3)� ⇢d(�4)
4

. (2.14)

Now (cf. [9, p. 158])

Pd(�x) = (�1)dPd(x). (2.15)

Furthermore ⇢d satisfies the recursive formula

⇢d(x) = (x + 2)⇢d�1(x)� ⇢d�2(x)
⇢0(x) = 0, ⇢1(x) = x + 1

(2.16)

(cf. [10, p. 66]) so that (�1)d⇢d(�4) = 2d+1, which completes the proof of (2.1).

3. Recurrence, Asymptotic Behaviour, and Probabilities

In this section we apply Theorem 2.1 in order to establish a recurrence for the
quotients v(1)

d /v(0)
d as well as to establish the asymptotic behaviour of this sequence

for d!1 and its consequence on the probabilities v(1)
d /vd.

Since the Legendre polynomials satisfy the recursive formula

dPd(x)� (2d� 1)xPd�1(x) + (d� 1)Pd�2(x) = 0 (d � 2),
P0(x) = 1, P1(x) = x

(3.1)

(cf. [9, p. 160]) we get the following second order linear recurrence for v(1)
d /v(0)

d .

Corollary 3.1. We have

d
v(1)

d

v(0)
d

� 3(2d� 1)
v(1)

d�1

v(0)
d�1

+ (d� 1)
v(1)

d�2

v(0)
d�2

= 2d(d� 1) for d � 2,
v(1)
0

v(0)
0

=
v(1)
1

v(0)
1

= 0.

We turn our attention now to the asymptotic behaviour of the ratios for d!1
and start by their generating function. The generating function of the Legendre
polynomials is given by ([10, p. 78])

X
d�0

Pd(x)zd =
1p

1� 2xz + z2
, (3.2)
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so that the generating function of our ratios reads

Corollary 3.2. We have

V1(z) :=
X
d�0

v(1)
d

v(0)
d

zd =
1
4

✓
1p

1� 6z + z2
� 1 + z

(1� z)2

◆
.

Performing singularity analysis the latter result allows to establish the asymptotic
behaviour of the ratios for d!1 as follows.

Proposition 3.3. For d!1

v(1)
d

v(0)
d

=
1

8 4
p

2
p

⇡d
(3 + 2

p
2)d+ 1

2

✓
1 + O

✓
1
d

◆◆
.

Proof. We adopt the usual technique of singularity analysis of generating functions,
compare e.g. [5, Chapter IV] or [12, Chapter 8]. The dominating singularity of the
generating function V1(z) is given by the zero 3� 2

p
2 of 1� 6z + z2 closest to the

origin, whereas the other zero of 1� 6z + z2 as well as the term 1+z
(1�z)2 will give a

contribution that is exponentially smaller than the contribution of the main term.
The local expansion of V1(z) about the dominating singularity reads

V1(z) =
1

8 4
p

2
p

3� 2
p

2

✓
1� z

3� 2
p

2

◆�1/2✓
1 + O

✓
1� z

3� 2
p

2

◆◆

for z ! 3� 2
p

2,

from which the asymptotics is immediate.

In [1] Akiyama and Pethő also discussed the probabilities

p(s)
d := v(s)

d /vd (3.3)

for a contractive normed polynomial of degree d in R[x] to have s pairs of complex
conjugate roots. In particular they derived (cf. [1, Theorem 6.1])

log p(0)
d = � log 2

2
d2 +

1
8

log d + O(1), for d!1, (3.4)

for the probability of totally real polynomials and, by numerical evidence for d 
100, conjectured that

log p(1)
d  � log 2

2
d2 + d log q (3.5)

for some constant q. Now, obviously, p(1)
d = v(1)

d

v(0)
d

p(0)
d , so that from (3.4) and our

Proposition 3.3 we gain
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Corollary 3.4. The probability p(1)
d for a contractive normed polynomial of degree

d in R[x] to have exactly one pair of complex conjugate roots fulfills

log p(1)
d = � log 2

2
d2 + d log(3 + 2

p
2) + O(log d) for d!1.

4. Concluding Remarks

In this paper we were able to settle the instance s = 1 of Conjecture 1.1. The
question arises, whether our methods could be used to prove the conjecture for
additional instances of s � 2 or even for general s � 1. A crucial point for a possible
application of our method would be to establish a generalization of the Selberg-
Aomoto integral for integrands that will occur with the evaluation of v(s)

d for s � 2
similar to formula (1.2) in the instance s = 1. Work is in progress on this question,
but even the explicit evaluation of the integrals that appear in instance s = 2 seems
to be very hard.
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